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Summary

� In semiarid western North American riparian ecosystems, increased drought and lower

streamflows under climate change may reduce plant growth and recruitment, and favor

drought-tolerant exotic species over mesic native species. We tested whether elevated atmo-

spheric CO2 might ameliorate these effects by improving plant water-use efficiency.
� We examined the effects of CO2 and water availability on seedlings of two native (Populus

deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix

spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse,

using 1-m-deep pots with different water-table decline rates.
� Low water availability reduced seedling biomass by 70–97%, and hindered the native spe-

cies more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on

natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (D13Cleaf), but did

not increase biomass more in drier treatments than wetter treatments.
� The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counter-

act the large negative effects of increased aridity projected under climate change. Our results

suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and

will reduce growth more for native Salix and Populus than for drought-tolerant exotic

species.

Introduction

Riparian ecosystems in arid and semiarid western North America
may be dramatically altered by increased water stress under cli-
mate change (Rood et al., 2008; Stromberg et al., 2010; Perry
et al., 2012). Most climate models of the southwestern USA pre-
dict increased aridity over the next century as a result of greater
evapotranspiration and less precipitation (Seager & Vecchi,
2010). In addition, warmer temperatures are reducing snowpacks
and increasing winter runoff, and thus reducing late spring and
summer streamflows in western North America (Christensen
et al., 2004; Stewart et al., 2005; Maurer, 2007; Miller &
Piechota, 2008). These changes are likely to increase riparian
plant water stress, which can hinder tree seedling recruitment
(Mahoney & Rood, 1998; Shafroth et al., 1998; Horton &
Clark, 2001; Amlin & Rood, 2002) and alter plant community
composition (Rood et al., 2003; Auble et al., 2005; Lite &
Stromberg, 2005; Strom et al., 2011). In particular, greater water
stress may reduce the abundance of dominant, mesic, native
Populus (cottonwood) and Salix (willow) species (Rood et al.,
2003), and favor more drought-tolerant, exotic species,

including Tamarix ramosissima Ledeb., T. chinensis Lour.,
and T. ramosissima9 chinensis hybrids (tamarisk or saltcedar;
Stromberg et al., 2010) and Elaeagnus angustifolia L. (Russian
olive; Reynolds & Cooper, 2010).

Increased atmospheric CO2 concentrations (hereafter [CO2]),
however, may offset the effects of increased aridity on riparian
plants. Atmospheric [CO2] rose from 280 to 368 ppm during the
20th century and may rise to > 700 ppm by the end of the 21st
century (IPCC, 2007). Elevated [CO2] reduces stomatal conduc-
tance and increases water-use efficiency (WUE) in many plants,
particularly under dry conditions, thus reducing their overall
demand for water (Wand et al., 1999; Ainsworth & Long, 2005).
In semiarid grasslands, elevated [CO2] can reduce transpiration
enough to completely counteract the negative effects of moderate
warming on soil water availability, and increases plant growth
most strongly in dry years (Morgan et al., 2004, 2011). However,
potential effects of elevated [CO2] on plant growth and WUE
have not been considered in most predictions of climate change
effects on semiarid riparian ecosystems (e.g. Rood et al., 2008;
Stromberg et al., 2010; Yarnell et al., 2010), and research is lack-
ing on riparian plant responses to elevated [CO2].

Predicting how elevated [CO2] might affect riparian plants is
difficult, because responses to elevated [CO2] vary considerably
among species (Leakey et al., 2009). For Populus deltoides Bartram
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ex. Marsh spp. deltoides (eastern cottonwood), a dominant eastern
North American riparian tree, elevated [CO2] (720–1000 ppm)
decreased stomatal conductance by 25–50% and increased instan-
taneous WUE by 20–30%, net photosynthesis by 20–60%, and
growth by 25–80% (Will & Teskey, 1997; McDonald et al.,
2002; Barron-Gafford et al., 2005; Murthy et al., 2005; Lewis
et al., 2010). If western North American riparian species respond
similarly, then elevated [CO2] may mitigate the negative effects of
lower water availability on riparian plants under climate change.
Further, if riparian species vary in their responses to elevated
[CO2], then elevated [CO2] could favor some species over others,
potentially altering community composition.

Riparian species responses to elevated [CO2] could vary as a
result of interspecific differences in direct effects on photosynthe-
sis, effects on stomatal conductance, or indirect effects of stomatal
conductance on growth. There are no previous data to suggest that
particular riparian plant species are likely to be more responsive
than others to direct effects of elevated [CO2]. Species with greater
drought tolerance, however, may benefit less from indirect effects
of reduced stomatal conductance on growth, because they are less
water-stressed than other species when water is moderately lim-
ited. For example, Tamarix spp. are better able to access shallow
soil water, maintain turgor through osmotic adjustments, and
avoid xylem cavitation than Populus and Salix spp. (Smith et al.,
1998; Rood et al., 2003), and may benefit less from reduced sto-
matal conductance.

Effects of increased aridity and elevated [CO2] on seedlings
may be particularly important for riparian tree populations.
Seedling mortality strongly limits native riparian tree abundance
(Lytle & Merritt, 2004). Riparian Populus and Salix seedlings
establish on bare, moist surfaces created by floods and exposed by
flood recession, growing roots rapidly downward to maintain
contact with soil moisture from the declining water table
(Mahoney & Rood, 1998; Shafroth et al., 1998). Most seedlings
die in their first 12 months from water stress or flood and ice scour
(Stromberg et al., 1991; Cooper et al., 1999; Johnson, 2000), and
successful establishment occurs only once every 5 to > 60 yr
depending on streamflow and geomorphology (Scott et al., 1996).
Increased aridity as a result of climate change may further reduce
the probability of establishment (Perry et al., 2012). Under-
standing how elevated [CO2] interacts with increased aridity to
influence seedling water stress and growth is critical for predicting
how climate change will alter riparian plant communities.

We conducted a glasshouse experiment to test the effects of
elevated [CO2] and water availability on seedling growth, physi-
ology, and drought tolerance of five western North American
woody riparian species, including the two most common native
species (Salix exigua Nutt. (sandbar willow) and Populus deltoides
Bartram ex. Marsh spp. monilifera (Aiton) Eckenwalder (plains
cottonwood)), the two most common exotic species (Tamarix
spp. and Elaeagnus angustifolia), and an increasingly common
exotic species (Ulmus pumila L. (Siberian elm)) (Friedman et al.,
2005; Zalapa et al., 2010). Our objectives were to evaluate the
potential for elevated [CO2] to offset increases in water stress in
riparian woody seedlings; and favor establishment by some spe-
cies more than others. We predicted that elevated [CO2] would

increase seedling WUE, and therefore increase growth more for
the relatively drought-intolerant, native species than for the exotic
species, and more in treatments with lower water availability.

Materials and Methods

We grew seedlings of the five study species (hereafter, Salix,
Populus, Tamarix, Elaeagnus, and Ulmus) in a glasshouse under
ambient (440 ± 48 (SD) ppmv) and elevated (752 ± 85 ppmv)
[CO2] and with four water-table decline rates (0.5, 1.5, 3.0, and
4.0 cm d�1). Each of the 40 treatment combinations (five spe-
cies9 two [CO2] treatments9 four water treatments) was repli-
cated eight times.

The experiment was arranged in a blocked, split-plot design,
with water treatments in ‘whole pots’, species in ‘subpots’, and
[CO2] treatments in separate glasshouse bays. One bay received
CO2 inputs sufficient to maintain the elevated [CO2] treatment
during 16 h, lighted days. Because it was not possible to apply
[CO2] treatments at the whole-pot or subpot level, the experi-
ment lacked true replication of the [CO2] treatment. To mini-
mize the likelihood of spurious effects of location, we used
wheeled platforms to rotate the [CO2] treatments between the
two bays weekly, except during an 11 d period of equipment
failure starting in the 10th week. Within each bay, the pots were
divided into eight blocks, each consisting of four whole pots (one
per water treatment). When rotating the [CO2] treatments, we
also rotated the block locations within each bay, and the whole-
pot locations within each block.

Whole pots were 30-cm-diameter9 100-cm-deep PVC pipes,
capped at the bottom, equipped with a flexible drainpipe near the
base, and filled with water. Whole pots served as water reservoirs
for five sand-filled subpots (one per species) arranged inside each
whole pot (Supporting Information, Fig. S1). Subpots were 8-cm-
diameter9 105-cm-deep (5275 cm3) PVC pipes, capped at the
bottom, with four, 1-cm-diameter holes drilled 3 cm above the
base, covered with fine screen. Similar pot dimensions have been
used in many studies of riparian tree seedlings (Mahoney & Rood,
1991; Rood et al., 2000; Horton & Clark, 2001), because riparian
tree seedling roots grow primarily downward to follow declining
water tables (Mahoney & Rood, 1998). Subpots were filled with
5 cm of medium/fine gravel (predominantly 5–8 mm particles) at
the bottom, then 92 cm of medium/coarse alluvial sand (predomi-
nantly 0.4–2.0 mm particles) mined from the Cache la Poudre
floodplain (LaFarge North America, Fort Collins, CO, USA),
then 5 cm of medium/coarse alluvial sand mixed with Scotts
osmocote plus fertilizer (Scotts Professional, Geldermalsen, the
Netherlands), and finally 1 cm of a finer medium/coarse sand
(predominantly 0.2–1.0 mm particles). The fertilizer was a 3- to
4-month-duration, slow-release fertilizer, with 15% nitrogen (N),
9% phosphorus, 12% potassium, 1.9% calcium, 1.4% magne-
sium, 4% sulfur, and trace elements. It was applied at a rate of
4 mg N kg�1 to mimic a 10 mg N kg�1 yr�1 mineralization rate,
based on N mineralization on sandbars with establishing riparian
trees (6.5–32.9 mg kg�1 yr�1) (Adair et al., 2004).

Salix and Populus seeds were collected in Fort Collins, and
Tamarix seeds were collected in Loveland, CO. Most North
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American Tamarix are Tamarix ramosissima9 T. chinensis
hybrids (Gaskin & Kazmer, 2009), which are morphologically
indistinguishable from the parent species, so the species identity
of the Tamarix is uncertain. Elaeagnus seeds, collected in
Montana, were purchased from F. W. Schumacher Co., Inc.
(Sandwich, MA, USA). Ulmus seeds, collected in North Dakota,
were purchased from Lawyer Nursery (Plains, MT, USA).
Because Elaeagnus seeds are dormant and germinate more slowly
than the other species, Elaeagnus seeds were stored in moist sand
at 4°C for 80 d, and then planted in flats filled with moist sand
28 d before the start of the experiment. One week before the start
of the experiment, three Elaeagnus seedlings, just emerging from
the seed coat, were transplanted into one subpot in each whole
pot. All other species were sown into subpots at the start of the
experiment. Ulmus seeds were covered with a 0.25 cm layer of
sand after sowing. Seedlings were thinned to the largest three
seedlings per subpot 1 wk after sowing, and to one per subpot
(the mid-sized seedling) 3 wk after sowing.

For the first week after sowing, water levels in the whole pots
were maintained daily at 5 cm below the subpot soil surface.
After 1 wk, water levels in the whole pots were lowered by 0.5,
1.5, 3.0, or 4.0 cm daily by lowering the position of the drain-
pipe. We used declining water tables for the water treatments
because Salix, Populus and Tamarix germination and establish-
ment commonly occur during flood recession on riparian flood-
plains (Fenner et al., 1985; Mahoney & Rood, 1998; Shafroth
et al., 1998). River stage decline rates of 0.5–4.0 cm d�1 are real-
istic during flood recession (Mahoney & Rood, 1991; Shafroth
et al., 1998), and Salix, Populus, and Tamarix seedling survival is
often poor with water-table decline rates > 4.0 cm d�1 (Mahoney
& Rood, 1991; Segelquist et al., 1993; Horton & Clark, 2001;
Amlin & Rood, 2002; Stella & Battles, 2010). Water-table
declines continued throughout the experiment for the 0.5 cm d�1

treatment and continued down to a 98 cm depth for the 1.5,
3.0 and 4.0 cm d�1 treatments (reached at 69, 38 and 31 d,
respectively).

Soil moisture was determined as a function of height above the
water table in two unoccupied subpots with the water table main-
tained at 64 cm below the soil surface. After 1 wk, soil was
collected from each subpot in 64, 1-cm-deep increments down to
the water table. The samples were weighed, dried at 105°C, and
reweighed to determine soil moisture. Soil moisture in each water
treatment was estimated by calculating the daily mean soil mois-
ture for the entire soil column above the water table, accounting
for the changing position of the water table over time. Mean soil
moisture over the course of the experiment was 12.2, 7.7, 6.2,
and 5.8% in the 0.5, 1.5, 3.0, and 4.0 cm d�1 treatments, respec-
tively. Soil moisture at field capacity (�0.033MPa) and at the
wilting point (�1.5MPa) was determined for two samples by the
Colorado State University Soil Testing Laboratory, Fort Collins,
to assess approximate full and depleted soil water conditions.

The glasshouse bays were maintained at a temperature (± SD)
of 27 ± 3°C during the day and 18 ± 2°C at night, with a 16 h
photoperiod, to approximate the June to August climate in Fort
Collins (Western Regional Climate Summaries; http://www.
wrcc.dri.edu). Relative humidity was 28 ± 6% during the day and

52 ± 8% at night. Each bay was lit by 12 high-pressure sodium
lamps. Midday photosynthetic photon flux density at the soil sur-
face before sowing, averaged across subpots, was 517 ± 60
lmol m�2 s�1.

The experiment was maintained for 12 wk, similar to the dura-
tion of a typical first growing season for Populus, Salix and
Tamarix in Colorado (Cooper et al., 1999). Seedling survival and
height were measured weekly. In the 10th week, the percentage
of each plant’s leaf surface area composed of necrotic tissue was
estimated by counting the number of leaves within different clas-
ses (0, 1–5, 5–25, 25–50, 50–75, and 75–100% necrotic tissue)
and averaging the percent midpoints of all leaves. Above-ground
and below-ground biomass was harvested in the 12th week, dried
at 60°C, and weighed. During the harvest, predawn and midday
stem xylem water potentials (hereafter Ψpd and Ψmd) were mea-
sured for whole plants (above ground) using a Scholander
pressure chamber (Model 1505D, PMS Instruments, Albany,
OR, USA). Ψpd was measured between 02:30 and 05:00 h for
four randomly selected blocks, and Ψmd was measured between
11:00 and 14:00 h for the remaining four blocks. Roots were har-
vested by gently emptying the subpot into a sieve and rinsing
away the sand. Harvested roots were straightened over a meter
stick to estimate maximum root length, but rooting depths
within the subpots were not measured. Small leaf sizes, especially
in the faster water-table decline treatments, prevented measure-
ments of photosynthesis, stomatal conductance, and leaf (rather
than stem) water potentials.

Leaf tissue was analyzed for d13C to evaluate intrinsic WUE
(C assimilation per unit stomatal conductance, iWUE; Farquhar
et al., 1988) and for C and N concentrations (hereafter [C] and
[N]) to evaluate N limitation. Dried leaves were separated from
stems and ground with a Wiley® mill (Thomas Scientific, Swe-
desboro, NJ, USA) equipped with a 1 mm screen, or cut with fine
scissors for very small samples. Necrotic portions of Populus and
Salix leaves were removed before grinding. For each plant, a
3–5 mg subsample was weighed to the nearest microgram, and
analyzed for [C], [N], and d13C using a Carlo Erba NA 1500 ele-
mental analyzer (Milano, Italy) and a VG Isochrom continuous-
flow isotope ratio mass spectrometer (Isoprime Inc., Manchester,
UK) at the Colorado State University Isotope Laboratory
(observed precision for d13C = 0.2&).

An estimate of atmospheric d13C in the glasshouse was
required to calculate D13Cleaf from d13Cleaf. Because the CO2

source used to create the elevated [CO2] treatment was depleted
of 13C (d13C��39.9&), we calculated atmospheric d13C in the
elevated [CO2] treatment as

d13CghðelevÞ ¼
ð½CO2�amb�d13CghðambÞÞþðð½CO2�elev�½CO2�ambÞ�d13CCO2Þ

½CO2�elev

where [CO2]amb is the [CO2] in the ambient treatment (440
ppmv), [CO2]elev is the [CO2] in the elevated treatment (752
ppmv), d13CCO2 is the d

13C of the CO2 source for the elevated
[CO2] treatment (�39.9&), and d13Cgh(amb) is the ambient

New Phytologist (2013) 197: 532–543 No claim to original US government works

New Phytologist� 2012 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist534



atmospheric d13C in the glasshouse. We assumed that d13Cgh

(amb) was �10&, based on recent atmospheric d13C measure-
ments in Salt Lake City, UT, USA (Pataki et al., 2007), which is
similar in population size to Fort Collins, but set within a denser
metropolitan area. Atmospheric d13C in Salt Lake City ranged
from �8 to �15& (mean c. �10.5&) downtown and from �8
to �13& (mean c. �9.5&) in a residential neighborhood. Given
this uncertainty, we also conducted a sensitivity analysis in which
we calculated D13Cleaf with d13Cgh(amb) from �8 to �15&. The
estimate of d13Cgh(elev) assumes even mixing of ambient and
injected CO2 in the glasshouse. While imperfect mixing could
lead to spatial variation in D13Cleaf within the elevated [CO2]
treatment, this probably did not influence treatment effects,
because the treatments were arranged in blocks and blocks were
rotated frequently within bays.

Seedling measurements were compared among treatments with
ANOVAs in Proc Mixed (SAS 9.2, Cary, NC, USA), with
[CO2], water, species and all interactions as fixed effects and
block and block9 water as random effects. Heights were ana-
lyzed with a repeated-measures ANOVA using a first-order auto-
regressive variance structure. The Kenward–Roger method was
used to estimate degrees of freedom. To correct nonnormality
and heteroscedasticity, total biomass and heights were cube-root-
transformed, Ψ, D13Cleaf, [N], and C : N were log-transformed,
root : shoot ratios were inverse cube-root-transformed, and
percent cover of necrotic leaf tissue was arcsine, square-root-
transformed for analysis.

Results

Growth and survival

Elevated [CO2] increased mean total biomass by 15% (Fig. 1a–e;
Table 1). The [CO2] effect did not vary significantly among spe-
cies or water treatments. Lower water availability in the faster
water-table decline treatments (Fig. 2) reduced total biomass.
Salix and Populus were the most strongly affected by lower water
availability; they were the largest plants in the 0.5 cm d�1 treat-
ment and the smallest in the 3.0 and 4.0 cm d�1 treatments
(water9 species interaction, Tables 1, S1).

Elevated [CO2] increased mean root : shoot ratios by 4%
(Fig. 1f–j; Table 1). The [CO2] effect did not vary significantly
among species or water treatments. Lower water availability
affected root : shoot ratios of some species and not others
(water9 species interaction, Table 1). Specifically, lower water
availability increased Tamarix, Elaeagnus, and Ulmus root : shoot
ratios, but not Salix and Populus root : shoot ratios (Table S1).
Salix, Populus, and Ulmus root : shoot ratios tended to be greater
than Tamarix and Elaeagnus root : shoot ratios, but this differ-
ence decreased with lower water availability (Table S1).

Elevated [CO2] increased shoot heights in most weeks of the
experiment (Table 1), including a 19% increase in the final week
(Fig. 3a–e). The effect of [CO2] on heights varied with time for
some water treatments and species, becoming more consistent
later in the experiment (week9 water9 [CO2] and
week9 [CO2]9 species interactions, Table 1). Specifically,

elevated [CO2] did not affect heights in the 0.5 cm d�1 treatment
in the first 7 wk (post-hoc week9 [CO2], F9,632 = 3.4,
P = 0.0004) and did not affect Tamarix and Ulmus heights in the
first 2 wk (post-hoc week9 [CO2], F9,502 = 3.3, P = 0.0006;
F9,504 = 4.3, P < 0.0001, respectively). Lower water availability
reduced mean heights of all species starting in the fifth week
(week9 water9 species interaction, Table 1), and reduced Salix,
Populus, and Tamarix heights more than Elaeagnus and Ulmus
heights (post-hoc water9 species, P < 0.0001 for weeks 6–11). At
the start of the experiment (week 2), Elaeagnus and Ulmus were
considerably taller than Populus, Tamarix, and Salix across all
treatments (7.7 ± 0.2 and 5.5 ± 0.1 compared with 1.5 ± 0.1,
0.39 ± 0.03, and 0.29 ± 0.02 cm, respectively) (post-hoc species,
F4,273 = 1684.0, P < 0.0001). At the end of the experiment (week
11), species differences in height varied among water treatments
(post-hoc water9 species, F12,249 = 7.6, P < 0.0001). In the 3.0
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Fig. 1 Mean biomass and root : shoot ratio with each water-table decline
rate and [CO2] treatment combination for: (a, f) Salix, (b, g) Populus,
(c, h) Tamarix, (d, i) Elaeagnus, and (e, j) Ulmus. In (a–e), the lower,
darker portions of the stacked bars are below-ground biomass, the upper,
lighter portions are above-ground biomass, and the error bars are for total
biomass. ANOVA results are presented in Table 1. Different lower-case
letters above the bars indicate significant differences in mean total biomass
or root : shoot ratio among water treatments for each species (Tukey HSD,
P < 0.05; Supporting Information Table S1). Error bars are one standard
error of the mean.
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and 4.0 cm d�1 treatments, Elaeagnus, Ulmus and Tamarix were
taller than Populus and Salix, whereas in the 0.5 cm d�1 treat-
ment, Tamarix was taller than Elaeagnus and Elaeagnus was taller
than Ulmus, Populus, and Salix (Fig. 3a–e).
Elevated [CO2] increased mean maximum root lengths by

12% (Fig. 3f–j; Table 1). The [CO2] effect did not vary signifi-
cantly among species or water treatments. Effects of the water
treatments on maximum root lengths varied among species
(water9 species interaction, Table 1). Mean maximum root
lengths were longer in the 1.5 cm d�1 treatment than in all other
water treatments for Populus and Ulmus; longer in the 1.5 cm d�1

treatment than in the 0.5 and 4.0 cm d�1 treatments for
Elaeagnus; and longer in the 1.5 cm d�1 treatment than in the
4.0 cm d�1 treatment for Tamarix and Salix (Table S1).

Elaeagnus and Ulmus maximum root lengths were shorter than
the other species in the 0.5 cm d�1 treatment, and Elaeagnus
maximum roots lengths remained relatively short in the
1.5 cm d�1 treatment (Table S1). Salix maximum root lengths
were longer than all other species in the 0.5 cm d�1 treatment.

At harvest, the water table in the 1.5, 3.0, and 4.0 cm d�1

treatments was 98 cm below the soil surface. Estimating from
Fig. 2a, soil with moisture at field capacity (3.0 ± 0.4%;
�0.033MPa) was c. 70 cm below the soil surface, and soil with
moisture at the wilting point (1.6 ± 0.1%; �1.5MPa) was
c. 57 cm below the soil surface. The water table in the 0.5 cm d�1

treatment was 44 cm below the soil surface and soil with moisture
at field capacity was c. 15 cm below the soil surface. Mean maxi-
mum root lengths at harvest were long enough to reach the water
table for all species in the 0.5 cm d�1 treatment and for Populus,
Salix, and Tamarix (under elevated [CO2]) in the 1.5 cm d�1

treatment (Fig. 3f–j). Mean root lengths in the 3.0 cm d�1 treat-
ment were too short to reach the water table, but long enough to
reach depths with moisture > 3.0%, or at least > 1.6%. Mean
root lengths in the 4.0 cm d�1 treatment were long enough to
reach depths with 3.0% moisture only for Salix under elevated
[CO2], and were too short to reach depths with 1.6% moisture
for several species9 [CO2] treatment combinations. However,
maximum root length may be an overestimate or underestimate
of maximum root depth, because the root length may have been
concentrated near the soil surface, or deep, fine roots may have
been broken and not measured.

Most Populus (90% of plants) developed necrotic lesions on
their leaves that appeared to result from pathogen infection (Fig.
S2). Elevated [CO2] increased abundance of the necrotic lesions,
tripling mean percent cover on Populus leaves (22 ± 3% com-
pared with 7 ± 2%) ([CO2], F1,28 = 20.0, P = 0.0001). Many
Salix (66% of plants) developed smaller necrotic lesions, and also

Table 1 ANOVA results for effects of water, [CO2] and species on seedling growth

Factor ndf

Total biomass Root : shoot ratio Maximum root length Height

ddf F P* ddf F P ddf F P ddf F P

Water 3 28 332.6 < 0.0001 21 55.5 < 0.0001 21 28.2 < 0.0001 320 232.6 < 0.0001
[CO2] 1 249 15.6 0.0001 249 4.7 0.03 246 11.0 0.001 320 50.0 < 0.0001
Water9 [CO2] 3 249 0.7 0.6 249 0.2 0.9 246 0.4 0.7 320 0.9 0.5
Species† 4 249 5.3 0.0004 249 71.3 < 0.0001 246 14.5 < 0.0001 320 300.8 < 0.0001
Water9 species 12 249 9.2 < 0.0001 249 9.6 < 0.0001 246 3.1 0.0003 320 4.6 < 0.0001
[CO2] 9 species 4 249 1.6 0.2 249 1.9 0.1 246 1.5 0.2 320 0.7 0.6
Water9 [CO2]9 species 12 249 0.9 0.6 249 1.0 0.4 246 1.3 0.2 320 1.2 0.3
Week‡ 9 2493 973.4 < 0.0001
Week9water 27 2509 76.0 < 0.0001
Week9 [CO2] 9 2493 5.5 < 0.0001
Week9 species 36 2510 44.8 < 0.0001
Week9water9 [CO2] 27 2509 1.8 0.006
Week9water9 species 108 2505 3.0 < 0.0001
Week9 [CO2]9 species 36 2510 1.7 0.008
Week9water9 [CO2]9 species 108 2505 1.2 0.06

Post-hoc ANOVA results for the significant water9 species interactions are provided in Supporting Information Table S1.
*Significant effects are in bold (P < 0.05).
†Salix exigua, Populus deltoides spp.monilifera, Tamarix spp., Elaeagnus angustifolia, Ulmus pumila.
‡Weeks 2–11.
ndf, numerator degrees of freedom; ddf, denominator degrees of freedom.
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Fig. 2 (a) Mean soil moisture in each cm of soil above a static water table
64 cm below the soil surface. Heights above the water table for soil
moisture (± SD) at field capacity (�0.033 MPa; 3.0 ± 0.4%moisture) and
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the experiment (calculated from the data in (a)).
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exhibited greater percent cover of the lesions under elevated
[CO2] than under ambient [CO2] (4 ± 1% compared with
2 ± 1%) ([CO2], F1,28 = 5.5, P = 0.03). A few Elaeagnus (8% of
plants) had small necrotic regions on some leaves under elevated
[CO2] (2 ± 1%), but not under ambient [CO2]. Minor leaf
necrosis on most Ulmus (89% of plants) did not differ signifi-
cantly between [CO2] treatments (4 ± 1%). Tamarix did not
exhibit leaf necrosis.

Only three of the 320 study plants died during the experi-
ment. All three received ambient [CO2], including two Salix
(4.0 cm d�1 treatment) and one Populus (3.0 cm d�1 treatment).

Water potential and tissue chemistry

Elevated [CO2] affected Ψpd and Ψmd at harvest for some species
in some water treatments (water9 [CO2]9 species interaction,

Table 2; Fig. 4). Specifically, elevated [CO2] increased Ulmus
Ψpd and Ψmd, particularly in the 0.5 and 1.5 cm d�1 treatments,
although the water9 [CO2] interaction was not quite significant,
and decreased Tamarix Ψpd and Ψmd in the 4.0 cm d�1 treat-
ment, but did not affect Ψpd and Ψmd of any other species (Table
S2). Lower water availability also affected Ψpd and Ψmd for only
some species (water9 [CO2]9 species interaction, Table 2).
Lower water availability reduced Elaeagnus and Ulmus Ψpd and
Ψmd and Populus Ψpd; increased Tamarix Ψpd and Ψmd under
ambient [CO2]; and did not affect Salix Ψ (Table S2). Many of
the Salix in the 3.0 and 4.0 cm d�1 treatments were too small to
measure in the pressure chamber, which reduced the power to
detect a water effect on Salix Ψ. Differences in Ψ among species
depended on water treatment and time of day
(time9 water9 species interaction, Table 2). In the 0.5 and
1.5 cm d�1 treatments, Populus Ψpd was greater than all other
species and Tamarix Ψpd was lower than all other species (Table
S2). Further, in the 0.5 cm d�1 treatment, Elaeagnus Ψmd was
greater than Tamarix Ψmd. In the 3.0 cm d�1 treatment, Ψpd and
Ψmd were greater for Populus than for all other species, and in the
4.0 cm d�1 treatment, Ψpd and Ψmd were greater for Populus
than for Tamarix and Ulmus (Table S2). Ψpd was greater than
Ψmd except for Populus in the 3.0 and 4.0 cm d�1 treatments
(time9 water9 species interaction, Table 2).

Assuming that ambient atmospheric d13C in the glasshouses
(d13Cgh(amb)) was between �8 and �10&, elevated [CO2]
reduced D13Cleaf across all water treatments and species (Fig. 5a–
e; Table 2). The magnitude of this effect was smaller for
Elaeagnus than for the other species ([CO2]9 species interac-
tion, Table 2), and was smaller in the drier treatments than in
the wetter treatments (water9 [CO2] interaction, Table 2).
The sensitivity analysis indicated that the negative effect of ele-
vated [CO2] on D13Cleaf was robust to assumptions of a more
negative d13Cgh(amb), except for Elaeagnus if d13Cgh

(amb) � �11& and for the 3.0 and 4.0 cm d�1 treatments if
d13Cgh(amb) � �12&. The d13Cgh(amb) would have to have
been � �15& for elevated [CO2] not to have significantly
reduced D13Cleaf for the other species and water treatments.
Effects of water-table decline rate on D13Cleaf differed among
[CO2] treatments and species (water9 [CO2] and water9 spe-
cies interactions, Table 2). Specifically, lower water availability
reduced D13Cleaf under ambient [CO2] but not elevated [CO2]
(across species), and for Elaeagnus but not other species (across
[CO2] treatments) (Table S3).

Elevated [CO2] decreased mean leaf [N] by 7%, from
1.29 ± 0.03 to 1.20 ± 0.03% (Fig. S3; Table 2), and increased
mean leaf C : N by 8% (Fig. 5f–j; Table 2). Lower water
availability increased leaf [N] by 36%, from 1.06 ± 0.02% in
the 0.5 and 1.5 cm d�1 treatments to 1.44 ± 0.04% in the 3.0
and 4.0 cm d�1 treatments, and decreased leaf C : N for most
species, but did not significantly affect Elaeagnus leaf C : N
(water9 species interaction, Tables 2, S4). Elaeagnus leaf [N]
was less than in the other species (0.97 ± 0.04% compared
with 1.32 ± 0.03%), and Elaeagnus leaf C : N was greater than
in the other species, particularly in the drier treatments (Table
S4).
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Discussion

Water and [CO2] effects on seedling growth

Increased drought and lower summer streamflows predicted
under climate change may reduce riparian plant growth and
recruitment, and favor drought-tolerant species, including ex-
otics, in semiarid western North America (Stromberg et al.,
2010; Perry et al., 2012). The large negative effects of faster
water-table decline rates on seedling biomass (70–97%) sup-
port the prediction that lower water availability under climate
change will severely limit riparian seedling growth. Our
results do not, however, support the hypothesis that elevated
[CO2] will ameliorate these effects by increasing plant WUE.
Instead, the small positive effect of elevated [CO2] on bio-
mass (15%) suggests that increases in seedling growth and
WUE under elevated [CO2] will be insufficient to offset the
negative effects of increased aridity. Where aridity does not
increase, however, seedling growth may increase moderately
under elevated [CO2].

Our results also support the prediction that increased aridity
will hinder seedling recruitment of native Salix and Populus
spp. more than exotic woody riparian species. The larger nega-
tive effects of the drier treatments on Salix and Populus bio-
mass than on exotic species biomass support previous studies
on Tamarix and Elaeagnus (Shafroth et al., 1995; Glenn &
Nagler, 2005; Lite & Stromberg, 2005; Reynolds & Cooper,
2010) and suggest that Ulmus is also more drought-tolerant
than the native species. The similar responses of the native and
exotic species to elevated [CO2] suggest that elevated [CO2]
will not ameliorate the lower drought tolerance of the native
species relative to the exotics.

Table 2 ANOVA results for effects of water, [CO2] and species on seedling water potentials and tissue chemistry

Factor ndf

Stem water potential D13Cleaf Leaf C : N Leaf [N]

ddf F P* ddf F P ddf F P ddf F P

Water 3 26 2.4 0.09 269 18.0 < 0.0001 21 36.1 < 0.0001 21 30.3 < 0.0001
[CO2] 1 201 0.6 0.5 269 209.9 < 0.0001 249 7.5 0.007 249 6.9 0.009
Water9 [CO2] 3 200 3.2 0.03 269 5.5 0.001 249 0.4 0.7 249 0.6 0.6
Species† 4 201 50.4 < 0.0001 269 159.7 < 0.0001 249 24.7 < 0.0001 249 17.7 < 0.0001
Water9 species 12 200 3.5 0.0001 269 9.0 < 0.0001 249 1.9 0.04 249 1.6 0.1
[CO2]9 species 4 200 2.3 0.06 269 6.8 < 0.0001 249 0.2 0.9 249 0.4 0.8
Water9 [CO2]9 species 12 200 1.8 0.04 269 1.4 0.2 249 0.9 0.6 249 0.7 0.8
Time‡ 9 28 117.7 < 0.0001
Time9water 27 27 2.6 0.07
Time9 [CO2] 9 200 0.1 0.7
Time9 species 36 201 5.8 0.0002
Time9water9 [CO2] 27 199 0.2 0.9
Time9water9 species 108 200 2.1 0.02
Time9 [CO2] 9 species 36 200 0.3 0.9
Time9water9 [CO2]9 species 108 199 0.8 0.6

Post-hoc ANOVA results for the significant interactions are provided in Supporting Information Tables S2–S4.
*Significant effects are in bold (P < 0.05).
†Salix exigua, Populus deltoides spp.monilifera, Tamarix spp., Elaeagnus angustifolia, Ulmus pumila.
‡Predawn vs midday.
ndf, numerator degrees of freedom; ddf, denominator degrees of freedom.
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Although quantitative predictions of riparian soil moisture
under climate change are not available, the differences in soil
moisture among our water treatments were similar in scale to pro-
jected changes in summer streamflows in western North America
under climate change. Summer streamflows, which strongly influ-
ence riparian soil moisture (Naiman et al., 2005), declined by as
much as 20% in the last century (Miller & Piechota, 2008; Rood
et al., 2008) and are projected to decline by up to 50% in the next
century (Christensen et al., 2004; Dettinger et al., 2004; Maurer,
2007), as a result of smaller snowpacks and earlier snowmelt at the
headwaters. Similarly, estimated soil moisture in the 4.0 cm d�1

treatment was 25% less than in the 1.5 cm d�1 treatment and
52% less than in the 0.5 cm d�1 treatment.

[CO2] effects on WUE and water status

Contrary to expectations, lower water availability did not reduce
seedling growth less under elevated [CO2] than under ambient
[CO2], except temporarily for heights in the first 7 wk of the

experiment. Although plant growth in grasslands often responds
positively to elevated [CO2] through improved water relations
(Volk et al., 2000; Morgan et al., 2004, 2011), exceptions to this
pattern do occur (Morgan et al., 2004; Hovenden et al., 2008).
Plants exposed to a single, prolonged water stress event, such as
naturally occurs in Mediterranean grasslands (Morgan et al.,
2004) or the present experiment, may only briefly experience the
moderate water stress that seems optimal for plant response to
elevated [CO2] (Nowak et al., 2004), and may therefore exhibit
little increase in growth from water savings.

Lower D13Cleaf under elevated [CO2] suggests that elevated
[CO2] increased seedling iWUE by reducing stomatal conduc-
tance and/or increasing photosynthetic capacity, a common plant
response (Polley et al., 2002; Morgan et al., 2004; Nelson et al.,
2004; Leakey, 2009; Onoda et al., 2009). The increase in iWUE,
however, was smaller in the drier treatments than in the wetter
treatments, which may explain in part why elevated [CO2] did
not improve growth more in the drier treatments. Very low soil
water content can override effects of [CO2] on stomatal conduc-
tance and growth (Hunt et al., 1996; Knapp et al., 1996; Smith
et al., 2000; LeCain et al., 2003). The floodplain sand and gravel
bars where pioneer riparian species often establish are well
drained, and soil moisture can decline rapidly during flood
recession, especially in the absence of precipitation (Shafroth
et al., 1998; Cooper et al., 1999; Taylor et al., 1999; Hultine
et al., 2010). Very low soil moisture in the drier treatments may
have limited seedling responses to elevated [CO2].

Although elevated [CO2] appeared to increase iWUE, it did
not increase Ψ for most species at the time of harvest. Measured
Ψ values were similar to published values for moderately water-
stressed Salix, Populus, and Ulmus (Foster & Smith, 1991;
Cooper et al., 2003; Dulamsuren et al., 2009; Hultine et al., 2010)
but greater than published values for Tamarix and Elaeagnus
(Busch & Smith, 1995; Horton et al., 2001b; Gong et al., 2006;
Zhao et al., 2007). Elevated [CO2] may have increased growth
mainly by increasing photosynthesis directly (Drake et al., 1997)
rather than by improving water status. Alternatively, the larger
seedlings under elevated [CO2] may have had less stomatal
conductance per unit leaf area but greater total transpiration, result-
ing in unchangedΨ (Morison, 1993).

Increased seedling root allocation and maximum root lengths
under elevated [CO2] also did not alleviate effects of lower water
availability in this experiment. Such effects may increase growth
and survival under some conditions, however, by increasing
access to water and reducing flood mortality (Mahoney & Rood,
1998; Cooper et al., 1999). Conversely, such effects might
decrease growth and survival when water is abundant, by reduc-
ing canopy production and competitive ability for light (Sher
et al., 2000).

Factors limiting responses to [CO2]

Low nutrient availability in the floodplain sand in our experi-
ment may have reduced effects of elevated [CO2] on growth
(de Graaff et al., 2006; Reich et al., 2006; Lewis et al., 2010;
McCarthy et al., 2010). High leaf C : N in our experiment
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(40 ± 13) suggests N limitation. Further, increased C : N and
root allocation under elevated [CO2] may reflect increased nutri-
ent limitation (Reich et al., 2006; Dewar et al., 2009; Lewis et al.,
2010). In other experiments with greater nutrient availability,
elevated [CO2] increased Populus deltoides ssp. deltoides biomass
by 40–100% (McDonald et al., 2002; Barron-Gafford et al.,
2005; Lewis et al., 2010), compared with the 21% increase in
Populus biomass in our experiment. Nutrient availability is typi-
cally low in floodplain sandbars (Adair & Binkley, 2002; Adair
et al., 2004), but riparian areas with greater nutrient availability
because of nutrient pollution (Carpenter et al., 1998) or fine sedi-
ment accretion (Adair et al., 2004; Naiman et al., 2010) may have
larger seedling responses to elevated [CO2]. Older riparian
saplings or adult trees could respond to elevated [CO2] either
more strongly because soil nutrient availability increases as ripar-
ian geomorphic surfaces age (Adair et al., 2004), or less strongly
because nutrient demand increases, and hence availability
decreases, as forests age (Körner, 2006).

Elaeagnus growth appears to have been particularly N-limited
in our experiment. Elaeagnus had lower leaf [N] and greater C : N
than the other species and than reported in field studies (Follstad
Shah et al., 2010), the slowest growth in the wettest treatment,
and the smallest changes in growth and D13Cleaf under elevated
[CO2]. Elaeagnus is actinorhizal (i.e. forms associations with
N-fixing Frankia bacteria), but we did not observe Frankia nod-
ules on our Elaeagnus roots. Nodulated Elaeagnus with greater N
availability, and plants growing near nodulated Elaeagnus (Folls-
tad Shah et al., 2010), may respond more strongly to elevated
[CO2].

Increased necrotic lesions on Populus leaves under elevated
[CO2] may also have reduced effects of elevated [CO2] on
Populus growth (Newcombe, 1996). We were unable to identify
the pathogen responsible, and therefore cannot assess its ecologi-
cal relevance. Effects of elevated [CO2] on pathogen infection in
other Populus species vary among host and pathogen species
(Percy et al., 2002; Scarascia-Mugnozza et al., 2005; Chakraborty
et al., 2008; Eastburn et al., 2011). More generally, effects of ele-
vated [CO2] on the study species might be different in more
complex environments with competitors, herbivores, and patho-
gens (Körner, 1995; Navas, 1998).

Mechanisms of drought tolerance

Tamarix drought tolerance has been attributed to its ability to
maintain turgor via osmotic adjustments, prevent xylem cavita-
tion, and use both deep and shallow soil water (Busch & Smith,
1995; Smith et al., 1998; Pockman & Sperry, 2000). As in other
studies, Tamarix Ψ tended to be lower than for other species, and
did not decline with lower water availability, perhaps because of
low osmotic potential (Smith et al., 1998; Horton et al., 2001b,
2003; Gries et al., 2003; Xu et al., 2007). By contrast, Populus Ψ
tended to be greater than for other species, and was similar at
midday and predawn in the drier treatments, suggesting stomatal
closure. Populus is vulnerable to xylem cavitation and relies on
tight stomatal control to maintain adequate Ψ when water-
stressed (Horton et al., 2001a; Cooper et al., 2003). Populus Ψmd

approached reported thresholds for 50% xylem cavitation
(c. �1.0 MPa; Tyree et al., 1994), whereas Tamarix Ψ did not
(c. �4.5 MPa; Pockman & Sperry, 2000).

Mechanisms of Elaeagnus and Ulmus drought tolerance are less
well understood. Our results suggest that they may benefit
from larger seed size and greater plasticity in root allocation
and iWUE. Large Elaeagnus and Ulmus seeds (87.9 and
6.3 mg seed�1 compared with 0.1, 1.3, and 0.1 mg seed�1 for
Salix, Populus, and Tamarix, respectively) allowed them to grow
faster initially, when water tables were still high in the drier treat-
ments. Further, increases in root allocation with lower water
availability in Elaeagnus and Ulmus (and, to a lesser degree, in
Tamarix) may have increased access to soil water (Poorter &
Nagel, 2000). Plasticity in root allocation has also been observed
in other studies of Elaeagnus and Ulmus (Shafroth et al., 1995;
Park et al., 2012), but also of Salix and Populus (Shafroth et al.,
1995; Kranjcec et al., 1998; Stella & Battles, 2010), so this trait
is not always limited to the exotic species. In addition, increases
in iWUE (i.e. reduced D13Cleaf) with lower water availability
in Elaeagnus may have increased water conservation and/or C
assimilation (Farquhar et al., 1989). Although plasticity in root
allocation and iWUE can simply reflect variation in water stress,
the fact that Elaeagnus and Ulmus biomass was greater than that
of the other species in the drier treatments suggests that in this
case it may reflect greater drought tolerance.

Rooting depth is an important predictor of riparian seedling
survival, because seedling roots must maintain contact with mois-
ture from declining water tables as streamflow decreases through
the summer (Mahoney & Rood, 1998; Stella & Battles, 2010).
Differences in rooting depth are unlikely to explain species differ-
ences in drought tolerance in our experiment, however, as
maximum root lengths were similar among species in the drier
treatments. Maximum root lengths were greatest with a moderate
water-table decline rate (1.5 cm d�1), presumably because root
growth was stifled by low water availability in the drier treat-
ments and by inundation (particularly for Elaeagnus and Ulmus
and less for Salix) in the wettest treatment (Segelquist et al.,
1993; Kranjcec et al., 1998; Horton & Clark, 2001; Amlin &
Rood, 2002).

Conclusions

Global change effects on western North American riparian plants
may involve interactions between increased aridity (resulting
from greater evapotranspiration, lower streamflows, and shifts in
streamflow timing), elevated [CO2], increased heat stress (Grady
et al., 2011), and changes in flood regime and geomorphology
(Perry et al., 2012). Our results suggest that elevated [CO2] is
unlikely to counteract the negative effects of increased aridity on
riparian woody seedling recruitment. Further, they corroborate
previous research demonstrating that common exotic riparian
species are more drought-tolerant than dominant native species,
adding Ulmus to the list of drought-tolerant exotic species.
Finally, they indicate that elevated [CO2] is unlikely to benefit
seedling recruitment of mesic native species over drought-tolerant
exotics. Increased aridity is likely to favor recruitment of more
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drought-tolerant species, including the exotics Tamarix,
Elaeagnus and Ulmus, over native Salix and Populus spp., despite
elevated [CO2].
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