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Abstract. Managers need new tools for detecting the movement and spread of nonnative,
invasive species. Habitat suitability models are a popular tool for mapping the potential
distribution of current invaders, but the ability of these models to prioritize monitoring efforts
has not been tested in the field. We tested the utility of an iterative sampling design (i.e.,
models based on field observations used to guide subsequent field data collection to improve
the model), hypothesizing that model performance would increase when new data were
gathered from targeted sampling using criteria based on the initial model results. We also
tested the ability of habitat suitability models to predict the spread of invasive species,
hypothesizing that models would accurately predict occurrences in the field, and that the use of
targeted sampling would detect more species with less sampling effort than a nontargeted
approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and
Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the
western United States. These initial data were merged with environmental data at 30-m2

resolution for Wisconsin and 1-km2 resolution for the western United States to produce our
first iteration models. We stratified these initial models to target field sampling and compared
our models and success at detecting our species of interest to other surveys being conducted
during the same field season (i.e., nontargeted sampling). Although more data did not always
improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa,
or area under the curve (AUC), our models generated from targeted sampling data always
performed better than models generated from nontargeted data. For Wisconsin species, the
model described actual locations in the field fairly well (kappa ¼ 0.51, 0.19, P , 0.01), and
targeted sampling did detect more species than nontargeted sampling with less sampling effort
(v2¼ 47.42, P , 0.01). From these findings, we conclude that habitat suitability models can be
highly useful tools for guiding invasive species monitoring, and we support the use of an
iterative sampling design for guiding such efforts.

Key words: Centaurea stoebe; data integration; habitat suitability models; invasive species; nonnative
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INTRODUCTION

Nonnative, invasive species have significant negative

effects on both human and natural systems, and global-

ization continues to facilitate their spread (Mack et al.

2000). Knowledge of these species’ current distribution is

essential for effective management, but the extent of their

distribution is not well known. Sharing data frommultiple

stakeholders can improve knowledge of species distribu-

tions, which would result in more accurate habitat

suitability models. These models could then be used by

land managers to prioritize monitoring and outreach

efforts for species with high probabilities of presence

(Crosier and Stohlgren 2004, Crall et al. 2006, 2010).

Unfortunately, few efforts to improve collaboration

and data sharing nationally and internationally have

occurred (for one effort see the Global Invasive Species

Information Network), hindering the effectiveness of

early detection and rapid response programs. Many

efforts to combine data sets of invasive species

occurrences have been implemented at a regional scale

(Simpson et al. 2009), but data and monitoring gaps still

exist within and across regions. As such efforts continue

to expand, new opportunities for monitoring to fill these

gaps will increase (Jarnevich et al. 2006). However,

many sampling designs are costly, time-consuming, and

ineffective at detecting newly arriving species; whereas,

targeted sampling, facilitated by suitable habitat predic-

tions, may prove to increase the efficiency of monitoring

efforts (Stohlgren and Schnase 2006).

Habitat suitability models are important tools for

invasive species risk analysis, monitoring, and control

(Stohlgren and Schnase 2006, Thuiller et al. 2006). These
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models can help managers target areas for further

inventory or for early detection of spreading species

based on the models’ forecasted distributions. Such

models are often limited by available data across large

spatial extents, so data sharing is likely to improve their

performance. As new data become available, models of

habitat suitability for species of concern could be

updated to help guide management decisions (Morisette

et al. 2006, Jarnevich et al. 2011).

Stohlgren and Schnase (2006) proposed an iterative

sampling design integrated with species distribution

model development. The dynamic distributions of

invasive species, as they expand their range and adapt

to new conditions, can compound the difficulty of

creating a distribution model across large spatial extents

with sparse or incomplete data. To address this concern,

Stohlgren and Schnase (2006) recommend compiling

readily available occurrence and environmental data,

generating a model, and then using the model to direct

future survey efforts. This process is then repeated as

new data become available. Habitat suitability models

have been generated for numerous invasive species

(Andrew and Ustin 2009, Rodder and Lotters 2010,

David and Menges 2011), but no field surveys have been

conducted to assess these models’ ability to target

sampling efforts using this iterative sampling design

compared to a nontargeted, ‘‘business as usual’’

approach.

Model-based sampling approaches have been per-

formed for rare species and have been shown to be

effective. Aitken et al. (2007) used an iterative process in

the eastern Great Basin of western Utah. They generated

models based on locations of rare plants, used these

models to effectively stratify their second set of sampling

to validate the models, and developed new models with

the new field data. Guisan et al. (2006) took a similar

approach in Switzerland, using an initial model to guide

further sampling with improved efficiency at locating

new populations of rare plant species over random

sampling. Le Lay et al. (2010) tested the ability of

habitat suitability models to help detect the presence of

three rare and five common plant species in the Swiss

Alps, and the method proved effective.

Although these studies provide evidence of the utility

of habitat suitability models in detecting species

locations, the application of this conservation tool to

invasive species may yield different results. Rare species

are typically associated with rare habitats on the

landscape and/or unique environmental conditions,

whereas, many invasive plants tend to maintain more

generalist characteristics (Segurado and Araujo 2004,

McPherson and Jetz 2007, Tsoar et al. 2007). In

addition, native plants (rare and common) have evolved

in the habitats in which they reside, whereas, invasive

species are no longer limited by the evolutionary

constraints of their native habitat (Broennimann et al.

2007, Fitzpatrick et al. 2007, Wolmarans et al. 2010).

The stage of invasion has also influenced model

performance, with more saturated species providing

better model predictions (Vaclavik and Meentemeyer

2012). This limits our ability to determine the potential

range of these species, making suitable habitat difficult

to quantify.

In this paper, we addressed two primary objectives.

The first investigated the utility of the iterative sampling

approach proposed by Stohlgren and Schnase (2006) for

invasive plant species. Specifically, we assessed the

impacts of additional sample points and the implications

of different sampling schemes when conducting invasive

species surveys, thus providing quantitative assessment

of monitoring at targeted locations. We hypothesized

that model performance for our species of concern, as

indicated by common assessment metrics, will increase

with additional data. More significantly, we hypothe-

sized that a targeted collection of mapping data from

selected locations (i.e., points or counties that had

higher standard deviation in repeated model runs) and

points or counties with novel environmental conditions

(i.e., environmental conditions outside the range covered

by the presence and background locations used to

develop the model) will improve models more than a

nontargeted approach.

Our second objective was to test the ability of habitat

suitability models to predict the spread of invasive

species. We hypothesized that models would accurately

predict invasive species occurrences in the field, and the

use of targeted sampling would detect more species with

less sampling effort than the nontargeted approach.

METHODS

To test our hypotheses, we targeted areas and species

for which data integration efforts were already under-

way. In an initial effort to improve early detection and

rapid response as part of the Great Lakes Early

Detection Network, data from volunteer and profes-

sional groups were merged and georasters of potential

environmental predictors were compiled for the state of

Wisconsin. A data set for the western United States

(defined here as North Dakota south to Texas and west

to the Pacific Ocean) for Tamarix (see Morisette et al.

2006) also provided an opportunity to test the utility of

iterative sampling and modeling at a broader, regional

scale.

Study species

We selected two species with sufficient data to test our

hypotheses within the state of Wisconsin: Centaurea

stoebe (spotted knapweed) and Pastinaca sativa (wild

parsnip). C. stoebe and P. sativa prefer open habitats

and are commonly found along road and railroad right-

of-ways, waste places, and rangelands/pastures (Watson

and Renny 1974, Cain et al. 2009). Both species invade

soils with a wide range of physical and chemical

properties, but population densities increase with soil

disturbance (Watson and Renny 1974, Cain et al. 2009).

Both species have a long history of invasion in
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Wisconsin, with the first specimen found in 1925 and

1884 for C. stoebe and P. sativa, respectively. Both

species are widespread, with 71% (P. sativa) and 85% (C.

stoebe) of the state’s 72 counties invaded (University of

Wisconsin–Stevens Point 2011).

Tamarix was selected for our regional analyses due to

the large number of data records available. Several

species in the genus Tamarix are invasive in the western

United States (Nagler et al. 2011) and are common and

often abundant along western rivers (Friedman et al.

2005, Ringold et al. 2008). The genus has been reported

in most counties in the western United States with

varying abundance (Nagler et al. 2011). We worked with

Tamarix as a genus instead of an individual species for

several reasons. Primarily, taxonomy of Tamarix species

can be difficult, especially when hybridization is

occurring. Therefore, Tamarix are typically only iden-

tified to genus in the field, resulting in databases that do

not distinguish between these species.

Original species data

To test our hypotheses, we consolidated, collected,

and analyzed data for the three species based on an

iterative approach (Fig. 1). We obtained presence data

for C. stoebe and P. sativa from 10 data contributors

distributed across the state of Wisconsin (see Appendix

A). This resulted in 1386 points for C. stoebe and 152

points for P. sativa. Species locations were clustered in

the northern and southeastern portions of the state due

to the high sampling intensity in those areas (Fig.

2A, B). For Tamarix, initial data came fromMorisette et

al. (2006; see Appendix A). This data set included 1113

points across 957 counties in the western United States

(Fig. 2C).

Targeted field sampling species data

We then used the models developed in the first

modeling iteration to stratify and target our sampling

area. Stratification occurred in two ways to address our

two objectives to: (1) test if habitat suitability models

can be improved by using an iterative sampling design;

and (2) test the ability of habitat suitability models to

predict the spread of invasive species.

To address our first objective, we targeted sampling at

locations in the upper quartile of standard deviation

among the original data model replicates or in the upper

quartile of novel environments (see Modeling methods

for more detail; Fig. 3). Using these criteria, we

randomly chose 50 locations from 200 field sampling

sites for the Wisconsin species (Fig. 4A, B). To address

this objective at a regional scale, we defined our

sampling units for Tamarix as counties to mimic the

field sampling strategy employed in much of the western

United States. Specifically, each county has a weed

coordinator, and most mapping data for invasive plant

species are collected at the county level. Therefore, we

sampled existing data sets rather than conducting field

surveys as was done for Wisconsin. Our criteria for

targeted sampling were the same as for Wisconsin, but

we selected counties rather than point locations in the

top quartile of standard deviation and novel environ-

ments. This process resulted in 50 counties selected for

the targeted data search (Fig. 4C). We focused new data

collection on these counties, selecting data from data

sets shared with us after the 2006 model and conducting

targeted Internet searches.

To select sites for the second objective, we used

ArcMap 10 (ESRI 2011) to stratify the habitat

suitability maps for each species in Wisconsin into four

quartiles based on the average probabilities generated by

Maxent (Phillips et al. 2006, Phillips and Dudik 2008;

Fig. 3). We constrained selection of 1200 potential new

sampling sites with the following criteria: (1) within 10 m

of a road to accommodate field sampling of a large area

with limited personnel (N ¼ 2); and (2) a minimum

distance of 1.6 km from another site.

We then selected 50 sites in the upper quartile of

habitat suitability and 50 sites in the lower quartile of

habitat suitability for each species (50 sites3 2 quartiles

¼ 100 sites per species) from the 1200 to sample in the

field. When selecting these 200 sampling sites, we also

took into consideration several factors: (1) selection of

an equal proportion of sites north and south of the

tension zone (an area that divides the state into two

distinct floristic provinces; Curtis 1959); (2) selection of

sites based on an easily navigable route to maximize the

number of sites reached; and (3) sites that covered the

entire 0.33-km sampling area. Sampling of the 200 sites

occurred between July and August 2011.

Nontargeted field sampling species data

To determine how our targeted approach differed

from a nontargeted approach, we generated data sets

using data collected either opportunistically (for Wis-

consin) or randomly (regional simulation). Surveys for

P. sativa were conducted between June and August 2011

as part of a statewide pest monitoring program led by

Wisconsin’s Department of Agriculture, Trade, and

Consumer Protection. Invasive plant survey data points

were recorded during quality control checks of ;2500

insect traps. We obtained additional data for C. stoebe

from both systematic and opportunistic surveys con-

ducted between July 2004 and July 2011 as part of a

biological control program conducted by the Wisconsin

Department of Natural Resources.

For Tamarix sp., we randomly selected 50 counties to

match the number of counties selected for targeted

sampling (Fig. 4C). This process would simulate an

equivalent amount of effort for pursuing additional

data, but doing so without reference to the existing

model results or current knowledge of the species

distribution.

For all three species, we randomly selected 50 points

from the nontargeted data sets five different times (Fig.

4; see Appendix B). We generated these replicates to

overcome the possibility that a random selection of 50
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points could by chance result in a superior or an inferior

model.

Environmental data sets

Environmental data for Wisconsin consisted of soils,

climate, and land use/land cover data sets resampled to

the most common native resolution of 30 m2. We

downloaded and extracted data on percentage clay, soil

organic matter, and soil pH from the Soil Survey

Geographic (SSURGO) data set available from the Soil

Data Mart (USDA-SSDS 2007). The climate data set

used consists of interpolated climate data for the

continental United States at 800-m resolution averaged

across 1971–2000 (PRISM Group 2007). We included

minimum temperature of the coldest month and annual

precipitation calculated from this data set. Land use and

land cover data included land cover classes, maximum

normalized difference vegetation index (NDVI; a

measure of greenness) averaged across 2006–2010,

percent tree cover, distance to water, distance to roads,

and distance to urban areas.

For the western United States, we used environmental

layers found important in other studies (Friedman et al.

2005, Kerns et al. 2009, Jarnevich et al. 2011). These

layers included climate data (from Daymet: precipita-

tion event size, bioclimatic indices of temperature and

precipitation seasonality, maximum temperature of the

warmest month, temperature annual range, mean

temperature of the wettest and driest quarters, precip-

itation of the wettest month, the warmest quarter and

the coldest quarter; Daymet 2006), phenology metrics

derived from MODIS satellite data (Enhanced Vegeta-

tion Index values for amplitude, annual maximum, base

levels, browndown and greenup rates, and browndown

and greenup time), distance to water, and surface

geology (Tan et al. 2011). At this spatial extent, we

developed the models with a 1-km2 resolution.

Modeling methods

We generated three sets of Maxent models for each of

the three species (Maxent version 3.3.3a; Phillips et al.

2006, Phillips and Dudik 2008). Maximum entropy

(Maxent) species distribution modeling (Phillips et al.

2006) is a relatively new member of a suite of techniques

requiring only presence locations. This modeling meth-

od compares presence locations to the surrounding

environment using background points from the sampled

area to characterize the available environment. Predic-

tions are generated by finding the probability distribu-

tion of maximum entropy for the species constrained by

the predictor variables in relation to the known presence

locations.

Because Maxent compares presence locations to the

background, it can be highly susceptible to sampling

bias as is generally present in compiled data sets like

ours. In Wisconsin, our compiled data set consisted of

more than our two species of concern, so we used a

target-background approach to generate our back-

ground locations (Phillips et al. 2009). Specifically,

background locations for C. stoebe and P. sativa were

selected from data sets that included locations for

additional species with our two species of interest. A

different approach was taken for Tamarix, because

many of the available data sets solely targeted this

genus. Therefore, we randomly selected background

locations but limited the geographic area for selection to

counties with samples (i.e., counties we knew were

sampled). We resampled all occurrence data to roughly

30 m2 for Wisconsin and 1 km2 for the western United

States to match the coarsest environmental layer data set

for the state and regional analyses.

FIG. 1. Methods for assessing the iterative sampling design proposed by Stohlgren and Schnase (2006).
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Thus, the first modeling iteration used the original

species data sets with the background. New presence

locations from the targeted and nontargeted data sets

were added to the original data set creating two new

data sets (original data set with new presence locations

from the targeted query and original data set with new

presence locations from the nontargeted query). Addi-

tionally, we added any newly sampled locations where
the species was not detected to the background data set

(for the Wisconsin species) or added the county to the

set of counties where background points could be

assigned (for the Tamarix modeling). Thus 50 new

points or 50 new counties were added to each data set

regardless of the number of actual presence locations

found, resulting in an equal increase in locations

between the targeted data sets and the nontargeted data
sets.

We began with the default settings for Maxent when
running the model for each species. We ran 25 iterations

for each model, withholding a different 30% of the test

data each time. With these settings, Maxent produces a

suitability surface averaged across the 25 iterations and

a surface of standard deviation across the 25 iterations.

We used the multidimensional environmental similarity

surface (MESS) analysis in Maxent (Elith et al. 2010) to

determine areas that contained novel environmental

conditions for each species. The standard deviation

surface and MESS surface were then used to guide the

targeted sampling. We visually inspected response

curves and difference between train and test AUC

values for evidence of overfitting ( jagged, highly

variable curves and .0.1 difference), and adjusted the

regularization value as needed.

Hypotheses testing

We calculated several common model assessment

metrics to test our hypotheses that ourmodel performance

would increase with more data and would increase more

for targeted sampling than for nontargeted sampling. We

compared differences in assessment metrics among the

threemodels developed for each of the three species: (1) the

first iteration presence locations using all data (e.g., not

withholding the 30% used to target sampling; Fig. 2); (2)

the first iteration presence locations plus the points from
the targeted query (Fig. 4); and (3) the first iteration

presence locations plus the points available from the

nontargeted query (Fig. 4; see Appendix B).We calculated

five evaluation metrics in R that require presence and

absence data, including the correct classification rate

(CCR), sensitivity, specificity, Cohen’s kappa, and area

under the curve (AUC; Fielding and Bell 1997). CCR,

sensitivity, specificity, and Cohen’s kappa are calculated

FIG. 2. Original presence and background data used in the first iteration models for (A) Centaurea stoebe, (B) Pastinaca sativa,
and (C) Tamarix.
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from a confusion matrix of observed and predicted

presence and absences generated from discretized predic-

tions based on the sensitivity equals specificity threshold

(i.e., prediction defined as present above threshold and

absence below;Liu et al. 2005).TheAUC is independent of

the threshold and ranges between 0.5 (equivalent to

random) and 1. For modeling assessment, we wanted the

same test data set to compare across models (original,

targeted, nontargeted), so we pooled all data not used in

model development (regardless of method) to create a test

presence/absence data set. In Wisconsin, we used the

presence and absence data collected during the 2011

sampling from the targeted and nontargeted locations that

were not included in the first or second iteration model

FIG. 3. Original model results displayed as four quartiles that were used for targeted sampling as described in Fig. 1. The three
species (from left to right: C. stoebe, P. sativa, and Tamarix) and the three model outputs (from top to bottom) of predicted
suitability ranging between 0 and 1, standard deviation among 25 replicate runs withholding a different 30% of the presence data,
and novel environments where darker colors indicate greater novelty compared to the environment characterized by the presence
and background locations.
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development.We evaluated the initial and targetedmodels

five different times. Each time it was paired with one of the

five nontargetedmodels and its associated test data set that

excluded the 50 nontargeted locations used to develop that

particular nontargetedmodel.ForTamarix, the evaluation

data set included the absence data from Morisette et al.

(2006) and the unused presence locations (i.e., those not

contained in the original data set or in a county selected in

the second iteration including either the five random

county samples or the targeted county sample), resulting in

a single test data set completely independent from any

nontargeted model run applied to the initial, targeted, and

all five nontargeted models.

To meet our second objective and test the related

hypotheses, we used a kappa test for agreement to

determine if the C. stoebe and P. sativa sampled

populations fit the original model predictions. The

Cohen’s kappa result is a number between �1 (perfect

disagreement) and 1 (perfect agreement) while a kappa

value of 0 is equivalent to the amount of agreement

provided by random chance. McNemar’s test was used

to determine if false positives and false negatives had an

equal distribution in the sampled populations (McNe-

mar 1947). We used a chi-square and Fisher’s exact test

to compare the proportion of false positive and false

negative samples between C. stoebe and P. sativa to

determine if the model produced differing amounts of

false positives and negatives for these species.

We also compared success at finding a species using

our targeted and nontargeted sampling techniques in

Wisconsin. We used R (2.13.2; R Development Core

Team 2011) to perform a chi-square analysis to compare

the rate of presence locations found per survey method

by the targeted sampling methods vs. nontargeted

sampling methods. Only P. sativa was used in this

analysis as it was the only species for which the field data

from both sampling techniques (targeted and non-

targeted) recorded presence and absence. The hypothe-

ses related to the second objective could not be tested for

Tamarix because we did not conduct field sampling nor

did we have point data for this species.

RESULTS

When addressing our first objective for all three

species, the second iteration models did not always

perform better than the original models according to all

criteria (Tables 1–3). However, for each metric, the

targeted models had consistently higher values than the

original and nontargeted models for all three species

(Tables 1–3).

All models for C. stoebe had AUC values .0.80, with

the targeted model approaching 0.90 (targeted average¼

FIG. 4. New locations for the second iterations including presence and background locations for targeted and one nontargeted
replicate (see Appendix B for map of other four) for (A) C. stoebe, (B) P. sativa, and (C) Tamarix.
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0.88; Table 1), indicating good model performance. For

all five assessment metrics, the targeted model had the

highest values. The nontargeted and original were not

consistent in ranking, though generally the original data

set had slightly higher values for all but AUC.

Important variables were fairly consistent across the

different models for C. stoebe. Distance to urban areas

and percentage clay accounted for a combined value of

;60% in all models. Minimum temperature of the

coldest quarter and distance to water were the third and

fourth most contributing variables (see Appendix C).

For both second iteration maps predicted distribution

of C. stoebe increased in central and southern Wisconsin

(Fig. 5). This similar trend is due to both targeted and

nontargeted efforts sampling new populations in central

Wisconsin. The targeted point locations increased the

predicted distribution in eastern Wisconsin more dras-

tically than did the nontargeted. The proportion of

Wisconsin that had novel environments with the original

model accounted for ,0.1% of the total area, indicating

that most of the state had similar environments to the

data used to generate the model.

Models for P. sativa had AUC values .0.70, with a

targeted model average of 0.79, indicating good model

performance (Table 2). AUC values followed the same

pattern as C. stoebe with the targeted model having the

highest values. For all five assessment metrics, the

nontargeted model outperformed the original model and

the targeted model outperformed the nontargeted model

(Table 2). The important predictor variables were less

consistent than for C. stoebe. Minimum temperature of

the coldest month was the most important predictor in

all models according to the variable permutation metric,

with a relative contribution between 30% (first random,

nontargeted data set) and 41% (fourth random, non-

targeted data set; Appendix C: Table C2). The original

and targeted models had minimum temperature of the

coldest month and soil organic matter as the most

important predictor variables (see Appendix C).

For the nontargeted models, results were inconsistent

across the five data sets. For both second iteration maps,

the predicted distribution of P. sativa covered the same

areas as the original map, but areas of high prediction

became more intense with the targeted map having a

more drastic increase than the nontargeted (Fig. 5).

Both of the second iteration maps also deemphasized the

extreme southeastern corner of Wisconsin. This is due to

the distance to urban areas being an important predictor

as that area of the state is heavily urbanized with the

cities of Milwaukee, Racine, and Kenosha. Similar to C.

stoebe, the total percentage of area that was included as

novel environments was ,0.1%.

All models for Tamarix had AUC values .0.85,

indicating strong model performance, with a targeted

model AUC of 0.92 (Table 3). Except for the CCR

evaluation metric, all metrics were better for the

nontargeted model than the original. The targeted

model performed better across all metrics (Table 3).

Tamarix was again less consistent in variable contribu-

tion across models. Maximum temperature of the

warmest month was the most important predictor for

all models (between 20% and 49%). The group of top

four predictors for the original model and the targeted

sampling model included average size of precipitation

events, temperature seasonality, and precipitation of the

warmest quarter. For the five nontargeted models, the

next top three variables varied between runs (see

Appendix C).

Predicted distribution of Tamarix increased on the

Great Plains in the north with the new, targeted point

locations that captured infestations in the Dakotas (Fig.

5). The nontargeted map emphasized the central valley

TABLE 1. Summary modeling metrics for Centaurea stoebe (spotted knapweed) in Wisconsin,
USA, including average and range values (in parentheses) from the five different test data sets
applied to the initial, targeted, and matching nontargeted model.

Evaluation metric Original Nontargeted Targeted

CCR 0.78 (0.77–0.79) 0.77 (0.77–0.77) 0.80 (0.79–0.81)
Sensitivity 0.77 (0.76–0.79) 0.77 (0.76–0.77) 0.80 (0.79–0.81)
Specificity 0.79 (0.79–0.79) 0.77 (0.76–0.77) 0.80 (0.79–0.82)
Kappa 0.51 (0.50–0.54) 0.49 (0.48–0.49) 0.55 (0.53–0.57)
AUC 0.81 (0.80–0.82) 0.85 (0.84–0.85) 0.88 (0.88–0.89)

Notes: Abbreviations are: CCR, correct classification rate; AUC, area under the curve.

TABLE 2. Summary modeling metrics for Pastinaca sativa (wild parsnip), including average and
range values (in parentheses) from the five different test data sets applied to the initial, targeted,
and matching nontargeted model.

Evaluation metric Original Nontargeted Targeted

CCR 0.68 (0.67–0.68) 0.72 (0.70–0.73) 0.72 (0.72–0.73)
Sensitivity 0.69 (0.68–0.69) 0.71 (0.69–0.73) 0.72 (0.72–0.73)
Specificity 0.67 (0.67–0.68) 0.71 (0.70–0.72) 0.72 (0.72–0.72)
Kappa 0.29 (0.28–0.30) 0.35 (0.33–0.36) 0.37 (0.37–0.38)
AUC 0.72 (0.72–0.73) 0.78 (0.78–0.79) 0.79 (0.79–0.79)
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of California. Both second iteration maps deemphasized

south Texas, which was an area of novel environment in

the original model. The original model classified 20% of

the western United States as novel environments, while

the nontargeted models ranged from 2.0% to 6.6% novel

environments. The targeted model had the least area of

novel environments at 1.8%.

When addressing our second objective, the C. stoebe

population sampled showed a good, significant relation-

ship to the model prediction (kappa ¼ 0.51; P , 0.01),

while P. sativa showed a weaker relationship (kappa ¼
0.19; P , 0.01). McNemar’s test indicated that both

species had an unequal distribution of false positives and

false negatives (v2¼ 9.5; P , 0.01), with false negatives

having a greater influence than false positives over the

kappa values for both species. While both species had

more false positives than false negatives (Table 4), P.

sativa has a greater proportion of false positives than C.

stoebe (C. stoebe v2¼ 9.26, P, 0.01; P. sativa v2¼ 61.65,

P , 0.01), but both species had an equal proportion of

false negatives (Fisher’s exact P ¼ 0.75).

The targeted sampling effort found P. sativa at 60% of

the total sites visited (N ¼ 72) and the nontargeted

approach found P. sativa at 23% of the total sites visited

(N ¼ 1996). The targeted sampling effort had a

significantly greater proportion of successful monitoring

visits (v2 ¼ 47.42; P , 0.01).

DISCUSSION

Iterative sampling and modeling provides natural

resource managers with conservation tools for detecting

new invasions and for improving monitoring of existing

invasions. The reduction of already limited monitoring

and control budgets makes development of such tools

even more imperative. The use of habitat suitability

models provides great promise for increasing the

efficiency of management when utilized as part of an

iterative sampling design (Jones et al. 2010).

However, there are several caveats that need to be

considered when assessing our findings. We do not

include species abundance, dispersal limitations, or

sources of invasion in our model. Analyses were

conducted at a 30-m2 or 1-km2 resolution, predicting

suitable habitat rather than actual presence. Finer

resolution predictions should be generated for landscape

level management (Evangelista et al. 2009), but our

models could be used as a guide for where this is

necessary. We also wanted to make use of existing data

at these large spatial extents (Wisconsin and the western

United States), and had differing sampling strategies

based on the size of the extent (point locations in

Wisconsin vs. obtaining existing data at the county level

for the western United States). Modeling changes in

species abundance and process models of dispersal and

spread of invasive species are beyond the scope of this

study. As data and modeling techniques improve, so will

our ability to target new invasions

Additionally, while we chose to not include absence

data in our model training, we did use these data when

calculating our performance metrics. There could be

errors where absence locations are not true absence

locations but represent areas where the modeled species

has not yet had the opportunity or time to establish. In

these cases of disequilibrium of a species with its

environment, others have recommended not using

absence data (Hirzel et al. 2001, Brotons et al. 2004).

Our presence data were compiled from disparate data

sets, and we do not have information about either the

spatial or taxonomic accuracy of these data. Our spatial

resolution of 30 m2 or 1 km2 is large enough that

relatively small spatial inaccuracies may not be impor-

tant, especially as conditions in neighboring cells would

be similar given spatial autocorrelation in environmental

data (Koenig 2002). We also had a large number of both

presence and absence locations, so inaccurate data

points may not have much influence compared to a

smaller sample size where outliers carry more weight

(Wisz et al. 2008).

Conducting our analysis on the genus Tamarix

instead of individual species likely contributed to the

very broad range of ecological tolerances reported

(Brotherson and Field 1987). Specifically, members of

this genus have habitat requirements that do not

completely overlap, which likely created a range of

habitats more extensive than that created for an

individual species within the genus.

Utility of iterative sampling design

Across all three species, we found that model

performance improved with additional targeted data

and that the targeted approach improved model

performance better than the nontargeted approach.

These results supported our hypothesis that targeted

sampling would improve models more. Contrary to our

hypothesis, we also found that more data did not always

improve model results, as demonstrated by P. sativa

where the original model had higher values for all

metrics (except AUC) than the nontargeted model.

However, the independent data set AUC value was

always higher for the second generation of models. Our

targeted subset consistently performed better than our

random subset. Ideally, we want to be able to use

current results to direct future sampling. This guidance

will maximize an increase in the model accuracy with

efficient sampling. At least for our particular examples,

TABLE 3. Summary modeling metrics for Tamarix including
values for the initial and targeted models and average and
range values (in parentheses) across the five nontargeted
models.

Evaluation metric Original Nontargeted Targeted

CCR 0.78 0.66 (0.084–0.85) 0.86
Sensitivity 0.76 0.81 (0.73–0.85) 0.84
Specificity 0.81 0.82 (0.78–0.85) 0.87
Kappa 0.57 0.62 (0.51–0.69) 0.71
AUC 0.86 0.88 (0.85–0.91) 0.92
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targeted sampling with subsequent data collection

focused by previous model results led to the most

improved model. Therefore, our results support the

approach suggested by Stohlgren and Schnase (2006).

The ability of habitat suitability models to predict invasion

While the C. stoebe model did a satisfactory job of

estimating the actual population, our P. sativa model

did not perform as well. P. sativa had a greater

proportion of false positives than C. stoebe, which can

likely be attributed to the differences in each popula-

tion’s stage of invasion in the state of Wisconsin. C.

stoebe can be found throughout the state and has been

introduced to a greater proportion of suitable habitat.

Although P. sativa is abundant throughout the south-

western portion of Wisconsin, it has limited distribution

FIG. 5. Habitat suitability maps for the three species (from left to right: C. stoebe, P. sativa, and Tamarix) as columns and the
three model runs (from top to bottom: original, targeted, and nontargeted replicate). Maps of novel environments are shown below
the suitability maps for Tamarix but were not included for C. stoebe or P. sativa because the percentage of area that was novel
environments was ,0.1%. The four other nontargeted replicate maps for C. stoebe and P. sativa can be found in Appendix B.
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in the southeastern and northern parts of the state

(University of Wisconsin–Stevens Point 2011).

We expect a high number of false positives when

sampling because our models predict suitable habitat,

not presence, and complete saturation of all possible

suitable habitats is not likely (Peterson 2005). From

herbarium records and field reports from natural

resource managers around the state of Wisconsin

(Peterson 2005), it is clear that P. sativa is at an earlier

stage of invasion and farther from saturation than C.

stoebe. Therefore it is likely that the higher proportion

of false positives found in the P. sativa population are

not due to inadequacies in our model, but rather to P.

sativa not having reached its potential distribution.

Given the results of the McNemar’s test and the

similarity between the two models in terms of false

negatives, we can be reasonably sure that the models

correctly predict areas of low invasion probability and

can be relied on for targeting sampling efforts. The

model could be used by natural resource managers to

prioritize monitoring in areas with a high probability of

invasion while monitoring areas of lower probability on

a less periodic basis (e.g., once every three years).

In regard to monitoring, false positives are less of a

concern than false negatives. Specifically, false positives

represent areas where new invasions are most likely to

take hold and require heightened vigilance. They are not

indicators of wasted effort. False negatives, however,

can have significant implications for monitoring when

undiscovered populations could potentially grow un-

managed for a number of years. However, given our

results, this is not a significant concern, and a

monitoring program based on these models can be

relied upon.

Integrating habitat suitability models

into management strategies

Many managers may not have the resources necessary

for large-scale data integration efforts nor the expertise

for modeling species distributions. Researchers and

government agencies could facilitate such efforts by

providing the necessary resources to streamline data

integration and modeling.

Data exchange protocols freely available from the

Global Invasive Species Information Network (GISIN),

as used in this study, provide the resources necessary to

integrate large spatial data sets across the network’s data

contributors. This data integration approach has been

taken as part of the Great Lakes Early Detection

Network, where new invasive species sightings entered

into any of the participating member databases are sent

to a network of registered users requesting new sighting

reports (Crall et al. 2012).

In the same way that data sharing across management

groups is useful, collaborative modeling, such as that

described in this paper, brings together a wide range of

experts such as remote sensing and climate forecasting

experts, habitat modelers, field ecologists, and land

managers, and can be beneficial.

CONCLUSIONS

We still need more research into how models perform

with biased data sets like those generally available for

invasive species across large spatial extents. Most of

these data are compiled from disparate efforts, each with

unique sampling strategies. With presence-only data, we

cannot differentiate poorly sampled areas from true

absent areas (Phillips et al. 2009). Sampling incomplete-

ness and uncertainty exacerbate the issues related to

assessing sampling bias. Our resultant models thus

include levels of uncertainty that can only be verified

by future, independent data sets.

Our results validate the accuracy of habitat suitability

models to predict invasions and support the use of

previously developed models to guide future sampling,

and the development of new models with the collection

of new data. This approach may help guide early

detection, rapid assessment, rapid response, and con-

tainment of harmful invasive plants, animals, and

diseases at local to global scales.

Perhaps one of the most important implications of

this work is first proof that invasive species habitat

suitability mapping should be seen as an ongoing and

iterative process as suggested by Stohlgren and Schnase

(2006). By their very nature, invasive species can often

be safely assumed to have dynamic distributions, as they

expand their range and adapt to new conditions. While

we can report quantitative model diagnostics, this

should not hide the fact that there are many nuances

and caveats associated with our modeling techniques

(Rodda et al. 2011). Careful and continued iteration

between the model-development and model-use com-

munities can help ensure the most prudent use of

modeling tools. The approach and results presented here

is one example of such iteration.
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Data sources and number of records for C. stoebe and P. sativa and for the genus Tamarix (Ecological Archives A023-005-A1).

Appendix B

Habitat suitability predictions for the nontargeted models for the replicates 2–5 for C. stoebe and P. sativa and for the genus
Tamarix (Ecological Archives A023-005-A2).

Appendix C

Most important variables associated with presence of C. stoebe and P. sativa and the genus Tamarix for the original, targeted,
and five nontargeted model runs (Ecological Archives A023-005-A3).
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APPENDIX A. Data sources and number of records for C. stoebe and P. sativa and for the genus Tamarix. 

TABLE A1. Data sources and number of records for C. stoebe.

Source Sample size

Beaver Creek Reserve Terrestrial Invasive Species Volunteer Program 9

Great Lakes Indian Fish and Wildlife Commission 1360

Wisconsin Department of Natural Resources 80

TABLE A2. Data sources and number of records for P. sativa.

Source Sample size

Wisconsin Department of Natural Resources 13

Mt. Horeb High School 6

National Wildlife Refuge - USGS Invasive Species Survey 1

Great Lakes Indian Fish and Wildlife Commission 113

University of Wisconsin Herbarium 1

Milwaukee County Parks 19



Plant Ecology Laboratory University of Wisconsin-Madison 1

Wisconsin Dept. of Agriculture, Trade & Consumer Protection 316

TABLE A3. Data sources and number of records for Tamarix. Data from www.niiss.org were downloaded on 
2 July 2008.

Name Sample size On NIISS.org

Bay and Sher (2008) 79 points No

Bradshaw (unpublished data, 2006) 2931 points Yes

Colorado Department of Transportation (2002) 48 polygons Yes

Colorado project (www.niiss.org) 53 points Yes

Colorado State Parks mapping data (unpublished data, 2003) 18 points

5 polygons

Yes

Davern (2006) 639 points Yes

Fingerprinting biodiversity (CSU and USGS field data; 
www.niiss.org)

135 points Yes

Sexton et al (2006) 20 points No

Grand Staircase Escalante National Monument (Evangelista et 
al. 2008) 

1881 points Yes/ No

Hubbard Lake (www.niiss.org) 10 polygons Yes

Uowolo (2005) 11 points No



National Park Service (2003) GIS data 1291 points Yes/ No

National Wildlife Refuge Project (unpublished data) 2 polygons Yes

Sengupta et al. Nevada mapping data (unpublished data, 
2005)

154 points Yes

NIISS Citizen Science Website Projects (www.citsci.org) 100 points Yes

North Dakota Department of Agriculture (unpublished data, 
2003)

2648 points Yes

Otero County, CO (unpublished data, 2003) 1422 points No 

Robinson (1965) 143 points Yes

U.S. Bureau of Land Management, Royal Gorge weed data 
(unpublished data, 2003)

19 points No

South Dakota Department of Agriculture (unpublished data, 
2006)

16 polygons Yes

Southwest Exotic Plant Mapping Program (Thomas and 
Guertin 2007) 

899 points Yes

Tamarisk Coalition (unpublished data, 2008) 2267 polygons Yes

Colorado Natural Heritage Program (unpublished data, 2008) 11 points No
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APPENDIX B (FIG. B1). Habitat suitability predictions for the nontargeted models for the replicates 2–5 for C. stoebe and P. 
sativa and for the genus Tamarix as the column runs and the replicate number as the row.
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APPENDIX C. Most important variables associated with presence of C. stoebe and P. sativa and the genus Tamarix for the 
original, targeted, and five nontargeted model runs. 

TABLE C1. Most important variables associated with C. stoebe presence for the original, targeted, and five nontargeted 
model runs. Top three predictors for each run are shown in bold.

Variable Original Targeted Nontargeted1 Nontargeted2 Nontargeted3 Nontargeted4 Nontargeted5

% Clay 31.4 26.7 34 32.5 34.6 36.4 37

Distance to Urban Areas 29 28.3 32.9 31.6 32.4 27.7 29.2

Minimum Temperature 
of Coldest Month 

(BIO6)

11.9 7.4 5.9 7.1 7.8 9.3 7.2

Distance to Water 6.8 11.7 7 7 7.4 7.9

Soil Organic Matter 4.5 4.3 5.1 6 4.5 5.7 5.3

Annual Precipitation 
(BIO12)

4.4 6.3 4.7 5.5 4.5 5.5 5

Tree Cover 3.1 0.9 0.8 1.1 0.5 0.5 0.8

Soil pH 2.8 1.2 0.9 1.5 1 1.1 1.4

Distance to Roads 2.2 1.5 2 1.1 1.5 1.3 1.8

Landcover Classification 2 5.9 3.9 4.1 3.7 3 3.2

Maximum NDVI from 
2006 to 2010

1.9 5.8 3 2.5 2.1 1.4 2.3

6.8

TABLE C2. Most important variables associated with P. sativa presence for the original, targeted, and five nontargeted runs. 
Top three predictors for each run are shown in bold.

Variable Original Targeted Nontargeted1 Nontargeted2 Nontargeted3 Nontargeted4 Nontargeted5

Minimum Temperature 
of Coldest Month 

(BIO6)

31.4 35 35.4 39.6 36.9 6.3 8.3

Soil Organic Matter 21.1 14.9 10.9 11.3 8.8 6.2 4.9

Distance to Urban 
Areas

13.9 7.2 11.1 15.3 13.8 4.4 4.4



% Clay 8.8 7.6 12.5 9.1 14.5 39.3 11.5

Landcover 
Classification

6.2 8.5 3.9 6.2 5.6 10.4 34.8

Distance to Roads 5.7 6 10.5 4.2 7.5 7.8 9.2

Distance to Water 5.4 6.7 6.4 5 5.5 4.9 2.2

Soil pH 3.9 10.1 5.4 5.1 3 5.5 6.1

Annual Precipitation 
(BIO12)

2.8 2.3 2.1 1.9 2.6 4.8 5.1

Maximum NDVI from 
2006 to 2010

0.8 1.7 1.7 2.4 1.7 10.3 13.5

TABLE C3. Most important variables associated with Tamarix presence for the original, targeted, and five nontargeted runs. 
Top three predictors for each run are shown in bold.

Variable Original Targeted Nontargeted1 Nontargeted2 Nontargeted3 Nontargeted4 Nontargeted5

Max Temperature of 
Warmest Month

48.6 39.3 34.8 20 38.5 37.3 26.5

Average Size of Precipitation 
Events

17.8 8.1 7.3 1 13 16.1 15.9

Temperature Seasonality 
(standard deviation *100)

7.5 5.4 2.4 5.1 6.8 2.6 5.3

Precipitation of Warmest 
Quarter

5.6 5.9 10.1 16.3 9 0.9 3.1

Precipitation of Coldest 
Quarter

4.1 5.8 5.7 4.6 1.5 2 2.8

Surface Geology 3.1 4.9 6.8 6.7 5.6 7.3 6.1

EVI Average Browndown 3 4.4 6.9 5.9 2.1 6.6 6.7

Distance to Water 2.9 4.3 2.4 3.9 4.6 5.4 4.5

EVI Average Browndown 
Rate

1.4 3.8 2.8 8.9 5.5 4.4 7.3

Mean Temperature of Wettest 
Quarter

1.3 1.9 4.2 2.4 0.9 2.5 5.8

Mean Temperature of Driest 
Quarter

1.2 3.4 1.4 2.3 0.3 0.6 2.9



Temperature Annual Range 1.1 6.2 3.1 4.8 5.2 2.4 1.2

EVI Average Greenup Rate 1 3.3 8.8 11.3 2.9 4.6 5.7

Precipitation Seasonality 
(Coefficient of variation)

0.7 0.7 1.4 2.6 0.4 3.8 1.8

Precipitation of Wettest 
Month

0.3 1.6 0.6 0.4 2.2 0.8 2.7

EVI Average Base Value 0.2 0.5 0.8 0.3 0.4 0.4 0.4

EVI Average Amplitude 0.1 0.2 0 1.1 0.2 1 0.4

EVI Annual Maximum Value 0.1 0.3 0.6 1.2 0.6 1.3 0.8

EVI Average Greenup Rate 0 0.1 0 0.3 0.1 0 0
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