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Accurately estimating abundance of wildlife is critical for establishing effective conservation and manage-
ment strategies. Aerial methodologies for estimating abundance are common in developed countries, but
they are often impractical for remote areas of developing countries where many of the world’s endangered
and threatened fauna exist. The alternative terrestrial methodologies can be constrained by limitations on
access, technology, and human resources, and have rarely been comprehensively conducted for large ter-
restrial mammals at landscape scales. We attempted to overcome these problems by incorporating local
peoples into a simultaneous point count of Asiatic wild ass (Equus hemionus) and goitered gazelle (Gazella
subgutturosa) across the Great Gobi B Strictly Protected Area, Mongolia. Paired observers collected abun-
dance and covariate metrics at 50 observation points and we estimated population sizes using distance
sampling theory, but also assessed individual observer error to examine potential bias introduced by
the large number of minimally trained observers. We estimated 5671 (95% CI = 3611–8907) wild asses
and 5909 (95% CI = 3762–9279) gazelle inhabited the 11,027 km2 study area at the time of our survey
and found that the methodology developed was robust at absorbing the logistical challenges and wide
range of observer abilities. This initiative serves as a functional model for estimating terrestrial wildlife
abundance while integrating local people into scientific and conservation projects. This, in turn, creates
vested interest in conservation by the people who are most influential in, and most affected by, the
outcomes.

Published by Elsevier Ltd.
1. Introduction

Estimating abundance is one of the most important prerequi-
sites for the conservation and management of wildlife because it
defines the need and scope of human action. Aerial surveys are
often used to sample large mammal populations and generate
statistical estimates of abundance (Caughley, 1977; Melville et al.,
2008). While managers and practitioners in developed countries of-
ten have access to aircraft and technology to help accomplish this
task, many of the world’s endangered and threatened fauna exist
in remote areas of developing countries where terrestrial access,
technology, aircraft availability, and skilled human resources are
extremely limited. Attempts at surveying wildlife abundance in
such areas may be further complicated by the effects of low density
on estimators (Barnes, 2002). Wildlife can thus decline rapidly
without detection and the needed conservation actions may be
implemented too late, if at all (Karanth et al., 2003).
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Statistical sampling techniques have been used to estimate
animal abundance for decades (Schwarz and Seber, 1999; Williams
et al., 2002). The most developed, and best understood, methods
include variations of double sampling, mark-resight (batch-
marked animals), mark-recapture (uniquely-marked animals),
sightability bias correction models, and distance sampling (Barker,
2008). Recently, researchers have begun to combine these tech-
niques to create synergistically more effective methods (Laake
et al., 2008; Lubow and Ransom, 2009), but even in light of such
statistical advances the logistical problem of surveying remote
areas with constrained resources has not been well-addressed.

Estimating Asiatic wild ass (Equus hemionus) and goitered ga-
zelle (Gazella subgutturosa) abundance across the vast expanse of
the Great Gobi B Strictly Protected Area (SPA), Mongolia, exempli-
fies this problem. Animals are distributed across the entire area,
reliable aircraft are unavailable, and access is limited in the park
(Kaczensky et al., 2008). Asiatic wild ass are now listed as endan-
gered (IUCN, 2010) and anecdotal and scientific evidence suggest
that abundance has declined globally by more than 50% over the
past two decades. The Gobi region has long been a stronghold for
the wild ass, though the species has disappeared from the vast
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majority of its historic range (Feh et al., 2001; Reading et al., 2001;
Kaczensky et al., 2011). Goitered gazelles are classified as a
vulnerable species by IUCN (2010) and while little is known about
current populations, it is believed that their numbers are declining
and Mongolia may contain the majority of the global population
(Reading et al., 1999). Well-informed abundance estimates are
needed to direct conservation plans and prompt action for the
remaining populations of both species.

Conservation of species such as Asiatic wild ass and goitered
gazelle can be challenging, even when protected areas are desig-
nated. Indigenous peoples often rely heavily on ecosystem services,
and when national parks and protected areas exclude participation
of adjacent indigenous communities from resource management
decisions, conservation efforts may be undermined (McNeely
et al., 1990; Adams et al., 2004; Corbera et al., 2007). Land use be-
tween native wildlife and pastoralists overlaps across most of
Mongolia. Interviews of pastoral families in the Gobi region indi-
cated that while some people regularly utilize wild asses for food
and others consider them only as competition with livestock, many
are interested in pursuit of conservation efforts (Kaczensky et al.,
2006). We embraced this perspective to develop a community-
based initiative for estimating wildlife abundance in the Great Gobi
B SPA using a large-scale simultaneous point count across the
entire area, and subsequently modeled the count data to generate
estimates of abundance. This initiative illustrates a functional
model for integrating local people into scientific and conservation
projects by bringing them into protected areas, incorporating them
directly into the science, and exposing them first-hand to the value
of resource conservation. This collaboration in turn can create
vested interest in conservation by the people who are most influ-
ential in, and most affected by, the outcomes (Danielsen et al.,
2008; Reed, 2008).
2. Study area

The Great Gobi B SPA consists of 9265 km2 desert and steppe
biomes and our study area incorporated an additional 1762 km2

of adjacent lands where wild asses have been known to roam
(Feh et al., 2001; Kaczensky et al., 2008, 2011). Plains dominate
the east and rolling hills populate the west. Elevations range from
1000 to 2840 m above sea level, with the Altai Mountains forming
a northern boundary to the park and several mountain ranges form-
ing the southern border with China. Desert environments are dom-
inated by saxaul (Haloxylon ammodendron), which in places can be
large enough to obscure views of asses or gazelles from observers.
Steppe environments are dominated by Poaceae such as Stipa spp.
and Ptilagrostis spp. Sympatric indigenous ungulates in this ecosys-
tem are wild horse (Equus ferus przewalskii) on the plains, and argali
(Ovis ammon), and Siberian ibex (Capra sibirica) in the mountains.
3. Methods

3.1. Field methodology

A combination of mark-resight and distance sampling tech-
niques, similar to that described by Kissling and Garton (2006),
was employed at observation points across the entire study area.
We conducted this simultaneous point count using pairs of observ-
ers at 25 observation points in the eastern half of the park on 5–6
August, 2010, and then relocated the teams to count from an addi-
tional 25 observation points in the western half of the park on 7–8
August, 2010 (Fig. 1). The team was comprised of 4 organizers (2
Mongolian, 1 American, 1 Austrian), 24 local pastoralists, 7 park
staff, 3 park rangers from nearby Shargen Gobi Saiga Reserve, and
12 university students and instructors (9 Mongolian, 3 German).
Everyone was trained in equipment use and data collection proto-
cols in the days preceding the survey. This training involved a
classroom overview of survey history, project design, and data col-
lection by the organizers, followed by a day of field practice where
observers used compasses and rangefinders to measure targets at
known distances. For field deployment, each pair of observers
was equipped with a watch, binoculars, a customized optical range-
finder (see Ransom, 2011), standard map compass, pencils, and
datasheets, as well as food and water.

Each observer at each point was instructed to collect data inde-
pendently, with the first observer conducting a complete 360� sur-
vey and then passing the equipment to the second observer who
subsequently conducted another complete 360� survey. Observers
were instructed not to share datasheets or communicate between
observations. Surveys from all points were conducted simulta-
neously at 20:00 h, after which observers slept at their observation
points and then conducted surveys again at 07:00, 09:00, 11:00,
13:00, and 15:00 h for a total of 6 complete surveys at each point.
All observers rendezvoused at a central point upon completion of
the eastern 25 points to provision and review data collection
efforts, and then were re-deployed to the remaining 25 observation
points in the west.

Data collected at each observation included time, species, num-
ber of adults, number of offspring, vegetation type (shrub or open),
behavior (laying, standing, running), discrete distance category
(0–100 m, 101–500 m, 501–1000 m, 1001–2000 m, 2001–5000 m,
5001–7000 m), and compass bearing. Because discernment of
adults versus offspring was inconsistent at long distances, we used
only total count of individuals for analyses. Rangefinder capability
was limited to 2500 m and the farthest distance categories were
visually estimated. A single compass bearing was recorded at the
center of small groups or a range of bearings was recorded for the
endpoints of large dispersed groups. Covariate data for sun effect
was calculated a posteriori as described in Ransom (2012) using
data consisting of time of observation, compass bearing, observa-
tion latitude and longitude, and solar position information from
the National Oceanic and Atmospheric Administration solar calcu-
lator (http://www.srrb.noaa.gov/highlights/sunrise/sunrise.html,
accessed August 24, 2010).

3.2. Geographic information system (GIS) data

Observation points were chosen using a stratified random sam-
ple by overlaying a 15 km by 15 km grid across the study area and
randomly selecting one elevated point in each cell. This allowed us
to maximize the field of view and we defined the maximum view-
ing distance as 7000 m. The visible area from each observation
point was calculated using the surface analysis option ‘‘viewshed’’
of the Spatial Analyst extension in ArcGIS 9.3 (Environmental
Systems Research Institute, Redlands, California, USA). We used a
digital elevation model (DEM) at 90 m spatial resolution obtained
from the Shuttle Radar Topography Mission tiles for Mongolia and
northern China (http://glcf.umiacs.umd.edu) for these analyses.

We anticipated that delimiting high and low density wild ass
areas within the study area would decrease the encounter rate
variance attributed to gregarious behavior; therefore, we at-
tempted to stratify wild ass data by modeling habitat selection
as a function of elevation, slope, vegetation type, distance from
water, and normalized difference vegetation index (NDVI). We
used linear regression to model these effects for detected groups
and 1000 random points (within the visible radius of the 50 obser-
vation points). A group was defined as one or more animals in close
proximity to each another. Elevation, slope, and distance from
water for each location were calculated using the GIS data. Main
vegetation types were classified from satellite imagery by von
Wherden et al. (2006). NDVI data was derived from a Moderate
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Fig. 1. Location of 50 observation points and viewsheds for an abundance survey of Asiatic wild ass (red: Equus hemionus) and goitered gazelle (yellow: Gazella subgutturosa)
in the Great Gobi B Strictly Protected Area, Mongolia, during a survey at 09:00 h, August, 2010. Each point is located on an elevated area and contains a 7 km radius sampling
area.
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Resolution Imaging Spectroradiometer (MODIS) scene for 27 July–
08 August 2010 and made available by the National Aeronautics
and Space Administration (http://modis.gsfc.nasa.gov/data). We
did not attempt to delimit high and low density gazelle areas
because the animals have historically been observed widely, but
in small numbers, across the entire study area, and we anticipated
that sample size would be too small to model habitat selection
meaningfully.

3.3. Statistical analyses

Regressions for habitat stratification and summary statistics
were conducted using R version 2.12.1 (The R Foundation for Statis-
tical Computing, 2010). Count data were analyzed in Program
Distance version 6.0 (Thomas et al., 2010) using the conventional
distance sample option and the total study area size of
11,027 km2. We pooled data across all 6 surveys for the purpose
of fitting the detection function; we had no a priori reason to expect
that the detection function would vary systematically by time of
day and separate detection functions would have been fitted with
insufficient observations to be reliable. We tested pooled and unpo-
oled normal probability distribution models for cluster size and
encounter rate and compared them using AICc (Burnham and
Anderson, 2002). We weighted the data by number of survey
occasions.

Because the presence of an observer could have displaced ani-
mals away from the observation point (g(0)), we combined the
0–100 m and 100–500 m categories into 0–500 m, assuming that
animals were not systematically displaced beyond that distance.
We assumed no animals were missed at zero distance (g(0) = 1)
due to the relatively large body size, lack of tall vegetation, and
typical behavior of the species. We fit detection functions to 3
alternatives for the remaining distance bins: (1) all 5 recorded
bins: 0–500 m, 500–1000 m, 1000–2000 m, 2000–5000 m, 5000–
7000 m; (2) 4 bins with observations between 2000 and 7000 m
pooled; and (3) 4 bins with observations >5000 m dropped (right
truncation).

We considered both half normal and hazard rate key functions
with cosine and simple polynomial adjustment terms; however,
we limited the number of adjustment terms to allow at least 1�
of freedom for estimating the v2 goodness-of-fit (GOF) test. With
5 distance bins, all models had 63 parameters (hazard rate plus
61 adjustment term or half normal plus 62 adjustment terms)
and for 4 bins all had 62 parameters (hazard rate with no adjust-
ments terms or half normal with 61 adjustment term). When
regression for detection g(x) of different size groups (clusters) of
animals was significant at P = 0.15, we used the regression ln(clus-
ter size) against the estimated g(x); otherwise, we used the mean
cluster size.

We evaluated individual observer error (missed or detected
groups known from paired independent observations) using
mixed-effect logistic regression to model detection probability as
a function of group size, behavior, vegetation type, sun effect
(position of the sun in relation to the observer), and status (wildlife
professional or not), with individual observer as a random effect on
the model intercept to account for repeated measures. This was
conducted using the lme4 package of R version 2.12.1. Model fit
was evaluated by calculating area under the receiver operating
curve (AUC) with function somers2 in R package Hmisc, using the
fixed effect predictions while holding random effects at zero.
Observers in two pairs collected data cooperatively instead of inde-
pendently and one observer counted alone, so those records were
omitted from of the individual observer detection probability anal-
yses. Matching observation records was achieved by comparing
compass bearing, distance, and group size data: when group size
differed slightly between observations, we used the larger of the
two counts under the assumption that one observer could have
missed some individuals, but the other observer could not have
counted individuals that weren’t present.

4. Results

4.1. Surveys and stratification

Across the 300 possible survey occasions (6 surveys at each of
50 points), we completed 296, with 4 missed (1 at each of 4 points)
due to transportation failures. We detected 432 wild ass groups
and 148 goitered gazelle groups across all surveys. These sums in-
clude only unique groups per survey and exclude duplicate obser-
vations within observer pairs. Wild asses were not distributed
equally across the study area, and central regions of the study area
appeared most densely populated while areas in the west were
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Table 1
Summary statistics of direct observations of Asiatic wild ass (Equus heminous) and
goitered gazelle (Gazella subgutturosa) during 6 sequential surveys from 20:00 to
15:00 h at 50 observation points in the Great Gobi B Strictly Protected Area, Mongolia,
August 2010.

Survey time (hours)

20:00 7:00 9:00 11:00 13:00 15:00

Asiatic wild ass
Total observed 1210 654 1038 1140 1141 1140
Number of groups 73 73 106 67 62 51
Mean group size 16.56 8.96 9.79 17.02 18.4 22.35
Standard error of mean 4.51 3.07 2.19 5.12 7.39 15.35
Minimum group size 1 1 1 1 1 1
Maximum group size 300 210 167 236 439 786
Encounter rate (groups/

km2)
1.46 2.12 1.34 1.24 1.02 1.52

Goitered gazelle
Total observed 82 212 275 84 34 29
Number of groups 21 36 48 25 10 8
Mean group size 3.91 5.89 5.73 3.36 3.4 3.63
Standard error of mean 0.669 1.22 0.806 0.483 0.702 0.8
Minimum group size 1 1 1 1 1 1
Maximum group size 12 37 29 11 8 7
Encounter rate (groups/

km2)
0.72 0.96 0.50 0.20 0.16 0.40
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noticeably vacant (Fig. 1). Regression analyses of wild ass abun-
dance as a function of slope (t = 0.476, P = 0.634), elevation
(t = �0.568, P = 0.570), distance to water (t = 1.484, P = 0.138), veg-
etation type (t = �0.094, P = 0.925), and NDVI (t = 0.883, P = 0.377)
produced no clear evidence that wild asses were selecting habitat
based on these factors at the time of the survey; consequently, we
analyzed density of the entire study area with no stratification.
Fig. 2. Detection functions (bold lines) fit to Asiatic wild ass (Equus hemionus) data from
shown in order of descending AICc model weight: hazard rate (A), half normal with
adjustment (D).
Viewshed calculations indicated that up to 29.13% of the total
area across all observation points may have been unavailable due
to topographic obstructions. Because this primarily affected avail-
able survey area in the distant categories rather than at 0–500 m,
was too fragmented to practically delineate areas as unavailable,
and the obstructions were primarily mountainous terrain where
asses and gazelle were unlikely to be, we chose the conservative
approach of including the entire area in the modeling effort rather
than removing large radial wedges from the observation circle
(Buckland et al., 1993). This could have inflated the variance con-
siderably because of drastically reduced sample size and resulted
in less informative abundance estimates.
4.2. Asiatic wild ass abundance

Wild ass group size ranged 1–786 animals and encounter rate
ranged 1.02–2.12 groups/km, with the highest direct count occur-
ring just before sunset and the lowest direct count occurring just
after sunrise (Table 1). Nevertheless, a single average group size
estimate across surveys was strongly favoured over separate esti-
mates for each survey (AICc evidence ratio = 28.0). A single mean
encounter rate for wild ass groups across the 6 surveys was pre-
ferred to separate estimates (AICc evidence ratio = 22.9); conse-
quently, we used pooled data weighted by survey effort for wild
ass to estimate group size, encounter rate, and detection function.

Distance data were obtained for all 432 wild ass groups
detected during the 6 surveys, but only 297 groups were detected
at distances <5000 m. With 5 distance bins, none of the models fit
adequately (P < 0.001 for all detection function shapes; Fig. 2).
With the outermost distance bins pooled, model fit improved
slightly, but adequate fit was still rejected for all detection function
shapes (P = 0.394 for the best fitting model). However, with data
a point count in the Great Gobi B Strictly Protected Area, Mongolia, August 2010,
cosine adjustment (B), half normal (C), and half normal with simple polynomial



Table 2
Model ranking and estimates of Asiatic wild ass (Equus heminous) abundance from a point count in the Great Gobi B Strictly Protected Area, Mongolia, August 2010. Models are
ranked by change in corrected Akaike’s Information Criteria (AICc; Di) and AICc weight among all candidate models (wi). Goodness of Fit (GOF) is shown as probability (P).

Detection function Di wi Estimate SE CV GOF P

Hazard rate, No. adjustments 0.00 44.1 5505 1145 20.8 0.404
Half normal, cosine adjustments 1.08 25.7 6368 1318 20.7 0.189
Half Normal, No. adjustments 2.02 16.1 5026 869 17.3 0.084
Half normal, polynomial adjustments 2.29 14.0 5657 1816 32.1 0.079
Model weighted 100.0 5671 1324 23.3
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truncated at 5000 m, all 4 detection function shapes fit adequately
and each received some support from the data (Table 2); conse-
quently, we use model-weighted averaging of the 4 models with
truncation at 5000 m to estimate the final population abundance
as 5671 wild asses (95% CI = 3611–8907) with CV = 23.3%.

In the most strongly supported model (unadjusted hazard rate),
the overall detection probability was just 18.4% (7.8% CV) and
effective detection radius was 2142 m (3.9% CV). Mean encounter
rate was 1.00 groups/km (10.2% CV). After truncation at 5000 m,
cluster size regression was not supported (P = 0.559); therefore
we used the estimated mean cluster size of 6.5 (11.7% CV). Uncer-
tainty in the abundance estimate was mostly due to estimation
uncertainty in the cluster size (45.5% of the variance), followed
by the encounter rate (34.4%), and the detection function (20.1%).
4.3. Goitered gazelle abundance

Gazelle group size ranged 8–48 animals and encounter rate ran-
ged 0.16–0.96 groups/km (Table 1). There was strong evidence for
differences in both group size and encounter rate by survey occa-
sion. The temporal pattern for both parameters confirmed field
observations that gazelle were typically active in the cool morning
hours and more difficult to observe while bedded during hot after-
noon hours (Table 1). Imperfect visibility at even the closest dis-
tance would invalidate the assumptions of distance sampling and
could produce negatively biased estimates of group size and
encounter rate. The evidence ratios supporting the use of 2 sepa-
rate means (2 morning surveys at 0700 h and 0900 h; versus the
other 4 surveys) for encounter rate was preferred over 6 individual
means (AICc evidence ratio = 3.41) and over a single mean (AICc

evidence ratio = 5915). Two means were preferred for group size
over 6 separate means (AICc evidence ratio = 68.86) and over a sin-
gle mean (AICc evidence ratio = 11.07). Given the observed behav-
ior pattern and statistical evidence, we estimated group size and
encounter rate using pooled data for the 2 occasions during morn-
ing survey periods (mean group size = 5.16 and encounter
rate = 0.84).

Of the 148 gazelle groups detected, 84 occurred during the 2
morning survey occasions and 71 of these were at distances
<5000 m. For the 3 alternative ways of handling the farthest dis-
tance categories, both the hazard rate detection function and the
half normal with a cosine adjustment term fit adequately, but the
remaining 2 detection function shapes did not (Table 3; Fig. 3).
Table 3
Model ranking and estimates of goitered gazelle (Gazella subgutturosa) abundance from a p
are ranked by change in corrected Akaike’s Information Criteria (AICc; Di) and AICc weigh

Detection function Di wi

Hazard rate, No. adjustments 0.00 58.5
Half normal, cosine adjustments 0.69 41.5
Half normal, No. adjustmentsa 4.06
Half normal, polynomial adjustmentsa 4.52
Model weighted 100.0

a Not included in model weighted average results due to poor fit and AICc > 4.0.
Consequently, we used model averaging for the top 2 right-trun-
cated models to arrive at our best estimate of gazelle abundance
with an overall detection probability of 8.9% (CV = 29.6%). Effective
detection radius was 1488 m (CV = 14.8%). The cluster size regres-
sion was not significant (P = 0.778), so mean cluster size of 5.7
(CV = 13.4%) was used in the abundance computation. Mean
encounter rate was 0.72 gazelle groups/km (CV = 2.7%). Most of
the variance in the abundance estimate was due to the detection
probability estimate (82.3%); cluster size contributed 17.0% and
encounter rate merely 0.7% of the variance. Our best model-
weighted estimate of abundance was 5909 gazelle (95% CI =
3762–9279) with CV = 31.8%.
4.4. Observer bias

Of 336 known wild ass groups detected, 23.2% were missed by
the first observers and 25.0% were missed by the second observers,
with an average effect of 24.1% more groups being detected by hav-
ing two observers at each point. Likewise, of the 130 known gazelle
groups detected independently, 37.7% of known gazelle groups
were missed by the first observers and 25.4% were missed by the
second observers, with an average effect of 31.6% more groups
being detected by having two observers at each point.

Mixed-effect logistic regression of detection probability by indi-
vidual observers (AUC = 0.804) indicated group size was an impor-
tant factor in their ability to detect wild asses (z = 3.524, P < 0.001),
which supports the 45.5% variance attributed to uncertainty in
group size reported above. The poorest observer detected 66.6%
(95% CI = 66.1–67.1) of 3-ass groups (median group size) and the
best observer detected 98.3% (95% CI = 98.3–98.3) of 3-ass groups;
however, detection probability for all observers increased with
group size and nearly all large groups (>40) were seen (Fig. 4).
There was no difference in detection of wild asses in open or shrub
vegetation (z = �0.016, P = 0.987), exhibiting lying, standing or
running behavior (z = 0.018, P = 0.985), or due to angle of the sun
in relation to the observation direction (z = �0.337, P = 0.706).
Group size was not a factor in detection of gazelles (z = �0.450,
P = 0.652), which is reflected in the 0.7% of variance reported
above; likewise, there were no statistical differences in gazelle
detection in open or shrub vegetation (z = 0.796, P = 0.426), exhib-
iting lying, standing or running behavior (z = 0.140, P = 0.889), or
due to angle of the sun in relation to the observation direction
(z = �0.098, P = 0.921). There were no cases of shrub cover at
oint count in the Great Gobi B Strictly Protected Area, Mongolia, August 2010. Models
t among all candidate models (wi). Goodness of Fit (GOF) is shown as probability (P).

Estimate SE CV GOF P

6519 2125 32.6 0.193
5047 1124 22.3 0.108
4090 1107 27.1 0.010
3590 640 17.8 0.008
5909 1882 31.8



Fig. 3. Detection functions (bold lines) fit to goitered gazelle (Gazella subgutturosa) data from a point count in the Great Gobi B Strictly Protected Area, Mongolia, August 2010,
shown in order of descending AICc model weight: hazard rate (A), half normal with cosine adjustment (B).

Fig. 4. Detection probability as a function of Asiatic wild ass (Equus hemionus)
group size (N = 336 groups) estimated by mixed-effect logistic regression (black
line) of 45 independent observers (gray lines) in a survey of the Great Gobi B Strictly
Protected Area of Mongolia. Groups (s) are offset by a small random value to help
visually distinguish points. Eleven groups of 92–786 asses are included in the
model, but are too large to appear in the figure.
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g(0), indicating that while 46.1% of wild ass groups and 43.3% of
gazelle groups were observed in shrub vegetation, any effect of
obscuring vegetation was incorporated into the detection function.
The status of observer as either a wildlife professional or not had
no influence on detection probability for either species (wild ass:
z = 1.274, P = 0.203; gazelle: z = �0.262, P = 0.793).
5. Discussion

Estimating wildlife abundance using terrestrial-based methods
is challenging and fraught with logistical constraints that often
produce poor estimates. This can result from an insufficient pro-
portion of the inference area being sampled, poor access resulting
in nonrandom transect placement, high variability in group size
and encounter rate, wildlife movement prior to detection, and a
number of factors influencing observation error. Such problems
have been evident in previous surveys of wild ass and goitered ga-
zelle in the Gobi (Feh et al., 2001; Reading et al., 2001; Kaczensky
et al., 2007; Lkhagvasuren, 2007; P.K., unpublished data). We
overcame some of these challenges by using a community-based
large-scale point survey across the Great Gobi B SPA and our best
estimate of these populations was 5671 (95% CI = 3611–8907) wild
ass and 5909 (95% CI = 3762–9279) goitered gazelle. The coeffi-
cient of variation for both estimates was still somewhat higher
than desired (23.3% for asses, 31.8% for gazelle), but was more
precise for asses than many previous attempts to estimate this
population (P.K., unpublished data).

Terrestrial-based distance sampling, especially in the point-
count form, has historically been used for estimating abundance of
avian fauna (Buckland, 2006). Terrestrial applications in line tran-
sect form have been applied to large mammal species ranging from
primates (Plumptre, 2000) to deer (Marques et al., 2001) to ele-
phants (Barnes, 2002), but most surveys have been conducted using
few observers traversing fixed transects along roads and trials. The
difficulty in adequately sampling from large spatial areas can be a
limitation for terrestrial-based surveys, but we demonstrate here
that it is feasible and can be a useful tool for estimating large mam-
mal abundance across vast terrestrial areas. We also demonstrate
that the point-count form can overcome some of the problems pre-
viously experienced with terrestrial distance sampling.

Examples of large, collaborative, terrestrial wildlife surveys are
scarce in the literature, but are undoubtedly more common in
practice. Jachmann (2002) and Msoffe et al. (2009) both compared
smaller-scale terrestrial surveys with aerial surveys and reported
higher precision in terrestrial applications. Barnes (2002) also
demonstrated advantages of terrestrial counts over aerial counts
for rare species. We could find few examples of landscape-scale,
community-based, large terrestrial mammal abundance surveys.
The Great Mara Count, which incorporated 84 people directly
counting 43 species over the 2212 km2 area at Maasai Mara Re-
serve, Kenya (Reid et al., 2003), and the Zambezi Valley, Zimbabwe
surveys that incorporated indigenous peoples to perform line tran-
sect surveys across 2044 km2 (Gaidet et al., 2003), were monumen-
tal efforts that addressed areas only one-fifth of the size of Great
Gobi B SPA. The Ndoki-Likouala Conservation Landscape survey
for elephants, gorillas, and chimpanzees across 28,000 km2 of the
Congo, incorporated nearly 100 observers to successfully collect
line transect data in difficult forest habitat (Stokes et al., 2010).

Traditional distance sampling methodology relies on the
assumption that detection probability is entirely a function of dis-
tance from the observer to the animal, and disregards many other
sources of heterogeneity (Buckland et al., 1993). Such heterogeneity
can inflate variance, and thus it is not uncommon to stratify the
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data in some meaningful way, such as modeling habitat selection.
This can partially mitigate the encounter rate variance problems
that would result from assuming density is constant across space.
Unfortunately, we could find no statistical explanation for distribu-
tion of wild asses in our study at the time of our survey. This is likely
a common problem in assessing abundance of gregarious ungulates
because their distribution may be behaviorally influenced by con-
specifics rather than discrete functions of the environment, at least
on a short temporal scale. However, as more surveys occur it may
be possible to use past survey data to stratify a priori for new sur-
veys and thus improve the variance attributed to encounter rate.

Observer error can be an important source of bias and the sam-
pling method we present here increases the likelihood of this
because it incorporates a large number of observers with unknown
and potentially widely varying abilities. Empirical data on observer
bias arising from stakeholder participation in such data collection
is scarce (Reed, 2008). Our analyses found a 31.7% gap in detection
probability between the worst and best observers at median wild
ass group size and 19.1% at median gazelle group size. The paired
approach we used overcame some limitations of individual observ-
ers and increased our sample size, though none of the covariates
we investigated, aside from group size for wild asses, quantified
the heterogeneity present. The lack of difference in detection prob-
abilities between wildlife professionals and local observers is
unsurprising because while the professionals may have been better
trained and had more experience in wildlife surveys, the local
pastoralists likely had equivalent experience looking carefully at
livestock across vast distances.

Reactivity of animals to observer presence has been a common
problem for terrestrial-based distance sampling surveys. Koenen
et al. (2002) experienced disturbance of deer due to presence of
observers and Southwell (1994) reported disparity between mac-
ropod populations, with considerable evasive behavior among
animals in areas not conditioned to human presence. Among the
past wild ass counts, Feh et al. (2001), Lkhagvasuren (2007), and
P.K. (unpublished data), all reported evasive behavior of wild asses
to vehicles and observer presence. We also experienced this as we
drove through the park, but observers did not report asses detect-
ing and evading them at the observation points. We attempted to
minimize this problem in our survey by keeping observers in place
overnight and for multiple surveys during daylight hours. Observ-
ers only recorded 6.8% of gazelles and 3.3% of wild asses running,
whereas during previous line transects 71% of gazelles and 57%
of wild asses were observed running (P.K., unpublished data). Eva-
sive behavior was not noted by any of the observers, and although
the detections for wild ass at 0–500 m were lower than for 500–
1000 m, the difference was not enough to reject the adequacy of
the model fit. The steep detection function for gazelle supports
the assumption that this species also did not avoid observers; how-
ever, it cannot rule out the possibility of attraction to the observers.
Such behavior was not observed or expected.

While our study addresses the larger problem of how to estimate
animal abundance in remote areas, it also specifically aimed to
determine wild ass and gazelle abundance in the Great Gobi B SPA,
due to Mongolia’s importance for the survival of both species. From
a line transect survey in 2003, Lkhagvasuren (2007) reports an esti-
mated 2095 ± 110 asses in Khovd aimag, within which Great Gobi B
SPA is the only population. This was a single transect survey con-
ducted from a road with perpendicular distances used to determine
the strip width, but few groups were encountered. Asses may have
systematically moved away from the transect, which would create
a strong negative bias on the estimate (Buckland et al., 1993) or
the single track could have missed a large portion of the population.
The most comprehensive data for these ungulate populations con-
sists of 33 counts conducted from systematic road surveys of the en-
tire park in 2003–2010, which detected an average of 1262 wild
asses and 410 gazelle per survey; however, estimates varied widely,
ranging 1707–45,040 asses (average CV = 50.3%) and 2 564–10,766
gazelle (average CV = 26.8%) suggesting unmeasured bias, such as
due to evasive behavior (P.K., unpublished data).

Our important improvement over these previous surveys is that
we were able to adequately meet the statistical assumptions of
distance sampling theory by overcoming the problem of move-
ment prior to detection, and facilitated the use of customized
rangefinders that could accurately measure distance. Our esti-
mates are conservative, however, because while distance sampling
theory accounts for the numerous and largely unknown sources of
heterogeneity that may influence detection as distance increases
from the observer, we also know that 29.1% of the available survey
area may not truly have been available to observers. Although
groups missed due to obstacles, such as those obscured by vegeta-
tion or rock outcroppings, would be accounted for by the measured
detection function, the variation among points in the visible area
would, in theory, increase the variance in the detection rate and in-
flate our variance estimates. However, the contribution to the total
variance from the encounter rate was a modest portion of the total
variance for wild asses and very small for gazelle, so the effect
appears to be modest in our survey. Variance might be reduced
by eliminating all data in wedge-shaped portions of each circle
where an obstacle prevented visibility to the maximum distance;
however, this would eliminate large numbers of observations that
occur inside those wedges but at distances closer than the obsta-
cles. The increase in variance from the reduction in sample size
would offset the improvements resulting from controlling for dif-
ferences in visible area among points.

Further improvements in the precision of these surveys could be
made by reducing the uncertainty in the probability of detection for
gazelle and mean group size for wild asses by increasing the number
of groups seen. In addition, increasing the average detection proba-
bility within each circle would improve the detection function com-
ponent of variance. Decreasing the survey radius negatively impacts
the first goal, while improving the second. However, both objectives
could be met by surveying a larger number of smaller circles. Based
on the best-fitting detection function for wild asses, reducing the
survey radius to 3000 m would increase the average detection prob-
ability by a factor of 2.16 and be more conducive to meeting range-
finder constraints. Surveyed area per circle would be decreased by a
factor of 0.36, but this survey area could be doubled by doubling the
number of survey points. The estimated effect on the total number of
wild ass groups seen would therefore be 1.56. In other words, this
design change would increase the sample size by 56% (53% for ga-
zelle), while reducing variance in the estimated detection function
by dropping more distant observations with low detection probabil-
ities. Increasing the number of distance categories to six 500 m-wide
bins would permit more adjustment terms to be fitted, potentially
improving the precision further.
6. Conclusions

The need for improved sampling and analytical techniques for
estimating wildlife abundance is critical to addressing conservation
and management issues (Elphick, 2008). We have demonstrated
that large community-based distance sampling surveys can be
effective at generating informed estimates of animal abundance,
despite the wide range of experience, knowledge, and capabilities
of the local observers, and the lack of technical equipment. While
such a large number of observers creates opportunity for observa-
tion and data collection error, this technique was robust at absorb-
ing such errors and allowed for plasticity in analyses because we
used paired observers, a large number of observation points, and
multiple surveys per point. Perhaps the most important aspect of
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our study is that it actively engaged the people whose livelihoods
are inextricably tied to the area of interest with the science behind
conserving the resources that exist there. Accurately estimating
abundance is an essential step toward developing and implement-
ing species conservation plans, mitigating human-wildlife conflict,
and allowing sustainable harvest. The relationship between exten-
sive pastoral land-use and conservation of an endangered and a vul-
nerable species in the Great Gobi B SPA provided an opportunity to
engage local pastoralists as partners in conservation and to develop
a tool that has far-reaching implications for large mammal conser-
vation. Community participation in this single survey is not likely to
measurably increase conservation action, but using the technique
repeatedly over time to generate regular population estimates can
provide a sustainable critical framework for integrating local people
into management and conservation initiatives.
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