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Abstract. One of the primary goals of biological assessment is to assess whether contaminants or other
stressors limit the ecological potential of running waters. It is important to interpret responses to
contaminants relative to other environmental factors, but necessity or convenience limit quantification of
all factors that influence ecological potential. In these situations, the concept of limiting factors is useful
for data interpretation. We used quantile regression to measure risks to aquatic life exposed to metals by
including all regression quantiles (t = 0.05–0.95, by increments of 0.05), not just the upper limit of density
(e.g., 90th quantile). We measured population densities (individuals/0.1 m2) of 2 mayflies (Rhithrogena spp.,
Drunella spp.) and a caddisfly (Arctopsyche grandis), aqueous metal mixtures (Cd, Cu, Zn), and other
limiting factors (basin area, site elevation, discharge, temperature) at 125 streams in Colorado. We used a
model selection procedure to test which factor was most limiting to density. Arctopsyche grandis was limited
by other factors, whereas metals limited most quantiles of density for the 2 mayflies. Metals reduced
mayfly densities most at sites where other factors were not limiting. Where other factors were limiting, low
mayfly densities were observed despite metal concentrations. Metals affected mayfly densities most at
quantiles above the mean and not just at the upper limit of density. Risk models developed from quantile
regression showed that mayfly densities observed at background metal concentrations are improbable
when metal mixtures are at US Environmental Protection Agency criterion continuous concentrations. We
conclude that metals limit potential density, not realized average density. The most obvious effects on
mayfly populations were at upper quantiles and not mean density. Therefore, we suggest that policy
developed from mean-based measures of effects may not be as useful as policy based on the concept of
limiting factors.
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Elevated concentrations of metals in streams drain-
ing mineralized and mined basins are common in
Colorado (USA) and globally (Runnells et al. 1992,
Clements et al. 2000). Metals transported into aquatic
habitats cause declines in some metal-sensitive pop-
ulations. Resultant communities are less diverse and
are dominated by metal-tolerant populations (Clem-
ents 1994, Clements et al. 2000). These predictable
responses are useful for evaluating the ecological
effects of metal pollution in aquatic ecosystems.

Mayflies, particularly taxa in the families Hepta-
geniidae and Ephemerellidae, are among the aquatic
insects most sensitive to metal pollution (Clements
et al. 2000, Cain et al. 2004). Field surveys, microcosm
experiments, and field manipulations have consis-
tently demonstrated that Rhithrogena spp. and Dru-
nella spp. densities decline when exposed to metals
(Clements et al. 2000, Clements 2004, Clark and
Clements 2006). In contrast, some caddisflies, includ-
ing Arctopsyche grandis, are thought to be tolerant of
metal pollution (Clements 1994, Cain et al. 2004).
Because of its tolerance, A. grandis can be collected
along a gradient of metal concentrations and used to
evaluate exposure to metal by comparing tissue
concentrations across sites (Kiffney and Clements
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1993, Cain et al. 2004). The divergent properties of
these mayfly and caddisfly taxa and their ubiquity in
the intermountain west make them attractive biolog-
ical indicators of the effects of abandoned mine lands
on aquatic ecosystems (Ward et al. 2002).

Detecting the effects of metals on biological
indicators can be complicated by the many other
limiting factors that control population size in streams
(Clements 1994, Carlisle and Clements 1999). Natural
factors, such as physiographic variables (elevation,
stream order) (Kiffney and Clements 1994, Clements
and Kiffney 1995); biotic interactions, such as the
presence of fish (Forrester 1994); or even life-history
characteristics (Kiffney and Clements 1996) can limit
local population densities. Stream ecologists generally
recognize the importance of these and other factors,
but quantifying all limiting factors is not possible.
When the effects of contaminants, such as metals, on
the biological indicator are estimated as a bivariate
relationship, the influences of these other limiting

factors cause variability in responses that is indepen-
dent of the effects of metals. This variability and
variability associated with sampling error or stochas-
tic processes can obscure or bias statistical relation-
ships between the contaminant and the biological
response. Thus, detecting the adverse effect of metals,
particularly at low concentrations, on macroinverte-
brate populations can be difficult.

When aquatic insect density is plotted against a
gradient of metal concentration, insect density often is
distributed in a wedge-like pattern across the gradient
(Fig. 1). Maximum density occurs at low metal
concentrations and decreases with increasing metal
concentrations, as do the mean and variance of
density. At the same time, lower densities and
absences are observed across all metal concentrations.
Ecologists studying ecological responses to a well
characterized limiting factor in the presence of other
unknown or poorly characterized limiting factors
have made similar observations (Terrell et al. 1996,

FIG. 1. Conceptual diagram showing a wedge-shaped distribution commonly observed in ecological studies (modified from
Cade and Noon 2003). Using metals as an example, we hypothesized that at low levels of metals aquatic-insect density (in this
example, Drunella spp.) is not limited by metals but is limited by natural processes (i.e., habitat and biotic interactions). However,
as metals increase and become the primary limiting factor, high-density populations are not observed, even when other
potentially limiting conditions might be optimal. Maximum quantiles of density (t = 0.90, 0.95, etc.) are less affected by
confounding variables and, therefore, are less biased than models based on means. Evaluation of effects of metals on high
quantiles allows estimates of effects on resources in highly productive habitats. CCAR = chronic criterion accumulation ratio.
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Cade and Noon 2003). The maximum observable
density can be constrained by a strong and well
characterized limiting factor, while at some locations,
the presence of other limiting factors may not permit
this maximum value. This additional constraint
causes observed densities at some locations to fall
below those that could occur if other conditions were
not limiting. The effect of these colimiting factors is to
reduce the rate of change in density of aquatic insects
for unique portions (e.g., t = 0.90 vs t = 0.50) of the
response function (cf. slopes of lines at mean vs
maximum density values; Fig. 1).

For contaminants like metals, low concentrations
are not expected to limit density, and other natural
phenomena (e.g., physiographic factors, biotic inter-
actions, phenology, and life history) introduce vari-
ability in the density of an organism observed at
different sites with similar metal concentrations.
However, as metal concentrations increase, maximum
density is limited to levels below that expected at low
metal concentrations, and natural phenomena may
further constrain the maximum potential density at
some sample locations. This variability caused by
unmeasured factors reduces statistical power and
sensitivity of biological monitoring endpoints when
comparing means across different levels of contami-
nation (Carlisle and Clements 1999, Clements et al.
2000). These inherent weaknesses of observational
data combined with the lack of appropriate statistical
methods have limited the utility of field monitoring
data when setting aquatic-life criteria (Pacheco et al.
2005, Linton et al. 2007).

Quantile regression is a tool that can be used to
estimate the rate of change for any quantile of a
response variable to a limiting factor (Fig. 1) (Koenker
and Bassett 1978, Pacheco et al. 2005, Linton et al.
2007). Regression quantiles are ascending sequences
of planes that are above an increasing proportion of
sample observations as values of the quantiles (t)
increase (Koenker and Bassett 1978, Cade and Noon
2003). This property of regression quantiles facilitates
estimation of a rate of change (slope) for any quantile
of the data, not just along the central tendency as in
ordinary least squares (OLS) regression. Each fraction
of the response variable or quantile could be limited
by any of a suite of measured and unmeasured
factors. For example, maximum density (e.g., t = 0.90
or 0.95) could be limited by metals, while lower
quantiles (e.g., t = 0.10) could be limited by other
factors. Unequal variance in the distribution of data
plotted across a gradient is consistent with interac-
tions of unmeasured limiting factors with the mea-
sured factor (Cade and Noon 2003, Cade et al. 2005).
OLS is not effective in this situation because it

describes mean rates of change (mean slope) by
averaging all quantile slopes. As a result, OLS slopes
will be similar to some quantiles (e.g., t = 0.50), but
probably will fail to describe real non-0 rates of
change in other quantiles (Terrell et al. 1996, Cade and
Noon 2003).

Most investigators have used quantile regression to
determine the functional relationship between a
stressor and the response variable at a limited
number of high quantiles (e.g., t = 0.90 or 0.95)
(Pacheco et al. 2005, Linton et al. 2007). Ecologists
focus on change in these quantiles because it evokes
the ecological concept of limiting factors as con-
straints on high resource values most reliably affected
by the limiting factor. However, restricting inference
to a single quantile severely limits the information
available to scientists and decision makers and could
result in less useful interpretation of results. By
evaluating multiple quantiles, one can assess which
factor might limit low values vs which factor might
limit high values of the biological response across
similar levels of the stressor (Fig. 1). This capability is
important because, at some level of the stressor
where both high densities and low densities are
observable, other factors unrelated to the stressor
drive lower densities and obscure our ability to detect
change at low levels of the stressor. As the basis for
making inference, considering several quantiles can
enable an investigator to identify which regression
quantile has the greatest rate of change and to
identify portions of the probability distribution most
limited by the stressor. Furthermore, investigators
can evaluate the sampling variation (90% confidence
intervals [CIs]) in statements about the rate of change
associated with each quantile and how those rates of
change might influence decision-making. Last, inves-
tigators can use these regression quantile relation-
ships to make risk statements about the likelihood of
observing a given value of the biological indicator at
selected levels of the stressor by estimating the
empirical conditional cumulative distribution func-
tion as the inverse of the quantile estimates. This
capability provides a new way to communicate
results to decision makers.

We evaluated 3 aquatic insect populations as
biological indicators of metal contamination in the
Central Colorado Rocky Mountains. This region is
affected by natural and anthropogenic releases of
metals in the presence of strong natural gradients
(e.g., elevation, discharge, basin area, water temper-
ature) and provided an opportunity to assess the
effect of metals on aquatic insect densities in the
presence of other potentially limiting factors. We
explored the response of each taxon using quantile
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regression to quantify how they responded to
colimiting factors. Specifically, we assessed which
quantiles of density were limited by metals or other
factors, determined the interval of quantiles across
which metals were the primary limiting factor,
observed which quantile had the maximum rate of
change (steepest slope), developed an understanding
of how sampling variation in the slope estimates
changed across all quantiles, and assessed how risks
to aquatic insect populations changed based on the

quantile evaluated and level of exposure to metals.
Last, we discuss the ecological and management
implications of our findings. For simplicity, we
limited our analysis to bivariate relationships between
the biological indicator and a single limiting factor.
We could have developed models that were more
complicated, but we think the scenario we modeled is
a common scenario for state and federal biologists,
and the simpler model facilitates easy visualization of
the ideas we present.

FIG. 2. Map of the study area in Colorado, USA. Streams were sampled throughout the mountainous region of Colorado from
the Wyoming border to the north to the New Mexico border to the south.
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Methods

Study design

The study area was central Colorado from Wyo-
ming to New Mexico, an area of ,55,000 km2 that
includes most of the Rocky Mountains in Colorado
and represents ,20% of the land area in the state
(Fig. 2). This area includes a geographic feature called
the Colorado Mineral Belt that has been exploited for
the past 150 y for its mineral resources. Sampling sites
in this study are at high elevation, ranging from
,2330 to 3550 m asl (Table 1). The climate of the
study area is temperate continental, with generally
.50 cm of precipitation per year, especially at higher
altitudes. Much of this precipitation occurs as winter
snow or as summer rain. Vegetation ranges from
deciduous cover at lower altitudes and in riparian
zones to coniferous forests and open tundra at the
highest altitudes (Mutel and Emerick 1992). Soils in
the study area are thin (rarely .10 cm) to nonexistent
in areas dominated by bedrock outcrops. Thicker (up
to 1 m or more) immature soils and unconsolidated
overburden occur intermixed at lower elevations and
along streams (Soil Survey Staff 1999).

We sampled small basins (1st–3rd-order) predomi-
nantly underlain by a single rock type and catego-
rized them based on mineral-deposit criteria. The
purpose of this sampling strategy was to target a
variety of water-quality conditions caused by inter-
action with the underlying rocks of the basin and to
develop geochemical and biological baselines based
on rock type (Schmidt et al. 2012). We collected
geochemical and benthic macroinvertebrate commu-
nity samples during summer baseflow conditions
(July–September) from 2003 through 2007. All sam-
ples used for the purposes of our study (n = 149) were
affected by limited or no other anthropogenic stress-
ors except the influence of historical mining practices.
Of these 149 samples, 125 were discrete locations
(Fig. 2). We sampled 12 of these locations annually (24
additional samples) to capture interannual variability.

Physicochemical variables

We used field methods that meet the requirements
of the biotic ligand model (Wilde and Radtke 1998,
Wilde et al. 1998, HydroQual 2007) to collect water
samples in 2003–2007. The biotic ligand model
predicts the free-ion metal concentration available
to accumulate on the respiratory surface of aquatic
organisms and accounts for the influence of water
quality on metal toxicity. The amount of metal bound
to the respiratory surface, modeled as a biotic ligand
using thermodynamic equilibrium, is correlated with
mortality in fish and aquatic invertebrates (Di Toro
et al. 2001).

At each sampling site, we made instantaneous
measurements of pH, water temperature, specific
conductance, and stream discharge (Rantz et al.
1982, Wilde and Radtke 1998, Wilde et al. 1998). We
filtered 1 aliquot of water through a 0.45-mm filter and
acidified it with ultrapure HNO3 to a pH of ,1 for
cation analysis. We also collected a filtered, unacidi-
fied aliquot for anion analyses. We collected separate
aliquots for analysis of alkalinity (unfiltered, un-
acidified) and dissolved organic C (DOC; 1 mm
glass-fiber filtered, HCl acidified to pH ,1, stored in
amber glass bottle). We refrigerated unacidified
samples and stored acidified samples at room
temperature.

Sample analysis was conducted at the US Geolog-
ical Survey’s (USGS) Geologic Discipline Laboratory
in Denver, Colorado. Concentrations of major cations
(Na+, K+, Mg2+, and Ca2+) were analyzed by induc-
tively coupled plasma-atomic emission spectrometry
(Perkin–Elmer 5300 Optima Dual-View ICP-AES;
Perkin–Elmer, Waltham, Massachusetts), metals (Cd,
Cu, Zn) were analyzed by inductively coupled plasma
mass spectrometry (Perkin–Elmer Sciex Elan 6000
ICP-MS), and major anions (Cl2, F2, NO3

2, SO4
22)

were measured by ion chromatography (Taggart
2002). Analytical methods used in 2003 differed from
above in that major cations and metals were analyzed
by furnace atomic absorption spectrophotometry
(Perkin–Elmer model 372) at the Department of Fish,
Wildlife, and Conservation Biology, Colorado State
University. The minimum reported detection limits
between sampling periods were: Cd (0.01 mg/L in
2003 vs 0.02 mg/L in 2004–2007), Cu (0.01 mg/L in 2003
vs 0.5 mg/L in 2004–2007), and Zn (2 mg/L in 2003 vs
0.5 mg/L in 2004–2007). We used a Shimadzu 5000A
(Shimadzu, Kyoto, Japan) to quantify DOC concen-
trations with a detection limit of 0.3 mg/L. When
running the biotic ligand model, ½ the detection
limit was substituted for constituents below the
analytical limits of detection. Schmidt et al. (2010)

TABLE 1. Summary statistics of potential limiting factors
observed at stream sites where density was measured.
CCAR = chronic criterion accumulation ratio where values
, 1.0 are presumed protective of aquatic life.

Variable Median 6 SD Measured range

CCAR 0.18 6 60.03 0.02–268.35
Temperature (uC) 9.5 6 2.7 1–17.8
Basin area (km2) 17 6 45 2–292
Discharge (m3/s) 0.20 6 0.31 0.01–2.07
Site elevation (m) 2993 6 287 2329–3547

2012] ESTIMATING RISKS USING QUANTILE REGRESSION 713



presented a more complete description of sample
methods and quality-assurance/quality-control pro-
tocols and results.

Chronic criterion accumulation ratio

Most metal-polluted streams in Colorado are
affected by mixtures of metals (Cd, Cu, Zn) at chronic
concentrations, so a measure of cumulative toxicity
was necessary (Clements et al. 2000, Schmidt et al.
2010). The chronic criterion accumulation ratio
(CCAR) is a metric that relies on the biotic ligand
model to predict the cumulative toxicity of metal
mixtures while accounting for site-specific influences
of water quality on metal toxicity to aquatic organ-
isms (HydroQual 2007, Schmidt et al. 2010). CCAR is
the ratio of the free metal ion concentration available
to accumulate on a biological surface (a biotic ligand)
to that accumulated at the US EPA chronic criterion
value, summed for all metals (Cd + Cu + Zn). A
CCAR value § 1 indicates that a free metal ion
concentration (or in this case, a combination of metals)
under site-specific water chemistry is predicted to
accumulate on the biotic ligand at concentrations
above that which accumulates on the biotic ligand at
US EPA continuous chronic criterion value(s) under a
standardized water-chemistry mix, and thus, toxicity
might occur. A value ,1 indicates that all combina-
tions of free metal ions accumulated on the biotic
ligand under site-specific water chemistry are below
that expected to accumulate at US EPA continuous
chronic criterion values given standardized water
chemistry, and thus, toxicity is not expected. See
Schmidt et al. (2010) for a complete method descrip-
tion and comparison of CCAR with chronic criterion
units.

Density estimates

At each sampling location, we collected 5 replicate
benthic samples with a 0.1-m2 Hess sampler (350-mm
mesh net) from shallow riffle areas (,0.5 m). We
processed these samples in the field and laboratory
separately (Schmidt et al. 2010). We scrubbed
overlying substrate, disturbed it to a depth of
,10 cm, and washed the remaining material through
a 350-mm-mesh sieve. We preserved all retained
organisms in 80% ethanol in the field and counted
them in the laboratory. In the laboratory, we
removed 300 organisms (610%) from the sample
with methods described by Moulton et al. (2000). We
identified invertebrates to the lowest practical taxo-
nomic level (genus or species) (Merritt and Cummins
1996, Ward et al. 2002). We adjusted subsamples

proportionately to estimate the total number of
organisms found in the whole sample. We estimated
a single mean density (individuals [ind]/0.1 m2)
from the 5 replicate density values at each site (n =

125 discrete locations; Fig. 2).

Statistical analysis

Model fit and model selection.—We estimated quantile
regression coefficients and 90% CIs (quantreg package,
version 4.50; R Development Core Team, Vienna,
Austria) for quantiles (t = 0.05–0.95 by increments of
0.05) of the bivariate relationship between density and
a suite of 5 predictors (CCAR, basin area [km2], site
elevation [m], discharge [m3/s], and stream temper-
ature [uC]) thought to influence density (Koenker and
Bassett 1978, Koenker 2005). We developed CIs for the
quantile regression coefficients from the inverted rank
score test assuming errors were not independent and
identically distributed (Cade et al. 2005, Koenker
2005). We developed slopes and 90% CIs for OLS
regression models for the bivariate relationships
between insect density and the suite of predictors
described above to assess how the average of all
quantile slopes compared to the 19 individual
quantile estimates.

Akaike information criteria (AIC) were used to
select which of the 5 competing models best fit each of
the 19 quantile planes. We calculated AIC as follows:

AIC={2(loglikelihood)z2(kz1)

where k is the number of regressors in the model. We
normalized all models by the AIC value of the CCAR
model to derive delta-AIC (Di) because we expected
metals to be the strongest and, thus, most likely
limiting factor. The lowest Di value indicates the most
likely candidate model or the most limiting factor for
each quantile. Di , |2| indicates candidate models
that are indistinguishable in their likelihood of being
the best candidate model, whereas Di . |2| indicates
models that are less likely candidates (Burnham and
Anderson 2002). All statistics were developed using R
software (version 2.10.0).

Drawing inference from quantile regression.—We
developed an approach to measure limitation of
density caused by metals based on all of the data
rather than only an extreme upper quantile (e.g., t =

0.90 or 0.95). We estimated the density observed for
each quantile (0–1) at selected levels of metal
exposure to generate empirical distribution functions
describing how the probability of observing a given
density changed with different exposure scenarios.
Specifically, we used the quantile regression models
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(t = 0.05–0.95 by increments of 0.5) to calculate the
number of individuals expected at CCAR = 0.1
(background) and CCAR = 1.0, the value thought to
be protective of aquatic ecosystems (Schmidt et al.
2010). Each quantile estimate of density at a given
value of CCAR can be used to provide an empirical
cumulative distribution function of densities at the
value of CCAR. This distribution function can be
used to determine the proportion of the population
having densities ƒ a specified value. For example, if
the upper regression quantile (Fig. 1) were t = 0.95,
then 95% of the populations observed would have
ƒ100 individuals (ind)/0.1 m2 at CCAR = 0.1. These
probabilities are derived from an empirical distribu-
tion function of the data, not from an assumed
distributional form (e.g., normal or lognormal)
(Koenker and Bassett 1978, Cade and Noon 2003).
We developed 90% CIs for each point estimate using
the standard xy-pair bootstrap method (Koenker
2005). As a result, a biologist would be able to
express changes in the indicator value as a risk
statement that might be informative to resource
managers interested in risks to aquatic ecosystems
posed by different concentrations of a contaminant.

Results

Metal toxicity and physiographic variables

Detailed information about stream chemistry and
the chemical constituents used to calculate CCAR was
published by Schmidt et al. (2010). CCAR ranged
from 2 orders of magnitude below the presumptively
protective threshold (CCAR = 1.0) to 3 orders of
magnitude above this threshold (Table 1). The median
value of CCAR in basins with little or no mineraliza-
tion or mining activity was 0.1 (background value;
Schmidt et al. 2012). Instantaneous stream tempera-
tures ranged from near freezing to almost 18uC,
typical of alpine and subalpine streams during
midsummer. Basin area (median = 17 km2) and
stream discharge (median = 0.20 m3/s) ranged over 3
orders of magnitude (2–292 km2 and 0.01–2.07 m3/s
respectively), and differences in site elevation were
.1000 m (median = 2993 m, range 2329–3547 m).

Regression analyses

With the exception of basin area and stream
discharge, Spearman rank correlations among predic-
tors showed relatively weak (r , 0.25) relationships
(Table 2). Not all regression slopes were significantly
different from 0, but this depended on taxon and the
model considered (Fig. 3A–E). For A. grandis, regres-
sion quantile slopes were not estimated for t , 0.45
because the slopes were not different from 0.
However, for t . 0.45, a number of quantile slopes
for CCAR, basin area, and elevation were significantly
different from 0 (Fig. 3A–C). The greatest differences
in slopes across quantiles were observed for basin
area and elevation where rates of change in the
extreme high quantiles (e.g., t = 0.90 or 0.95) were
nearly 23 that observed at the mean (OLS estimate) or
median (t = 0.50). This result suggests that estimating
effects based on mean A. grandis response would
underestimate effects relative to effects estimated by
many regression quantiles above the mean. For
Drunella spp., most regression quantile slopes for
CCAR, basin area, and elevation were different from 0
(Fig. 3A–C). The greatest differences in slopes across
quantiles were observed for elevation. In general,
individual regression quantile slopes for all factors
except CCAR were within the 90% CI of the mean
(OLS) slope estimate except for regression quantiles at
extreme low and high quantiles. For CCAR, interme-
diate and high quantile (t = 0.60–0.75 and 0.95) slopes
for Drunella spp. density were somewhat different
from the mean slope. This result suggests that mean
effects in Drunella spp. density might be a reasonable
approximation for effects across most regression
quantiles but would underestimate effects at interme-
diate and high quantiles. For Rhithrogena spp., models
with CCAR or temperature generally produced slopes
different from 0, whereas the other models did not
(Fig. 3A–E). The greatest differences in slopes for
Rhithrogena spp. were observed for CCAR where
slopes ranged from 20.12 to 20.44, exceeding the OLS
estimate (20.20) in the case of most of the higher
quantiles (t . 0.50) by a factor of 2. This suggests that
greater rates of change in Rhithrogena spp. density
were observed at high quantiles than in the mean and

TABLE 2. Spearman rank correlations (r) among measured colimiting factors that potentially limit density of aquatic insects.
CCAR = chronic criterion accumulation ratio.

Variable Temperature (uC) Discharge (m3/s) Site elevation (m) Basin area (km2)

CCAR 0.13 20.01 0.26 0.05
Temperature (uC) 20.11 0.02 20.04
Discharge (m3/s) 20.02 0.64
Site elevation (m) 20.41
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FIG. 3. Model slopes and confidence intervals (CI) of quantile regressions and ordinary least squares (OLS) regressions for
density vs chronic criterion accumulation ratio (CCAR) (A), basin area (B), elevation (C), log10(temperature) (D), and discharge
(E). To observe differences in slopes, compare the OLS slope estimates (white line in gray box [90% CI]) to a quantile slope
estimate (black horizontal line) and 90% CI (dashed black lines).
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lower quantiles. In comparison, the range of quantile
slopes for the other factors were generally within the
90% CI for the OLS slope estimate. Intercepts were
expected to increase with quantile, but we did not
present them because they have little interpretive
value for our purposes.

Results of the model-selection procedure (Di) are
presented in Fig. 4A–C. The top candidate model for
each quantile is the model with the lowest Di value.
AIC for CCAR is always = 0 because of the way Di

was calculated. For example, CCAR was the most
probable candidate model for most regression quan-
tiles of Drunella spp. (exceptions t = 0.05 and 0.95;
Fig. 4B). The same was also found for Rhithrogena spp.
(exceptions t ƒ 0.15; Fig. 4C), but not for A. grandis
(Fig. 4A). Physiographic factors were the top model or
among the top models for all regression quantiles of
A. grandis density except t = 0.45 to 0.55 where CCAR
was indistinguishable (Di , |2|) from site elevation
and basin area as the top model (Burnham and

FIG. 4. Summary of Akaike information criteria model-selection results (A, B, C) and plots of quantile regressions of the
chronic criterion accumulation ratio (CCAR) vs density (D, E, F) of Arctopsyche grandis (A, D), Drunella spp. (B, E), and Rhithrogena
spp. (C, F). Di values are calculated as Di = AICmodeli 2 AICCCAR. The lowest Di value for each quantile is the best model. Quantile
regression lines (log10-scale) plotted are those quantiles where CCAR was the top model (lowest Di value) and slope ? 0 for
quantiles (t = 0.10, 0.25, 0.50, 0.75, 0.90). Threshold is represented by the vertical gray line at CCAR = 1, where metal mixtures are
at criterion continuous concentrations and assumed to be safe for aquatic life (Schmidt et al. 2010). No regression quantiles are
plotted for A. grandis because no models satisfied the conditions stated above.
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Anderson 2002). Basin area was the top model for
quantiles t = 0.60 to 0.95 of A. grandis, whereas no
model was the best model for quantiles below t = 0.40
where model slopes were not different from 0.
Physiographic variables were the top-candidate models
for Drunella spp. quantiles 0.05 and 0.95 and quantiles t
ƒ 0.15 for Rhithrogena spp., but none of these models
had slopes different from 0. Fig. 4D–F depicts regres-
sion quantiles (t = 0.10, 0.25, 0.50, 0.75, 0.90) where
CCAR was the top model and had a slope significantly
different from 0. The highest and lowest quantile
depicted in these graphs shows the interval over which
metals were the most limiting factor. For Drunella spp.,
that interval was from t = 0.10 to 0.90 (Fig. 4E),
whereas for Rhithrogena spp., the interval ranged from t
= 0.25 to 0.90 (Fig. 4F). Other limiting factors also
caused densities to fall from the maximum expected in
the absence of other limiting factors to below the
median quantile (t = 0.50), a result supporting the idea
that other limiting factors not included in statistical
models predicting mean indicator response can atten-
uate the observed rate of change or slope. Di was not
calculated for OLS models because we were not
interested in making comparisons among these models.

Deriving inference from multiple quantiles

Evaluating the effects of metals on density in terms of
risk can offer an alternative means for communicating
results to managers and show how risks are quantile
dependent. We can describe changes in density in
terms of the proportion of sites having densities within
some interval of values by estimating the conditional
cumulative distribution function from the regression
quantile estimates. For example, the 90th quantile of
density is a density § densities observed in 90% of the
streams sampled. We can evaluate how the differences
in densities change depending on a particular level
of acceptable risk by evaluating the difference in ex-
pected densities among quantiles or associated risks to
streams. Presenting results in terms of risk shows that
stream insect densities that are typical at background
metal concentrations can be rare or improbable at the
threshold for aquatic life (Fig. 5A–F). In 95% of the
streams sampled, density (ind/0.1 m2) of Drunella spp.
was ƒ81 (90% CI = 55–111) at CCAR = 0.1 (Fig. 5B)
and ƒ46 (CI = 25–60) at CCAR = 1 (Fig. 5E). Similarly,
in 95% of the streams sampled, the density of
Rhithrogena spp. was ƒ87 (90% CI = 57–138) at
CCAR = 0.1 (Fig. 5C) and ƒ35 (CI = 27–47) at
CCAR = 1 (Fig. 5F).

Limiting inference to the upper-most regression
quantile can produce misleading results. For example,
% reductions in the predicted density of Rhithrogena

spp. between CCAR = 0.1 and CCAR 1.0 were 57%

and 59% for regression quantiles t = 0.90 and 0.95,
respectively (Fig. 5C, F). The difference in the %

reduction in Drunella spp. density was much greater
(60% and 43% for t = 0.90 and 0.95, respectively;
Fig. 5B, E). There is less certainty (e.g., wider 90% CI)
in the risk estimates in these upper extreme regression
quantiles. Moreover, had we not investigated other
regression quantiles, we would not have learned that
effects in t . 0.70 are greater than those at or below
the median and mean.

Discussion

Our aim was to use quantile regression as a means
to learn what drives changes in biological indicator
values beyond estimating change in the upper-most
extreme quantile. We found that metals limited metal-
sensitive mayflies, whereas basin area and other
factors limited the metal-tolerant caddisfly. Slopes or
rates of change differed among quantiles, and in
many cases, the mean rate of change (OLS slope
estimate) underestimated effects on high quantiles of
density. These results indicated that measured and
unmeasured limiting factors (e.g., life history, season-
ality, presence of fish, antecedent conditions) contrib-
uted to variance in density responses. These other
factors mostly affected quantiles below the mean,
thereby obscuring the detection of change in the
response by causing low values of mayfly density at
low metal concentrations, whereas the greatest effects
were observed at quantiles above the mean. Thus, the
effect of metals on aquatic populations varied greatly
among streams because these other factors limited
response outcomes.

We identified the data space where biological
indicators were not limited by metals, and this
approach improved our certainty regarding seeming-
ly contradictory indicator responses. For example, the
interval between the minimum and maximum regres-
sion quantiles where CCAR was the top model and
where regression quantile slopes were significantly
different from 0 is the data space most reliably limited
by metals. Both A. grandis and Rhithrogena spp. were
absent or occurred at low densities at levels of metals
where we also observed high densities of these taxa
(Fig. 4D, F). By recognizing that many of the low
densities and absences at low levels of metals (CCAR
, 1) were caused by other factors, we improved our
certainty about what level of metals is safe for these
populations. We also found that low densities of
Drunella spp. were less common in background or
reference streams (Figs 1, 4E). Therefore, density or
presence/absence of this taxon was a more reliable
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indicator of metals pollution than density or pres-
ence/absence of the other taxa evaluated.

Natural variability in aquatic insect communities
resulting from stream physiography can limit detec-
tion of subtle changes in aquatic communities at low
metal concentrations (Kiffney and Clements 1994,
Clements and Kiffney 1995). An important factor not
included in our study is the effect of population
phenology on heterogeneity in density responses
(Kiffney and Clements 1994, 1996, Clark and Clem-
ents 2006). Aquatic insect populations can be com-
posed of multiple cohorts of the same taxa, and
smaller, immature instars are more sensitive to metals
than are older more mature individuals (Kiffney and
Clements 1994, 1996, Clark and Clements 2006). In a
mesocosm experiment, Kiffney and Clements (1994)

observed a 70% decline in the density of small instars
and no change in large instars of Drunella grandis
exposed to metal mixtures of Cd, Cu, and Zn near US
EPA chronic aquatic life criteria. This high variability
in a controlled laboratory experiment shows that
some of the heterogeneity in aquatic insect densities
in our study probably was caused by defining these
populations based on taxonomy without regard for
life history. We probably sampled different instars of
Drunella spp. and Rhithrogena spp., and less mature
and more sensitive larvae probably were abundant at
some sites with high densities of mayflies. We did not
measure instars and did not account for differences in
sensitivity among instars, so differences in population
structure among sites could account for variability in
our mayfly densities.

FIG. 5. Point estimates (90% confidence intervals [CIs]) of density of Arctopsyche grandis (A, D), Drunella spp. (B, E), and
Rhithrogena spp. (C, F) densities estimated from quantile regression models at background (chronic criterion accumulation ratio
[CCAR] = 0.1) (A, B, C) and at the toxic threshold (CCAR = 1.0) (D, E, F). Point estimates were derived from quantile regression
models (t = 0.05–0.95 by increments of 0.05; Fig. 3A). x-axis (% of streams) is the inverse of the quantile (t).
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We question the traditional approach of investigat-
ing only mean responses of populations and commu-
nities to contaminants. We expected to see maximum
densities at sites where contaminants were not
limiting. However, densities of mayflies at these sites
were often limited by other factors, and in some cases,
deviated significantly from expected values. Large
decreases in mean density at higher metal concentra-
tions were required to detect a statistical difference
because of high variance in density at low metal
concentrations. However, we did not observe large
decreases in mean density as metal concentrations
increased because other limiting factors attenuated
regression slopes, particularly for quantiles t ƒ 0.70
(Figs 3A, 4D–F, 5A–F). We should not expect to
observe great changes in the mean response until
the effect of the contaminant is so great that all other
potential limiting factors are statistically unimportant.
In other words, we should expect differences in mean
responses only when contaminant concentrations are
high enough to dominate other ecological processes.
Furthermore, we expect multiple chemicals or phys-
ical disturbances to affect these responses as much as
natural limiting factors do. Multiple stressors proba-
bly would attenuate the relationship between con-
taminants and response by acting on both low and
high quantiles of the response. As a result, the effect
of multiple chemical stressors on streams will become
increasingly difficult to detect.

We should not assume that the effect of metals (or
perhaps any contaminant) will be the same across all
streams. This assumption can greatly affect scientific
inference and decision making. In our study, metals
caused greater declines in high than in low quantiles
of mayfly densities (Figs 3A, 5A–F). These differences
among quantiles probably arose because the effects of
other limiting factors, possibly differences in habitat,
were not equal across sites. Thus, the effect of metals
on density will not be the same across these habitats.
Mean-based regression approaches that assume ho-
mogeneity of variance and that all quantiles of the
response have parallel slopes would not have
detected this important characteristic of the data. In
fact, had we analyzed these data only with a mean-
based statistical model, the heterogeneity observed in
the data probably would have been perceived as a
problem, either a violation of parametric model
assumptions (i.e., heterogeneous variance) or as
residual error (i.e., poor model fit).

The practice of limiting inference to a few regres-
sion quantiles can be problematic. For example,
inferences made solely on t = 0.90 for Drunella spp.
would have resulted in a much larger loss estimate
than inferences made on t = 0.95 (Fig. 4E). By

analyzing multiple regression quantiles, we demon-
strated that most of the losses in mayfly densities
occurred in the intermediate-to-higher regression
quantiles (t § 0.70) and not just the upper limits of
density. Furthermore, 90% CIs generally were wider
at extreme quantiles (e.g., t = 0.05 or 0.95) than at
intermediate quantiles (e.g. t = 0.50; Fig. 3A–E),
suggesting greater uncertainty in these extreme
quantiles (Cade and Noon 2003). Moreover, by
considering all the quantiles (t = 0–0.95), we were
able to express model predictions in probabilistic
terms allowing us to compare risks among exposure
scenarios (Fig. 5A–F). Our results showed that high
densities of mayflies commonly observed at back-
ground metal concentrations are rare at concentra-
tions of metals previously thought safe for aquatic life
(CCAR = 1). Had we arbitrarily selected the most
extreme quantile to derive statistical inference and not
considered other quantiles, we would have missed
these important findings. We strongly suggest con-
sidering multiple quantiles of the response to under-
stand better the effects of contaminants on popula-
tions, and we caution against arbitrary selection of the
most extreme quantile that can be estimated as the
way to draw inference from the data.

Quantile regression is not a universal tool that can
solve all ecological data problems, but it does have
several advantages over other statistical methods
(Cade and Noon 2003). Some of these advantages
are estimating effects on characteristics of the
response other than the mean, relaxed parametric
model assumptions (Cade and Noon 2003), and a
model form that links observed change in resources to
a key concept from ecology and ecotoxicology,
limiting factors. Other techniques, such as propensity
scores and hierarchical linear modeling, are appro-
priate statistical techniques for dealing with data
heterogeneity. However, these model forms measure
change only in means, they do not necessarily
measure change where it is the greatest, and they do
not link well with the theory of limiting factors (Cade
and Noon 2003).

By necessity or convenience, not all the factors that
substantially influence biomonitoring endpoints can
be measured in biomonitoring studies. Thus, the
concept of limiting factors can be very useful when
interpreting variability in endpoints. This concept
helped to clarify that although metals limited high
quantiles of mayflies, other factors (e.g., habitat) also
limited response outcomes. This effect was especially
strong for A. grandis. High quantiles of A. grandis
density were limited by basin area (more precisely, by
stream factors correlated with basin area), but many
other quantiles (t , 0.40) were unrelated to the metals
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gradient and the other limiting factors we measured
(e.g., temperature). Unmeasured factors caused the
density of A. grandis to deviate from the value
expected were basin area the only limiting factor.

Responses to metals are not limited to measures of
ecosystem structure. In addition to reducing the
proportion of metal-sensitive taxa and altering other
measures of community structure, metals can alter
ecological functioning (Clements et al. 2000, Schmidt
et al. 2010). For example, contaminant-induced losses
in the density of aquatic insect larvae can disrupt
detritus processing, invertebrate secondary produc-
tion, and the flow of energy into aquatic food webs
(Carlisle and Clements 2005). In-stream disturbances
that reduce larval densities also reduce the density of
emerging aquatic-insect adults that subsidize riparian
consumers (Paetzold et al. 2011). Our results indicate
that the effects of contaminants on ecosystem struc-
ture and function should be most obvious on high
quantiles of the response.

Our results indicate that scientists and managers
have been trying to detect contaminant-induced
changes in biological indicators with models that do
not necessarily measure change where it is most
obvious. Metals limit ecological potential, but they do
not necessarily change the realized average potential
of ecosystems. Advances in stream and ecosystem
science will be limited if the model used to measure
change cannot detect it. Effectively implemented
policy cannot be derived from ineffective models,
and confidence in policy will be eroded if outcomes
are vastly different from expectation.

Our study and others show that quantile regression
can make biomonitoring data more useful for estab-
lishing regulatory limits for pollutants in aquatic
ecosystems (Pacheco et al. 2005, Linton et al. 2007).
Water-quality criteria are derived from laboratory
toxicity tests that determine species-specific responses
to a contaminant. Genus-mean responses are selected
from a number of families so that information from a
theoretical community of organisms can be used to
develop a value protective of 95% of the species
observed in nature (Stephan et al. 1985). However,
effects in the field are being observed increasingly
often at concentrations of contaminants below aquatic
life standards (Schmidt et al. 2010, 2011). This
mismatch probably reflects the limitations of extrap-
olating results of laboratory toxicity tests with aquatic
invertebrates to field situations (Buchwalter et al.
2007), although Wang et al. (2009) was able to test
sensitive life stages of sensitive taxa. The US EPA
considers field-monitoring data when developing
water-quality criteria (Stephan et al. 1985), but
variability and reliability of these data in the presence

of other factors probably have limited their utility.
Quantile regression can help overcome this limitation,
and its use for development or validation of standards
based on field data probably will increase as rec-
ognition of limiting factors and available software
increase.
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