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Abstract. One of the primary goals of biological assessment is to assess whether contaminants or other 
stressors limit the ecological potential of running waters. It is important to interpret responses to 
contaminants relative to other environmental factors, but necessity or convenience limit quantification of 
all factors that influence ecological potential. In these situations, the concept of limiting factors is useful 
for data interpretation. We used quantile regression to measure risks to aquatic life exposed to metals by 
including all regression quantiles (r = 0.05-0.95, by increments of 0.05), not just the upper limit of density 
(e.g., 90 th quantile). We measured population densities (individuals/0.1 m2

) of 2 mayflies (Rhithrogena spp., 
Drunella spp.) and a caddisfly (Arctopsyche grandis), aqueous metal mixtures (Cd, Cu, Zn), and other 
limiting factors (basin area, site elevation, discharge, temperature) at 125 streams in Colorado. We used a 
model selection procedure to test which factor was most limiting to density. Arctopsyche gran dis was limited 
by other factors, whereas metals limited most quantiles of density for the 2 mayflies. Metals reduced 
mayfly densities most at sites where other factors were not limiting. Where other factors were limiting, low 
mayfly densities were observed despite metal concentrations. Metals affected mayfly densities most at 
quantiles above the mean and not just at the upper limit of density. Risk models developed from quantile 
regression showed that mayfly densities observed at background metal concentrations are improbable 
when metal mixtures are at US Environmental Protection Agency criterion continuous concentrations. We 
conclude that metals limit potential density, not realized average density. The most obvious effects on 
mayfly populations were at upper quantiles and not mean density. Therefore, we suggest that policy 
developed from mean-based measures of effects may not be as useful as policy based on the concept of 
limiting factors. 

Key words: quantile regression, population, metals, risk, biological assessment. 

Elevated concentrations of metals in streams drain­
ing mineralized and mined basins are common in 
Colorado (USA) and globally (RUIU1ells et al. 1992/ 
Clements et al. 2000). Metals transported into aquatic 
habitats cause declines in some metal-sensitive pop­
ulations. Resultant communities are less diverse and 
are dominated by metal-tolerant populations (Clem­
ents 1994/ Clements et al. 2000). These predictable 
responses are useful for evaluating the ecological 
effects of metal pollution in aquatic ecosystems. 
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Mayflies, particularly taxa in the families Hepta­
geniidae and Ephemerellidae, are among the aquatic 
insects most sensitive to metal pollution (Clements 
et al. 2000, Cain et al. 2004). Field surveys, microcosm 
experiments, and field manipulations have consis­
tently demonstrated that Rhithrogena spp. and Dru­
nella spp. densities decline when exposed to metals 
(Clements et al. 2000, Clements 2004/ Clark and 
Clements 2006). In contrast/ some caddisflies, includ­
ing Arctopsyche grandis, are thought to be tolerant of 
metal pollution (Clements 1994, Cain et al. 2004). 
Because of its tolerance, A. grandis can be collected 
along a gradient of metal concentrations and used to 
evaluate exposure to metal by comparing tissue 
concentrations across sites (Kiffney and Clements 
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Flc;. 1. Conceptual diagram showing a wedge-shaped distribution commonly observed in ecological studies (modified from 
Cade and Noon 2003). Using metals as an example, we hypothesized that at low levels of metals aquatic-insect density (in this 
example, Drunellil spp.) is not limited by metals but is limited by natural processes (i.e., habitat and biotic interactions). However, 
as metals increase and become the primary limiting factor, high-density populations are not observed, even when other 
potentially limiting conditions might be optimal. Maximum quantiles of density (r '"' 0.90, 0.95, etc.) are less affected by 
confounding variables and, therefore, are less biased than models based on means. Evaluation of effects of metals on high 
quantiles allows estimates of effects on resources in highly productive habitats. CCAR = chronic criterion accumulation ratio. 

1993, Cain et al. 2004). The divergent properties of factors cause variability in responses that is indepen­
these mayfly and caddisfly taxa and their ubiquity in dent of the effects of metals. This variability and 
the intermountain west make them attractive biolog­ variability associated with sampling error or stochas­
ical indicators of the effects of abandoned mine lands tic processes can obscure or bias statistical relation­
on aquatic ecosystems (Ward et al. 2002). ships between the contaminant and the biological 

Detecting the effects of metals on biological response. Thus, detecting the adverse effect of metals, 
indicators can be complicated by the many other particularly at low concentrations, on macroinverte­
limiting factors that control population size in streams brate populations can be difficult. 
(Clements 1994, Carlisle and Clements 1999). Natural When aquatic insect density is plotted against a 
factors, such as physiographic variables (elevation, gradient of metal concentration, insect density often is 
stream order) (Kiffney and Clements 1994, Clements distributed in a wedge-like pattern across the gradient 
and Kiffney 1995); biotic interactions, such as the (Fig. 1). Maximum density occurs at Jow metal 
presence of fish (Forrester 1994); or even life-history concentrations and decreases with increasing metal 
characteristics (Kiffney and Clements 1996) can limit concentrations, as do the mean and variance of 
local population densities. Stream ecologists generally density. At the same time, lower densities and 
recognize the importance of these and other factors, absences are observed across all metal concentrations. 
but quantifying all limiting factors is not possible. Ecologists studying ecological responses to a well 
When the effects of contaminants, such as metals, on characterized limiting factor in the presence of other 
the biological indicator are estimated as a bivariate unknown or poorly characterized limiting factors 
relationship, the influences of these other limiting have made similar observations (Terrell et a1. 1996, 
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Cade and Noon 2003). The maximum observable 
density can be constrained by a strong and well 
characterized limiting factor, while at some locations, 
the presence of other limiting factors may not permit 
this maximum value. This additional constraint 
causes observed densities at some locations to fall 
below those that could occur if other conditions were 
not limiting. The effect of these colimiting factors is to 
reduce the rate of change in density of aquatic insects 
for unique portions (e.g., or = 0.90 vs or = 0.50) of the 
response function (d. slopes of lines at mean vs 
maximum density values; Fig. 1). 

For contaminants like metals, low concentrations 
are not expected to limit density, and other natural 
phenomena (e.g., physiographic factors, biotic inter­
actions, phenology, and life history) introduce vari­
ability in the density of an organism observed at 
different sites with similar metal concentrations. 
However, as metal concentrations increase, maximum 
density is limited to levels below that expected at low 
metal concentrations, and natural phenomena may 
further constrain the maximum potential density at 
some sample locations. This variability caused by 
unmeasured factors reduces statistical power and 
sensitivity of biological monitoring endpoints when 
comparing means across different levels of contami­
nation (Carlisle and Clements 1999, Clements et al. 
2000). These inherent weaknesses of observational 
data combined with the lack of appropriate statistical 
methods have limited the utility of field monitoring 
data when setting aquatic-life criteria (Pacheco et al. 
2005, Linton et al. 2007). 

Quantile regression is a tool that can be used to 
estimate the rate of change for any quantile of a 
response variable to a limiting factor (Fig. 1) (Koenker 
and Bassett 1978, Pacheco et al. 2005, Linton et al. 
2007). Regression quantiles are ascending sequences 
of planes that are above an increasing proportion of 
sample observations as values of the quantiles (or) 
increase (Koenker and Bassett 1978, Cade and Noon 
2003). This property of regression quantiles facilitates 
estimation of a rate of change (slope) for any quantile 
of the data, not just along the central tendency as in 
ordinary least squares (OLS) regression. Each fraction 
of the response variable or quantile could be limited 
by any of a suite of measured and unmeasured 
factors. For example, maximum density (e.g., or = 0.90 
or 0.95) could be limited by metals, while lower 
quantiles (e.g., or = 0.10) could be limited by other 
factors. Unequal variance in the distribution of data 
plotted across a gradient is consistent with interac­
tions of unmeasured limiting factors with the mea­
sured factor (Cade and Noon 2003, Cade et al. 2005). 
OLS is not effective in this situation because it 

describes mean rates of change (mean slope) by 
averaging all quantile slopes. As a result, OLS slopes 
will be similar to some quantiles (e.g., or = 0.50), but 
probably will fail to describe real non-O rates of 
change in other quantiles (Terrell et al. 1996, Cade and 
Noon 2003). 

Most investigators have used quantile regression to 
determine the functional relationship between a 
stressor and the response variable at a limited 
number of high quantiles (e.g., or = 0.90 or 0.95) 
(Pacheco et al. 2005, Linton et al. 2007). Ecologists 
focus on change in these quantiles because it evokes 
the ecological concept of limiting factors as con­
straints on high resource values most reliably affected 
by the limiting factor. However, restricting inference 
to a single quantile severely limits the information 
available to scientists and decision makers and could 
result in less useful interpretation of results. By 
evaluating multiple quantiles, one can assess which 
factor might limit low values vs which factor might 
limit high values of the biological response across 
similar levels of the stressor (Fig. 1). This capability is 
important because, at some level of the stressor 
where both high densities and low densities are 
observable, other factors unrelated to the stressor 
drive lower densities and obscure our ability to detect 
change at low levels of the stressor. As the basis for 
making inference, considering several quantiles can 
enable an investigator to identify which regression 
quantile has the greatest rate of change and to 
identify portions of the probability distribution most 
limited by the stressor. Furthermore, investigators 
can evaluate the sampling variation (90% confidence 
intervals [CIs]) in statements about the rate of change 
associated with each quantile and how those rates of 
change might influence decision-making. Last, inves­
tigators can use these regression quantile relation­
ships to make risk statements about the likelihood of 
observing a given value of the biological indicator at 
selected levels of the stressor by estimating the 
empirical conditional cumulative distribution func­
tion as the inverse of the quantile estimates. This 
capability provides a new way to communicate 
results to decision makers. 

We evaluated 3 aquatic insect populations as 
biological indicators of metal contamination in the 
Central Colorado Rocky Mountains. This region is 
affected by natural and anthropogenic releases of 
metals in the presence of strong natural gradients 
(e.g., elevation, discharge, basin area, water temper­
ature) and provided an opportunity to assess the 
effect of metals on aquatic insect densities in the 
presence of other potentially limiting factors. We 
explored the response of each taxon using quantile 
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FIG. 2. Map of the study area in Colorado, USA. Streams were sampled throughout the mountainous region of Colorado from 
the Wyoming border to the north to the New Mexico border to the south. 

regression to quantify how they responded to 
colimiting factors. Specifically, we assessed which 
quantiles of density were limited by metals or other 
factors, determined the interval of quantiles across 
which metals were the primary limiting factor, 
observed which quantile had the maximum rate of 
change (steepest slope), developed an understanding 
of how sampling variation in the slope estimates 
changed across all quantiles, and assessed how risks 
to aquatic insect populations changed based on the 

quantile evaluated and level of exposure to metals. 
Last, we discuss the ecological and management 
implications of our findings. For simplicity, we 
limited our analysis to bivariate relationships between 
the biological indicator and a single limiting factor. 
We could have developed models that were more 
complicated, but we think the scenario we modeled is 
a common scenario for state and federal biologists, 
and the simpler model facilitates easy visualization of 
the ideas we present. 
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TABLE 1. Summary statistics of potential limiting factors 
observed at stream sites where density was measured. 
CCAR = chronic criterion accumulation ratio where values 
< 1.0 are presumed protective of aquatic life. 

Variable Median :t SO Measured range 

CCAR 0.18 :: 60.03 0.02-268.35 
Temperature Cc) 
Basin area (km2 

) 

Discharge (m3 Is) 

9.5 :: 2.7 
17:: 45 

0.20:: 0.31 

1-17.8 
2-292 

0.01-2.07 
Site elevation (m) 2993 :: 287 2329-3547 

Methods 

Study design 

The study area was central Colorado from Wyo­
ming to New Mexico, an area of ~55,OOO krn2 that 
includes most of the Rocky Mountains in Colorado 
and represents ~20% of the land area in the state 
(Fig. 2). This area includes a geographic feature called 
the Colorado Mineral Belt that has been exploited for 
the past 150 y for its mineral resources. Sampling sites 
in this study are at high elevation, ranging from 
-2330 to 3550 m asl (Table 1). The climate of the 
study area is temperate continental, with generally 
>50 ern of precipitation per year, especially at higher 
altitudes. Much of this precipitation occurs as winter 
snow or as summer rain. Vegetation ranges from 
deciduous cover at lower altitudes and in riparian 
zones to coniferous forests and open tundra at the 
highest altitudes (Mutel and Emerick 1992). Soils in 
the study area are thin (rarely >10 em) to nonexistent 
in areas dominated by bedrock outcrops. Thicker (up 
to 1 m or more) immature soils and unconsolidated 
overburden occur intermixed at lower elevations and 
along streams (Soil Survey Staff 1999). 

We sampled small basins (l st_3Td_order) predomi­
nantly underlain by a single rock type and catego­
rized them based on mineral-deposit criteria. The 
purpose of this sampling strategy was to target a 
variety of water-quality conditions caused by inter­
action with the underlying rocks of the basin and to 
develop geochemical and biological baselines based 
on rock type (Schmidt et al. 2012). We collected 
geochemical and benthic macroinvertebrate commu­
nity samples during summer baseflow conditions 
Guly-September) from 2003 through 2007. All sam­
ples used for the purposes of our study (n = 149) were 
affected by limited or no other anthropogenic stress­
ors except the influence of historical mining practices. 
Of these 149 samples, 125 were discrete locations 
(Fig. 2). We sampled 12 of these locations annually (24 
additional samples) to capture interannual variability. 

Physicochemical variables 

We used field methods that meet the requirements 
of the biotic ligand model (Wilde and Radtke 1998, 
Wilde et al. 1998, HydroQual 2007) to collect water 
samples in 2003-2007. The biotic ligand model 
predicts the free-ion metal concentration available 
to accumulate on the respiratory surface of aquatic 
organisms and accounts for the influence of water 
quality on metal toxicity. The amount of metal bound 
to the respiratory surface, modeled as a biotic ligand 
using thermodynamic equilibrium, is correlated with 
mortality in fish and aquatic invertebrates (Di Toro 
et al. 2001). 

At each sampling site, we made instantaneous 
measurements of pH, water temperature, specific 
conductance, and stream discharge (Rantz et al. 
1982, Wilde and Radtke 1998, Wilde et al. 1998). We 
filtered 1 aliquot of water through a 0.45-l-Im filter and 
acidified it with Ultrapure HN03 to a pH of ~1 for 
cation analysis. We also collected a filtered, unacidi­
fied aliquot for anion analyses. We collected separate 
aliquots for analysis of alkalinity (unfiltered, un­
acidified) and dissolved organic C (DOC; 1 I-Im 
glass-fiber filtered, HCl acidified to pH ~ I, stored in 
amber glass bottle). We refrigerated unacidified 
samples and stored acidified samples at room 
temperature. 

Sample analysis was conducted at the US Geolog­
ical Survey's (USGS) Geologic Discipline Laboratory 
in Denver, Colorado. Concentrations of major cations 
(Na+, K+, Mg2+, and Ca2+) were analyzed by induc­
tively coupled plasma-atomic emission spectrometry 
(Perkin-Elmer 5300 Optima Dual-View ICP-AES; 
Perkin-Elmer, Waltham, Massachusetts), metals (Cd, 
Cu, Zn) were analyzed by inductively coupled plasma 
mass spectrometry (Perkin-Elmer Sciex Elan 6000 
ICP-MS), and major anions (CC F , N03-, 50l-) 
were measured by ion chromatography (Taggart 
2002). Analytical methods used in 2003 differed from 
above in that major cations and metals were analyzed 
by furnace atomic absorption spectrophotometry 
(Perkin-Elmer model 372) at the Department of Fish, 
Wildlife, and Conservation Biology, Colorado State 
University. The minimum reported detection limits 
between sampling periods were: Cd (0.01 I-Ig/L in 
2003 vs 0.02 I-Ig/L in 2004-2007), Cu (0.01 I-Ig/L in 2003 
vs 0.5 I-Ig/L in 2004-2007), and Zn (2 I-Ig/L in 2003 vs 
0.5 I-Ig/L in 2004-2007). We used a Shimadzu 5000A 
(Shimadzu, Kyoto, Japan) to quantify DOC concen­
trations with a detection limit of 0.3 mg/L. When 
running the biotic ligand model, 1;2 the detection 
limit was substituted for constituents below the 
analytical limits of detection. Schmidt et al. (2010) 
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presented a more complete description of sample 
methods and quality-assurance/ quality-control pro­
tocols and results. 

Chronic criterion accumulation ratio 

Most metal-polluted streams in Colorado are 
affected by mixtures of metals (Cd, Cu, Zn) at chronic 
concentrations, so a measure of cumulative toxicity 
was necessary (Clements et al. 2000/ Schmidt et al. 
2010). The chronic criterion accumulation ratio 
(CCAR) is a metric that relies on the biotic ligand 
model to predict the cumulative toxicity of metal 
mixtures while accounting for site-specific influences 
of water quality on metal toxicity to aquatic organ­
isms (HydroQual 2007/ Schmidt et al. 2010). CCAR is 
the ratio of the free metal ion concentration available 
to accumulate on a biological surface (a biotic ligand) 
to that accumulated at the US EPA chronic criterion 
value, summed for all metals (Cd + Cu + Zn). A 
CCAR value ~ 1 indicates that a free metal ion 
concentration (or in this case, a combination of metals) 
under site-specific water chemistry is predicted to 
accumulate on the biotic ligand at concentrations 
above that which accumulates on the biotic ligand at 
US EPA continuous chronic criterion value(s) under a 
standardized water-chemistry mix, and thus, toxicity 
might occur. A value <1 indicates that all combina­
tions of free metal ions accumulated on the biotic 
ligand under site-specific water chemistry are below 
that expected to accumulate at US EPA continuous 
chronic criterion values given standardized water 
chemistry, and thus, toxicity is not expected. See 
Schmidt et al. (2010) for a complete method descrip­
tion and comparison of CCAR with chronic criterion 
units. 

Density estimates 

At each sampling location, we collected 5 replicate 
benthic samples with a 0.1-m2 Hess sampler (350-llm 
mesh net) from shallow riffle areas «0.5 m). We 
processed these samples in the field and laboratory 
separately (Schmidt et al. 2010). We scrubbed 
overlying substrate, disturbed it to a depth of 
-10 cm, and washed the remaining material through 
a 350-llm-mesh sieve. We preserved all retained 
organisms in 80% ethanol in the field and counted 
them in the laboratory. In the laboratory, we 
removed 300 organisms (::'::10%) from the sample 
with methods described by Moulton et al. (2000). We 
identified invertebrates to the lowest practical taxo­
nomic level (genus or species) (Merritt and Cummins 
1996, Ward et al. 2002). We adjusted subsamples 

proportionately to estimate the total number of 
organisms found in the whole sample. We estimated 
a single mean density (individuals [ind]/O.l m 2) 

from the 5 replicate density values at each site (n 
125 discrete locations; Fig. 2). 

Statistical analysis 

Model fit and model selection.-We estimated quantile 
regression coefficients and 90% CIs (quantreg package, 
version 4.50; R Development Core Team, Vienna, 
Austria) for quantiles (t = 0.05-0.95 by increments of 
0.05) of the bivariate relationship between density and 
a suite of 5 predictors (CCAR, basin area [km2

], site 
elevation [m], discharge [m3/s], and stream temper­
ature rOC)) thought to influence density (Koenker and 
Bassett 1978, Koenker 2005). We developed CIs for the 
quantile regression coefficients from the inverted rank 
score test assuming errors were not independent and 
identically distributed (Cade et al. 2005, Koenker 
2005). We developed slopes and 90% CIs for OLS 
regression models for the bivariate relationships 
between insect density and the suite of predictors 
described above to assess how the average of all 
quantile slopes compared to the 19 individual 
quantile estimates. 

Akaike information criteria (AIC) were used to 
select which of the 5 competing models best fit each of 
the 19 quantile planes. We calculated AIC as follows: 

AIC = - 2(loglikelihood) +2(k +1) 

where k is the number of regressors in the model. We 
nonnalized all models by the AIC value of the CCAR 
model to derive delta-AIC (~;) because we expected 
metals to be the strongest and, thus, most likely 
limiting factor. The lowest ~; value indicates the most 
likely candidate model or the most limiting factor for 
each quantile. L\; < 12 I indicates candidate models 
that are indistinguishable in their likelihood of being 
the best candidate model, whereas ~i > 121 indicates 
models that are less likely candidates (Burnham and 
Anderson 2002). All statistics were developed using R 
software (version 2.10.0). 

Drawing inference from quantile regression.-We 
developed an approach to measure limitation of 
density caused by metals based on all of the data 
rather than only an extreme upper quantile (e.g., t = 

0.90 or 0.95). We estimated the density observed for 
each quantile (0-1) at selected levels of metal 
exposure to generate empirical distribution functions 
describing how the probability of observing a given 
density changed with different exposure scenarios. 
Specifically, we used the quantile regression models 
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TABLE 2. Speannan rank correlations (r) among measured colimiting factors that potentially limit density of aquatic insects. 
CCAR = chronic criterion accumulation ratio. 

Variable Temperature ("C) Discharge (m3 /s) Site elevation (m) Basin area (km2
) 

CCAR 0.13 -0.01 0.26 0.05 
Temperature ("C) 
Discharge (m3/s) 

-0.11 0.02 
-0.02 

-0.04 
0.64 

Site elevation (m) -0.41 

(T = 0.05-0.95 by increments of 0.5) to calculate the 
number of individuals expected at CCAR = 0.1 
(background) and CCAR = 1.0, the value thought to 
be protective of aquatic ecosystems (Schmidt et al. 
2010). Each quantile estimate of density at a given 
value of CCAR can be used to provide an empirical 
cumulative distribution function of densities at the 
value of CCAR. This distribution function can be 
used to determine the proportion of the population 
having densities :::::; a specified value. For example, if 
the upper regression quantile (Fig. 1) were T = 0.95, 
then 95% of the populations observed would have 
:::::;100 individuals (ind)/0.1 m2 at CCAR = 0.1. These 
probabilities are derived from an empirical distribu­
tion function of the data, not from an assumed 
distributional form (e.g., normal or lognormal) 
(Koenker and Bassett 1978, Cade and Noon 2003). 
We developed 90% CIs for each point estimate using 
the standard xy-pair bootstrap method (Koenker 
2005). As a result, a biologist would be able to 
express changes in the indicator value as a risk 
statement that might be informative to resource 
managers interested in risks to aquatic ecosystems 
posed by different concentrations of a contaminant. 

Results 

Metal toxicity and physiographic variables 

Detailed information about stream chemistry and 
the chemical constituents used to calculate CCAR was 
published by Schmidt et a1. (2010). CCAR ranged 
from 2 orders of magnitude below the presumptively 
protective threshold (CCAR = 1.0) to 3 orders of 
magnitude above this threshold (Table 1). The median 
value of CCAR in basins with little or no mineraliza­
tion or mining activity was 0.1 (background value; 
Schmidt et a1. 2012). Instantaneous stream tempera­
tures ranged from near freezing to almost 18°C, 
typical of alpine and subalpine streams during 
midsummer. Basin area (median = 17 km2 

) and 
stream discharge (median = 0.20 m3 Is) ranged over 3 
orders of magnitude (2-292 km2 and 0.01-2.07 m 3 /s 
respectively), and differences in site elevation were 
>1000 m (median = 2993 m, range 2329-3547 m). 

Regression analyses 

With the exception of basin area and stream 
discharge, Spearman rank correlations among predic­
tors showed relatively weak (r < 0.25) relationships 
(Table 2). Not all regression slopes were significantly 
different from 0, but this depended on taxon and the 
model considered (Fig. 3A-E). For A. grandis, regres­
sion quantile slopes were not estimated for T < 0.45 
because the slopes were not different from O. 
However, for T > 0.45, a number of quantile slopes 
for CCAR, basin area, and elevation were significantly 
different from 0 (Fig. 3A-C). The greatest differences 
in slopes across quantiles were observed for basin 
area and elevation where rates of change in the 
extreme high quantiles (e.g., T = 0.90 or 0.95) were 
nearly 2x that observed at the mean (OLS estimate) or 
median (T = 0.50). This result suggests that estimating 
effects based on mean A. grandis response would 
underestimate effects relative to effects estimated by 
many regression quantiles above the mean. For 
Drunella spp., most regression quantile slopes for 
CCAR, basin area, and elevation were different from 0 
(Fig. 3A-C). The greatest differences in slopes across 
quantiles were observed for elevation. In general, 
individual regression quantile slopes for all factors 
except CCAR were within the 90% CI of the mean 
(OLS) slope estimate except for regression quantiles at 
extreme low and high quantiles. For CCAR, interme­
diate and high quantile (T = 0.60-0.75 and 0.95) slopes 
for Drunella spp. density were somewhat different 
from the mean slope. This result suggests that mean 
effects in Drunella spp. density might be a reasonable 
approximation for effects across most regression 
quantiles but would underestimate effects at interme­
diate and high quantiles. For Rhithrogena spp., models 
with CCAR or temperature generally produced slopes 
different from 0, whereas the other models did not 
(Fig. 3A-E). The greatest differences in slopes for 
Rhithrogena spp. were observed for CCAR where 
slopes ranged from -0.12 to -0.44, exceeding the OLS 
estimate (-0.20) in the case of most of the higher 
quantiles (T > 0.50) by a factor of 2. This suggests that 
greater rates of change in Rhithrogena spp. density 
were observed at high quantiles than in the mean and 
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Anderson 2002). Basin area was the top model for 
quantiles r = 0.60 to 0.95 of A. grandis, whereas no 
model was the best model for quantiles below r = 0.40 
where model slopes were not different from O. 
Physiographic variables were the top-candidate models 
for Drunella spp. quantiles 0.05 and 0.95 and quantiles r 
::;; 0.15 for Rhithrogena spp., but none of these models 
had slopes different from O. Fig. 4D-F depicts regres­
sion quantiles (r = 0.10, 0.25, 0.50, 0.75, 0.90) where 
CCAR was the top model and had a slope significantly 
different from O. The highest and lowest quantile 
depicted in these graphs shows the interval over which 
metals were the most limiting factor. For Drunella spp., 
that interval was from r = 0.10 to 0.90 (Fig. 4E), 
whereas for Rhithrogena spp., the interval ranged from r 
= 0.25 to 0.90 (Fig. 4F). Other limiting factors also 
caused densities to fall from the maximum expected in 
the absence of other limiting factors to below the 
median quantile (r = 0.50), a result supporting the idea 
that other limiting factors not included in statistical 
models predicting mean indicator response can atten­
uate the observed rate of change or slope. /',.j was not 
calculated for OiS models because we were not 
interested in making comparisons among these models. 

Deriving inference from multiple quantiles 

Evaluating the effects of metals on density in terms of 
risk can offer an alternative means for communicating 
results to managers and show how risks are quantile 
dependent. We can describe changes in density in 
terms of the proportion of sites having densities within 
some interval of values by estimating the conditional 
cumulative distribution function from the regression 
quantile estimates. For example, the 90th quantile of 
density is a density ;::0: densities observed in 90% of the 
streams sampled. We can evaluate how the differences 
in densities change depending on a particular level 
of acceptable risk by evaluating the difference in ex­
pected densities among quantiles or associated risks to 
streams. Presenting results in terms of risk shows that 
stream insect densities that are typical at background 
metal concentrations can be rare or improbable at the 
threshold for aquatic life (Fig. SA-F). In 95% of the 
streams sampled, density (ind/O.1 m2

) of Drunella spp. 
was ::;;81 (90% CI = 55-111) at CCAR = 0.1 (Fig. 5B) 
and ::;;46 (CI = 25-60) at CCAR = 1 (Fig. 5E). Similarly, 
in 95% of the streams sampled, the density of 
Rhithrogena spp. was ::;;87 (90% CI = 57-138) at 
CCAR = 0.1 (Fig. 5C) and ::;;35 (CI = 27-47) at 
CCAR = 1 (Fig. SF). 

Limiting inference to the upper-most regression 
quantile can produce misleading results. For example, 
% reductions in the predicted density of Rhithrogena 

spp. between CCAR = 0.1 and CCAR 1.0 were 57% 
and 59% for regression quantiles r = 0.90 and 0.95, 
respectively (Fig. 5C, F). The difference in the % 
reduction in Drunella spp. density was much greater 
(60% and 43% for r = 0.90 and 0.95, respectively; 
Fig. 5B, E). There is less certainty (e.g., wider 90% CI) 
in the risk estimates in these upper extreme regression 
quantiles. Moreover, had we not investigated other 
regression quantiles, we would not have learned that 
effects in r > 0.70 are greater than those at or below 
the median and mean. 

Discussion 

Our aim was to use quantile regression as a means 
to learn what drives changes in biological indicator 
values beyond estimating change in the upper-most 
extreme quantile. We found that metals limited metaI­
sensitive mayflies, whereas basin area and other 
factors limited the metal-tolerant caddisfly. Slopes or 
rates of change differed among quantiles, and in 
many cases, the mean rate of change (OLS slope 
estimate) underestimated effects on high quantiles of 
density. These results indicated that measured and 
unmeasured limiting factors (e.g., life history, season­
ality, presence of fish, antecedent conditions) contrib­
uted to variance in density responses. These other 
factors mostly affected quantiles below the mean, 
thereby obscuring the detection of change in the 
response by causing low values of mayfly density at 
low metal concentrations, whereas the greatest effects 
were observed at quantiles above the mean. Thus, the 
effect of metals on aquatic populations varied greatly 
among streams because these other factors limited 
response outcomes. 

We identified the data space where biological 
indicators were not limited by metals, and this 
approach improved our certainty regarding seeming­
ly contradictory indicator responses. For example, the 
interval between the minimum and maximum regres­
sion quantiles where CCAR was the top model and 
where regression quantile slopes were significantly 
different from 0 is the data space most reliably limited 
by metals. Both A. grandis and Rhithrogena spp. were 
absent or occurred at low densities at levels of metals 
where we also observed high densities of these taxa 
(Fig. 4D, F). By recogniZing that many of the low 
densities and absences at low levels of metals (CCAR 
< 1) were caused by other factors, we improved our 
certainty about what level of metals is safe for these 
populations. We also found that low densities of 
Drunella spp. were less common in background or 
reference streams (Figs I, 4E). Therefore, density or 
presence/absence of this taxon was a more reliable 



719 2012] ESTlMi\TlNG RISKS USING QUANTILE REGRESSION 

N 150E 
125 

~ 
rn 
1ii 100 
:) 
"0.:;; 75 
'0 
.!: 50 

'E.iii 25 
c 
Q) 

00 

Arctopsyche grandis 

150
CCAR=0.1 CCAR = 1.0 

125 

-- Point astimate 100 
90% CI 

75 

A 50 
D 

25 I.h. 
0 

0 20 40 60 80 100 0 20 40 60 80 100 

Drunella Spp. 
N

E 150 150 

125 125S2 
rn
 
1ii 100
 100 
:) 

"0.:;; 75 75 
'0 I

50.~ 50 
E I'E j.25 

c 
'w 25 

--<:7 
Q) 0 00 

0 20 40 60 80 100 0 20 40 60 60 100 

Rhithrogena Spp. 
N
~ 

E 150 150 

"": 125125 
~ 

1001ii 100 
:) 

"0.:;; 75 75 
'0 

50g 50 
C F I 

J?;o ./. .2525'iii 
-'"'~c 

Q) 0 
0 0 20 40 60 80 100 0 20 40 60 60 100 

% of streams % of streams 

FIG. 5. Point estimates (90% confidence intervals [Cis]) of density of Arctopsyche grandis (A, D), Drunella spp. (B, E), and 
Rhithrogena spp. (C, F) densities estimated from quantile regression models at background (chronic criterion accumulation ratio 
[CCAR] = 0.1) (A, B, C) and at the toxic threshold (CCAR =- 1.0) (0, E, F). Point estimates were derived from quantile regression 
models (or = 0.05-0.95 by increments of 0.05; Fig. 3A). x-axis (% of streams) is the inverse of the quantile (or). 

indicator of metals pollution than density or pres­
ence/absence of the other taxa evaluated. 

Natural variability in aquatic insect corrununities 
resulting from stream physiography can limit detec­
tion of subtle changes in aquatic communities at low 
metal concentrations (Kiffney and Clements 1994, 
Clements and Kiffney 1995). An important factor not 
included in our study is the effect of population 
phenology on heterogeneity in density responses 
(Kiffney and Clements 1994, 1996, Clark and Clem­
ents 2006). Aquatic insect populations can be com­
posed of multiple cohorts of the same taxa, and 
smaller, immature instars are more sensitive to metals 
than are older more mature individuals (Kiffney and 
Clements 1994, 1996, Clark and Clements 2006). In a 
mesocosm experiment, Kiffney and Clements (1994) 

observed a 70% decline in the density of small instars 
and no change in large instars of Drunella grandis 
exposed to metal mixtures of Cd, Cu, and Zn near US 
EPA chronic aquatic life criteria. This high variability 
in a controlled laboratory experiment shows that 
some of the heterogeneity in aquatic insect densities 
in our study probably was caused by defining these 
populations based on taxonomy without regard for 
life history. We probably sampled different instars of 
Drunella spp. and Rhithrogena spp., and less mature 
and more sensitive larvae probably were abundant at 
some sites with high densities of mayflies. We did not 
measure instars and did not account for differences in 
sensitivity among instars, so differences in population 
structure among sites could account for variability in 
our mayfly densities. 
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We question the traditional approach of investigat­
ing only mean responses of populations and commu­
nities to contaminants. We expected to see maximum 
densities at sites where contaminants were not 
limiting. However, densities of mayflies at these sites 
were often limited by other factors, and in some cases, 
deviated significantly from expected values. Large 
decreases in mean density at higher metal concentra­
tions were required to detect a statistical difference 
because of high variance in density at low metal 
concentrations. However, we did not observe large 
decreases in mean density as metal concentrations 
increased because other limiting factors attenuated 
regression slopes, particularly for quantiles 't ::; 0.70 
(Figs 3A, 4D-F, SA-F). We should not expect to 
observe great changes in the mean response until 
the effect of the contaminant is so great that all other 
potential limiting factors are statistically unimportant. 
In other words, we should expect differences in mean 
responses only when contaminant concentrations are 
high enough to dominate other ecological processes. 
Furthermore, we expect multiple chemicals or phys­
ical disturbances to affect these responses as much as 
natural limiting factors do. Multiple stressors proba­
bly would attenuate the relationship between con­
taminants and response by acting on both low and 
high quantiles of the response. As a result, the effect 
of multiple chemical stressors on streams will become 
increasingly difficult to detect. 

We should not assume that the effect of metals (or 
perhaps any contaminant) will be the same across all 
streams. This assumption can greatly affect scientific 
inference and decision making. In our study, metals 
caused greater declines in high than in low quantiles 
of mayfly densities (Figs 3A, SA-F). These differences 
among quantiles probably arose because the effects of 
other limiting factors, possibly differences in habitat, 
were not equal across sites. Thus, the effect of metals 
on density will not be the same across these habitats. 
Mean-based regression approaches that assume ho­
mogeneity of variance and that all quantiles of the 
response have parallel slopes would not have 
detected this important characteristic of the data. In 
fact, had we analyzed these data only with a mean­
based statistical model, the heterogeneity observed in 
the data probably would have been perceived as a 
problem, either a violation of parametric model 
assumptions (i.e., heterogeneous variance) or as 
residual error (i.e., poor model fit). 

The practice of limiting inference to a few regres­
sion quantiles can be problematic. For example, 
inferences made solely on 't = 0.90 for Orunella spp. 
would have resulted in a much larger loss estimate 
than inferences made on 't = 0.95 (Fig. 4E). By 

analyzing multiple regression quantiles, we demon­
strated that most of the losses in mayfly densities 
occurred in the intermediate-to-higher regression 
quantiles ('t ~ 0.70) and not just the upper limits of 
density. Furthermore, 90% CIs generally were wider 
at extreme quantiles (e.g., 't = 0.05 or 0.95) than at 
intermediate quantiles (e.g. 't = 0.50; Fig. 3A-E), 
suggesting greater uncertainty in these extreme 
quantiles (Cade and Noon 2003). Moreover, by 
considering all the quantiles ('t = 0-0.95), we were 
able to express model predictions in probabilistic 
terms allowing us to compare risks among exposure 
scenarios (Fig. SA-F). Our results showed that high 
densities of mayflies commonly observed at back­
ground metal concentrations are rare at concentra­
tions of metals preViously thought safe for aquatic life 
(CCAR = 1). Had we arbitrarily selected the most 
extreme quantile to derive statistical inference and not 
considered other quantiles, we would have missed 
these important findings. We strongly suggest con­
sidering multiple quantiles of the response to under­
stand better the effects of contaminants on popula­
tions, and we caution against arbitrary selection of the 
most extreme quantile that can be estimated as the 
way to draw inference from the data. 

Quantile regression is not a universal tool that can 
solve all ecological data problems, but it does have 
several advantages over other statistical methods 
(Cade and Noon 2003). Some of these advantages 
are estimating effects on characteristics of the 
response other than the mean, relaxed parametric 
model assumptions (Cade and Noon 2003), and a 
model form that links observed change in resources to 
a key concept from ecology and ecotoxicology, 
limiting factors. Other techniques, such as propensity 
scores and hierarchical linear modeling, are appro­
priate statistical techniques for dealing with data 
heterogeneity. However, these model forms measure 
change only in means, they do not necessarily 
measure change where it is the greatest, and they do 
not link well with the theory of limiting factors (Cade 
and Noon 2003). 

By necessity or convenience, not all the factors that 
substantially influence biomonitoring endpoints can 
be measured in biomonitoring studies. Thus, the 
concept of limiting factors can be very useful when 
interpreting variability in endpOints. This concept 
helped to clarify that although metals limited high 
quantiles of mayflies, other factors (e.g., habitat) also 
limited response outcomes. This effect was especially 
strong for A. grandis. High quantiles of A. grandis 
density were limited by basin area (more precisely, by 
stream factors correlated with basin area), but many 
other quantiles ('t < 0.40) were unrelated to the metals 
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gradient and the other limiting factors we measured 
(e.g., temperature). Unmeasured factors caused the 
density of A. grandis to deviate from the value 
expected were basin area the only limiting factor. 

Responses to metals are not limited to measures of 
ecosystem structure. In addition to reducing the 
proportion of metal-sensitive taxa and altering other 
measures of community structure, metals can alter 
ecological functioning (Clements et al. 2000, Schmidt 
et al. 2010). For example, contaminant-induced losses 
in the density of aquatic insect larvae can disrupt 
detritus processing, invertebrate secondary produc­
tion, and the flow of energy into aquatic food webs 
(Carlisle and Clements 2005). In-stream disturbances 
that reduce larval densities also reduce the density of 
emerging aquatic-insect adults that subsidize riparian 
consumers (Paetzold et al. 2011). Our results indicate 
that the effects of contaminants on ecosystem struc­
ture and function should be most obvious on high 
quantiles of the response. 

Our results indicate that scientists and managers 
have been trying to detect contaminant-induced 
changes in biological indicators with models that do 
not necessarily measure change where it is most 
obvious. Metals limit ecological potential, but they do 
not necessarily change the realized average potential 
of ecosystems. Advances in stream and ecosystem 
science will be limited if the model used to measure 
change cannot detect it. Effectively implemented 
policy cannot be derived from ineffective models, 
and confidence in policy will be eroded if outcomes 
are vastly different from expectation. 

Our study and others show that quantile regression 
can make biomonitoring data more useful for estab­
lishing regulatory limits for pollutants in aquatic 
ecosystems (Pacheco et al. 2005, Linton et al. 2007). 
Water-quality criteria are derived from laboratory 
toxicity tests that determine species-specific responses 
to a contaminant. Genus-mean responses are selected 
from a number of families so that information from a 
theoretical community of organisms can be used to 
develop a value protective of 95% of the species 
observed in nature (Stephan et al. 1985). However, 
effects in the field are being observed increasingly 
often at concentrations of contaminants below aquatic 
life standards (Schmidt et al. 2010, 2011). This 
mismatch probably reflects the limitations of extrap­
olating results of laboratory toxicity tests with aquatic 
invertebrates to field situations (Buchwalter et al. 
2007), although Wang et al. (2009) was able to test 
sensitive life stages of sensitive taxa. The US EPA 
considers field-monitoring data when developing 
water-quality criteria (Stephan et al. 1985), but 
variability and reliability of these data in the presence 

QUANTILE REGRESSION 

of other factors probably have limited their utility. 
Quantile regression can help overcome this limitation, 
and its use for development or validation of standards 
based on field data probably will increase as rec­
ognition of limiting factors and available software 
increase. 
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