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Preface 
Introduced weeds, both annuals and perennials, have 

become a problem in sustaining native plant communities. 
WIthin the Intermountain Region. no other weedy species has 
attained the widespread distribution and domInance of cheat
grass (Bromus tectorum). Other weeds possess undesirable 
features and may be difficult to eradicate or control, but few 
have occupied and disrupted the ecology of such vast areas 
as cheatgrass. Early workers and land stewards recognized 
the explosive nature of this annual grass as It caught fire and 
Its ability to compete with native vegetation. Initially. some 
land managers were concerned about the loss or gain In 
seasonal forage as cheatgrass and other annual weeds ap
peared, but the ecological impact of this species was soon 
realized. 

Although various efforts have been directed toward contaIn
Ing and restoring infested sites, cheatgrass and other related 
annual weeds continue to expand. presenting ever more seri
ous management problems. The loss of native plant commu
nities to less desirable introduced annuals damages various 
resources--lncluding watershed and wildlife. The value 
of these resources has become increasingly important as 
weeds have continued to expand. 

Cheatgrass presents an increasingly acute problem-fire. 
The conversion of diverse native communities to annual 
grasses has resulted In a dramatic increase In the frequency 
of fires. The cost of containing and restoring sites that fre
quently burn has become a major problem throughout the 
West. Site degradation results not only from the displace
ment of native vegetation by cheatgrass. but also from re
peated burning. 

Although considerable information has been developed 
concerning the ecology, competitive tralts, management, and 
revegetation potential of cheatgrass communitIes. measures 
Bre needed to contain and restore weed-infested sites. Con
tinued expansion of annual weeds must be corrected. This 
symposium was developed to better identify weed problems 
on range and wildland sites, and to address management 
and restoration measures that can be employed. 

Papers in the proceedings are grouped In nine principal 
topIcs that range from introductory materIal to InformatIon on 
ecology and resources. various restoration subjects, and 
management. 
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POTENTIAL ROLE OF CRYPTOBIOTIC 
SOIL CRUSTS IN SEMIARID 
RANGELANDS 

Jayne Belnap
 

ABSTRACT 
The 'Ok ofcryptobiotic soil crusts in the functioning of 

semiarid and arid ecosystems is discussed. These 'Oks in
clude microstructuring ofsoils in cold-tksert ecosystems, 
influencing soil nutrient kvels, and influencing the nutri
ent status, germination, and establishment ofvascular 
plants in crusted areas when compared to uncrusted areas. 
For these reasons, re-establishment ofthese crusts should 
be an important part ofreclamation efforts. Natural re
covery rates and the effectiveness of inoculation efforts are 
discussed. 

INTRODUCTION 
It bas long been reported in the literature that crypto

biotic soil crusts, consisting ofcyanobacteria, mosses, and 
lichens, are an important component ofecosystems in 
semiarid areas. These crusts may represent up to 70 per
cent of the living cover in some of these systems. Many 
roles have been ascribed to these crusts, including effects 
on soil stability (Anantani and Marathe 1974; Anderson 
and Rushforth 1976; Anderson and others 1982a,b; Belnap 
and Gardner 1992; Campbell 1979; Fletcher and Martin 
1948; Harper and Marble 1990; Kleiner and Harper 1972, 
1977; Loope and Gifford 1972; Marathe 1972; Metting and 
Rayburn 1983;-Shields and DUlTeIl1964), soil moisture 
and nutrient status of soils (Belnap and Harper 1992; 
Brotherson and Rushforth 1983; Campbell 1979; Harper 
and Belnap, unpublished data; Shields and DUlTelll964), 
contribution offixed nitrogen <Belnap 1991; Evans and 
Ehlringer 1992; S~ins and Klubek 1978), and enhance
ment ofseedling establishment (Harper, unpublished 
data). Data suggest that these crusts are slow to recover 
from severe disturbance, requiring 40 years or more to 
recolonize even small areas <Belnap 1992). 

This paper discusses the ecological role ofcryptobiotic 
soil crusts, including their structure, effects on the nutrient 
status ofplants, and effects on seedling establishment and 
success, as well as ways to basten their recovery from dis
turbance. Data are drawn from several different studies 
conducted over the past 5 years by Belnap (1991, 1992), 
Belnap and Gardner (1992), Belnap and Harper (1992), 
Harper and Belnap (1992) and Harper (unpublished). 

Paper presented at tha Symposium on Ecology. Manapmeut, and Res
toration oflntenaountain Annual Ranplanda, BoiB8.ID. May 18-22. 1992. 

Jayne Belnap Is a Research Biologist, NatJonal Park Service, Southeast 
Utah Group. 125 West 200 South, Moab, ur 84532. 

MEmODS 
Cyanobacterial soil crusts from sandstone- and gypsum

derived soils were collected from Arches and Canyonlands 
National Parks located in southeastern Utah near Moab. 
For scanning electron microscopy (SEM) work, samples 
were either directly gold coated or were prepared by freeze 
substitution, and then examined with a JEOL 840A scan
ning electron microscope. 

The presence of chlorophyll a was used to estimate the 
biomass ofliving cyanobacteria and green algae in the 
crusts found on the sandy and gypsiferous soils from Arches 
National Park. Chlorophyll a was extracted from collected 
samples with dimethyl sulfoxide (DMSO). The DMSO ex
traction samples were centrifuged and spectrally analyzed 
on a diode array spectrophotometer at 665 om to obtain 
relative values for the amount chlorophyll a present 
(Belnap 1991). 

Plant tissue ofthe native annual grass, Festuro octoflora, 
and the native perennial dicotyledonous herb, Mentzelia 
multiflora, was chosen to compare nutrient status ofplants 
on and offcrusted surfaces. Festuca octoflora was collected 
from a site approximately 20 miles (33 km) southwest of 
Moab, UT. Mentzelia multiflora was collected from Arches 
National Park, 10 miles (17 km) northeast ofMoab. Both 
areas have been protected from domestic livestock grazing 
for over 10 years. Plants were collected from two immedi
ately acijacent sandy sites; one area had well-developed 
cyanobacterial-Collema lichen crusts, while the other lacked 
such a crust. At Arches, windblown sand accounted for the 
lack ofcrust; at the F. octoflora site, the lack ofcrust was 
due to repeated trampling by people over a period ofyears. 
Composite samples ofat least five individuals (or 2.0 g tis
sue for the tiny Festru:a plants) were collected at each of 
five locations for each soil surface condition class at each 
site. Two composite samples of the surface 3.0 em of the 
soil profile were collected from each soil surface class at 
each site. 

Soils were analyzed for percent sand using a hydrometer 
procedure (Bouyoucous 1936). Soil reaction was determined 
with a glass electrode on a saturated soil/distilled water 
slurry. Organic matter wes determined by wet digestion 
in l.ON potassium dichromate (Moodie and others 1963). 
Total nitrogen in soils was estimated using a micro-lliieldahl 
procedure (Association ofOfficial Analytical Chemists 1980). 
"AvailableD phosphorus was extracted in O.2N acetic acid, 
and determined using the iron-TeA-molybdate method 
(Goldenberg and Fernandez 1966). Exchangeable bases 
were displaced from the soil with 1.0N ammonium chloride 
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and concentrations in the extractable solution were deter
mined using an atomic absorption unit (David 1960). Air
dried plant samples (whole plants including milior roots 
remaining when individual plants were pulled up) were 
cleaned of adherent sand and ground through a 40-mesh 
sieve using a rotating mi.ll. Samples were stored until ana
lyzed in capped plastic vials. Nitrogen was determined by 
micro-kjeldahl procedures. A single 1.0-g sample of each 
specimen was fully digested using a sulfuric acid-nitric 
acid procedure (1:5 parts respectively of the concentrated 
acids). Elemental content of essential minerals was deter
mined on aliquots of the digestate using an atomic absorp
tion unit and appropriate analytical procedures (Associa
tion of Official Analytical Chemists 1980). Results oftissue 
analyses for individual elements were compared using an 
unpaired t-test model. 

Seedling germination and establishment were measured 
over a period of 4 years. Seeds were planted through a 
template into permanent plots. Seedling establishment 
and success were measured after germination and after 
4 years using a 0.25-m2 quadrat frame and Daubenmire 
cover classes. 

RESULTS AND DISCUSSION 

The structure of soil crusts from the Colorado Plateau 
region of Utah was studied by Belnap (1992) using a scan
ning electron microscope. The crusts in this region are 
dominated by the cyanobacterium Microcoleus uaginatus 

(Anderson and Rushforth 1976; Campbell and others 
1989; Johansen and Rushforth 1985), which often repre
sents up to 95 percent of the biomass in the soil (Belnap, 
personal observation). Figures 1-3 show M. uaginatus 
and M. uaginatus-dominated crusts in sandstone-derived 
soils. M. uaginatus has a large, distinct, sticky extracellu
lar sheath that surrounds groups of living filaments (fig. 1). 
When wetted, this sheath material swells, and filaments 
within are mechanically extruded through the soil. As the 
substrate dries, the exposed filaments secrete additional 
sheath material. Rewetting repeats this cycle, resulting 
in sheath material that winds among the sand particles 
much like fibers in fiberglass (fig. 2). Even when dry, the 
sheath material can be seen firmly adhering to soil par
ticles (fig. 3). These connections appear to reduce wind 
and water erosion, as well as holding the otherwise 100ge 
material on slopes well beyond the angle of repose. When 
wetted, the sheath material swells and covers the soil sur
face even more extensively than when dry. Sheath mate
rial can absorb up to eight times its weight in water, thus 
absorbing precipitation quickly and increasing the water
holding capacity of sandy soils (Brock 1975; Campbell 
1979; CampbeIl and others 1989). Even when swollen, 
there is space for rainwater and vascular plant roots to 
penetrate into the soil between sheaths (fig. 4). 

Cyanobacteria and cyanobacterial components of Boil 
lichens fix atmospheric nitrogen most ofthe year (Belnap 
1992; Fuller and others 1960; Skujins and Klubek 1978; 
Terry and Burns 1987; West and Skujins 1977). Studies 

Figure 1--5canning eleelron micrograph of Microcc(sus vagina/us, the domi
nant cyanobacterium in soil crusts of the Colorado Plateau. Nole the living fila
ments extruded from lhe sticky extracellular shealh (magnification x 700), as 
occurs when the organism is wetted. 
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Figure 2-5cannlng electron micrograph of dry cyanobacterial sheaths 
winding through sandy soils from Moab. UT. Note firm attachment of 
sheath materiaJ to the individual sand grains, even though sheath material 
is dry (magnification x 90). 

Figure 3--Scanning electron micrograph 01 a sand grain wrapped by 
cyanobacterial sheaths (magnification x 400). 
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Figure 4-Scanning electron micrograph of wet cyanobacteria on 
the surface of a moistened sandy soH from Moab, UT. Note the 
swollen, rounded sheaths "nef the surface, keeping fine soil par
ticles in place (magniflcation x1 00). 

utilizing radioactive isotopes of nitrogen have demon
strated that nitrogen fixed by cyanobacteria in the crusts 
is available to neighboring vascular plants (Mayland and 
McIntosh 1966; Mayland and others 1966). In some desert 
systems, these crusts have been demonstrated to be the 
dominant source of this often-limiting element for associ
ated seed plants (Evans and Ehlringer 1992). 

Elemental levels ofvascular plants are affected by the 
presence of these crusts. Levels ofN, P, K, Fe, Ca, and 
Mg were higher in the annual grass Festuca octo{lora grow
ing on crusted soils than in plants growing on comparable 
noncrusted soils. Levels ofN, Fe, Ca, Mg, and Mn were 
higher in the native perennial forb Mentzelia multiflora 
(Belnap and Harper 1992). Essential nutrient concentra
tions were also shown to be higher in the tissue of the bi
ennial plant Lepidium montanum growing on soils covered 
by cyanobacterial-rich crusts than on paired plots where 
the surface 1.0 em of crust had been stripped from around 
the plants 3 months prior to tissue nutrient analyses 
(Harper and Marble, in preparation). Experiments in the 
greenhouse show levels of nitrogen in sorghum and rape 
higher in pots with cyanobacteria when compared to pots 
without cyanobacteria. Dry weight of plants in pots with 
cyanobacteria were up to four times greater than in pots 
without cyanobacteria (Harper and Belnap, unpublished). 

Several mechanisms have been postulated to explain this 
effect. Fletcher and Martin (1948) reported that crusts 
trapped soil fine particles, which are more nutrient-rich 
than sand (Black 1968). Lange (1974) demonstrated that 
compounds in the gelatinous sheath material of half the 

cyanobacteria species studied were able to chelate elements 
essential for their growth (for example, iron, copper, molyb
denum, zinc, cobalt, and manganese). Four of the five gen
era shown to possess this ability (Anabaena, Anacystis, 
Lyngbya, and Nostoc) are represented by common species 
in the cryptobiotic crusts of western North American des
erts (Shields and Durrell 1964), Belnap (1992) showed that 
cyanobacterial sheath material was often coated with nega
tively charged clay particles, providing a mechanism for 
holding positively charged macronutrients against leach
ing from the soil profile. It is also possible that nutrient 
differences are a result ofa thermal effect, as dark crusts 
would be warmer that lighter uncrusted BOils, and uptake 
of nutrients would occur at a higher rate. 

The presence of soil crusts can also affect seedling estab
lishment and survival. Experiments done by K. Harper 
(unpublished) at sites with both fine and coarsely textured 
soils demonstrate that seedling establishment was much 
higher for both forbs and grasses in crusted areas when com· 
pared to areas where the crust had been removed (table 1). 
Survival over a 3·year period was enhanced in the four spe
cies (grasses and forbs) measured at these sites as well 
(table 2). Other studies have reported similar enhance
ment of seedling germination and establishment in crusted 
areas when compared to noncrusted surfaces (Harper and 
St. Clair 1985; St. Clair and others 1984). 

Trampling negatively affects the cohesion and coverage 
of cyanobacterial crusts, since the filaments are brittle when 
dry and easily crushed (Campbell 1989; Harper and Marble 
1990). Visual examination of undisturbed soil crusts on 
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Table 1-Effects of cryptoblotlc soli crust on vascular plant seedling 
establishment. Seedlings were measured 10 months after 
early winter planting of four species (Unum perenns, 
Oryzopsis hymenoldes. SphBeraJeeB coccIneB, and 
Elymus juneeus) at three different locations In central 
Utah. Thirty-two seeds of each species were planted 
through a template at five randomly chosen spots In each 
of at least 22 plots representing crusted or not crusted 
solis at each site. For this table. seedlings of all four 
species were pooled. The "no crust" treatment consisted 
of scalping the top 1.0 cm of the soli profile 

Site No crust Crust p 

T1ntic Junction 105 165 <0.1 
Buckthorn Reservoir 140 389 <.1 
BLM-USU pasture 59 198 <.1 

All sites pooled 304 753 <.1 

sandy soils of the Colorado Plateau shows cyanobacterial 
sheath material to occur as deep as 10 em below the sur
face ofthe soil. In contrast, heavily trampled areas sup
port only a thin veneer of cyanobacteria and cyanobacte
rial sheaths <Belnap 1992). Since no chlorophyll a is found 
below 1 em (Belnap, unpublished), sheath material ?elow 
that depth must represent remnants ofcyanobactenal 
crusts once found near or at the soil surface and later bur
ied by sediments. Thus as aeolian and water-borne mate:' 
rials are trapped in the polysaccharide sheaths ofM. VagI

natus and other cyanobacteria growing on the surface of 
desert soils, these sheaths are gradually buried, but their 
ameliorating influences on water-holding capacity, cation 
exchange capacity, and soil stability may extend far below 
the depth to which light can penetrate. Any damage to 
such abandoned sheath material is nonrepairable, since 
living cyanobacteria are apparently no longer present at 
these depths to regenerate filament and sheath materials. 
As a consequence, trampling may not only reduce soil sta
bility, but soil fertility and soil moisture retention as well. 

Restoration ofthese crusts has been studied by several 
investigators. These studies have examined both natural 
recovery and the use ofinoculants. Recovery rates depend 
on the type and extent ofdisturbance and the availability 
of nearby inoculation material, as well as on the tempera
ture and moisture regimes that follow disturbance events. 

Table 2-Effects of cryptobiotic soli crust on vascular plant survival 
over 3 years (1981-84) at three different sites with 3 dif
ferent soli textures. The "no crust" treatment consisted 
of scalping the top 1.0 em of the soil profile 

Site Species No crust Crust 

- Percent survival • 

Tintic Junction 
T1ntic pastures 

Buckthorn Reservoir 

Unum perenne 
Oryzopsls hymenoldes 
Elymus jlJfJC6us 
SphBeralC6B coccinea 
Elymu5 junceus 

79 
75 
0 

17 
14 

88 
100 
100 
27 

100 

Estimates of time for natural recovery from disturbance 
ofcryptobiotic crusts have varied widely, ranging from a 
few years to 100 years for full recovery of all components 
(Anderson and others 1982b; Callison and others 1985; 
Cole 1991; Jeffries and Klopatek 1987). Belnap (1992) 
reported that ifonly visual estimates of cyanobacterial 
cover are considered, recovery appears quite rapid. In sev
eral experiments where the top 2 em of the soil surface was 
removed, all plot surfaces, whether inoculated with nearby 
material or not, appeared completely covered by cyanobac
teria, and most showed rudimentary pedicelling after only 
1 year. This gave the impression that the cyanobacteriaJI 
green algal components of the crusts were mostly or fully 
recovered. Chlorophyll a measurements, however, told a 
different story: dramatic differences in chlorophyll a levels 
demonstrated that the amount ofphotosynthetic crypto
biotic ti88ue present differed greatly among treatments. 
Uninoculated plots sometimes supported only 2 percent as 
much chlorophyll a as was found in nearby undisturbed 
crusts. Estimates for full recovery of the cyanobacterial 
biomass, using chlorophyll a concentration as the indica
tor, ranged from 35 to 65 years. Other aspects ofcrust ~e
covery, including the depth of accumulated cyanobacterial 
sheath material and lichen and moss species number and 
cover, were much slower. 

Lichens showed some recovery at three of the four sites 
tested. At observed rates, full recovery at these three sites 
would take 45 to 85 years. At one site, no recovery was 
Been, even after 5 years; consequently, time to full recov
ery is impossible to predict. M088 recovery was even slower 
than that of the lichens. At two of the three sites where 
mosses were found in the undisturbed areas, no mosses 
were found in the disturbed areas. This makes prediction 
of recovery rates for mosses at these sites impossible, but 
clearly they are extremely slow. At the third site, where 
some recovery was seen, full recovery ofmoss cover would 
take over 250 years at the observed rate. 

Several studies have demonstrated that inoculation can 
hasten the biological recovery ofdisturbed crusts (Ashley 
and Rushforth 1984', Belnap 1992; Lewin 1977; St. Clair, 
and others 1986; Tiedemann and others 1980). In Belnap s 
1992 study, inoculated plots had far greater chlorophyll a 
concentrations than uninoculated plots, indicating a larger 
biomass of cyanobacteria and green algae in inoculated 
sites. Inoculated plots also had significantly greater lichen 
species richness and greater lichen and moss cover than 
uninoculated plots. However, although lichen and m088 
cover was significantly greater on inoculated than uninocu
lated plots, recovery for both lichens and mosses was still 
extremely slow for both treatments. 

Inoculation also hastened some aspects ofvisual recovery 
ofthe cyanobacterial/green algal component. Areas that 
had been inoculated had greater pedicellation sooner than 
areas that were not inoculated. Apparent coverage of the 
soil surface by this crustal component, however, was not 
hastened by inoculation, since all soil surfaces appeared 
completely covered within 1 year. Inoculation somewhat 
hastened the visual recovery of the lichens and mosses; 
however, absolute differences were so small it was diffi
cult to tell treatments apart, even with close examination. 
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CONCLUSIONS 

Cyanobacterial-lichen soil crusts can contribute in many 
ways to the ecosystems in which they occur. Such crusts 
can enhance soil stability, reduce water runoff by produc
ing more microcatchments on soil surfaces and adding ab
sorptive organic matter, improve nutrient (nitrogen and 
some essential mineral elements) relations for at least some 
vascular plants, and enhance germination and establish
ment of some vascular plants. These black crusts may also 
stimulate vascular plant growth and nutrient uptake by 
producing warmer soil temperatures during cool seasons 
when free water is most likely to be available in the cold 
deserts of the western United States. 

Until we have a greater understanding of the short- and 
long-term effects of impacts on the ecology and functioning 
of these crusts, and how to reestablish them on disturbed 
arid lands, 'land managers should minimize activities that 
may disturb them. 
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Annual weeds continue to expand throughout the West eliminating many desirable 
species and plant communities. Wildfires are now common on lands infested with annual 
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used to reduce burning and restore native plant communities, but restoration is difficult 
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