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Abstract-Two toxic-unit models that estimate the toxicity of trace-metal mixtures to benthic communities were compared. The chronic 
criterion accumulation ratio (CCAR). a modification of biotic ligand model (BLM) outputs for use as a toxic-unit model, accounts for the 
modifying and competitive influences of major cations (Ca2+, Mg2+, Na+. K+. H+), anions (HC03. CO~-,SO~-, Cl-, S2-) and 
dissolved organic carbon (DOC) in determining the free metal ion available for accumulation on the biotic ligand. The cumulative 
criterion unit (CCU) model, an empirical statistical model of trace-metal toxicity. considers only the ameliorative properties of Ca2+ 
and Mg2+ (hardness) in determining the toxicity of total dissolved trace metals. Differences in the contribution of a metal (e.g., Cu. Cd, 
Zn) to toxic units as determined by CCAR or CCU were observed and attributed to how each model incorporates the influences of 
DOC. pH. and alkalinity. Akaike information criteria demonstrate that CCAR is an improved predictor of benthic macroinvertebrate 
community metrics as compared with CCU. Piecewise models depict great declines (thresholds) in benthic macroinvertebrate 
communities at CCAR of I or more, while negative changes in benthic communities were detected at a CCAR of less than I. We 
observed a 7% reduction in total taxa richness and a 43% decrease in Heptageniid abundance between background (CCAR = 0.1) and the 
threshold of chronic toxicity on the basis of continuous chronic criteria (CCAR = 1). In this first application of the BLM as a toxic-unit 
model, we found it superior to CCU. Environ. Toxico!. Chern. 2010;29:2432-2442. © 2010 SETAC 
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Elevated concentrations of acid and trace metals in surface toxic action decreases the amount of metal bound to those sites, 
water draining mineralized and historically mined lithologies thus ameliorating toxicity ([5,11-13]; http://www.hydroqual.­
are common in Colorado, USA [1,2]. Exposure to elevated comlwr_blm.html; [14]). Because each individual trace metal 
concentrations of trace metals adversely affects aquatic pop­ interacts with these modifying water-quality parameters and 
ulations and communities [1]. Differential sensitivities of indi­ sites of toxic action differently to form a variety of metal 
viduals to trace metals result in population-level effects that species, no universal way to quantify the bioavailability and 
culminate in an assemblage shift from a sensitive to a metal­ toxicity of trace metals exists [6]. 
tolerant community [1,3]. These properties of benthic macro­ More frequently than not, streams are impaired by a mixture 
invertebrate communities make them useful for evaluating the of trace metals at chronic concentrations that act additively to 
ecological effects of trace-metal pollution in streams. cause toxicity to aquatic organisms [1]. The cumulative crite­

Trace-metal uptake by aquatic organisms can occur by rion unit (CCU) model is a toxic-unit approach that predicts 
association with sediment, directly from the water column, additive toxicity of trace-metal mixtures to aquatic organisms. 
or through dietary exposure [4]. However, total recoverable The CCU relates the total dissolved concentration of a trace 
metals (i.e., the sum of dissolved, colloidal, and solid metal that metal to the ambient water quality criterion continuous con­
can be liberated via extraction with mineral acid) from a water centration (CCC) for that metal. The criterion for each metal is 
sample are not good predictors of toxici ty to aquatic organisms hardness-adjusted to account for the protective effect of Ca2+ 
[5-7]. Current regulatory models treat the total dissolved metal and Mg2+ using an equation derived from empirical laboratory 
and the dissolved free metal ion as the primary causes of toxicity observations [7]. Incidentally, in these observations it was 
in aquatic organisms [7,8]. found that pH and alkalinity co-varied with hardness and, as 

The bioavailability of a trace metal is affected by a suite of a result, these hardness adjustment equations indirectly account 
constituents found in surface water [6]. The activities of free for the role of pH and alkalinity (pH, alkalinity, and hardness are 
metal ions are controlled by factors including pH and alkalinity covariates) on trace-metal toxicity. However, this is an empirical 
[9]. Interactions with dissolved organic carbon (DOC) and model and not a mechanistic approach to approximating the 
major anions (e.g., HC03, CO~-, Cl-) decrease the concen­ toxicity of trace metals to aquatic organisms, making it inappro­
trations of trace metals available to cause toxicity [10]. Com­ priate for water in which pH, alkalinity, and hardness do not co­
petition with major cations (e.g., Ca2+, Mg2+) for the sites of vary [8]. More importantly, these correction factors also do not 

adjust for the role of other aqueous constituents found in surface 
waters (e.g., DOC, Cl-, SO~-) that also may play an important 
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ion, to aquatic organisms (e.g., Cladocera, fish) [11-13]. 
Coupled geochemical speciation models (CHESS and WHAM 
V) are used to quantitatively account for the influence of DOC 
and major cations and anions on dissolved trace-metal bioavail­
ability [10,14]. Empirical data demonstrate that a constant 
amount of toxicity results from a critical accumulation of a 
free metal ion on an organism's respiratory surface, which is 
called the biotic ligand [5,11-13]. Thus, the BLM calculates the 
fraction of the total dissolved trace metal (free metal ion) in a 
water sample that is available to accumulate on the biotic 
ligand. Toxicity is predicted when the ratio of metal accumu­
lated on the biotic ligand exceeds the amount observed to cause 
mortality to 50% of a population of standard test organisms. 
Because the BLM can predict the concentration of metal 
at which 50% mortality occurs to a population of standard 
test organisms, usually within a factor of 2, the U.S. Environ­
mental Protection Agency (U.S.EPA) has adopted the model 
to establish site-specific water-quality criteria for Cu [8]. 
Although BLM models for Cd and Zn (metals of interest 
in this investigation) as well as for other metals have been 
developed, these models currently are not employed for regu­
latory purposes. 

Biological assessments such as the Environmental Monitoring 
Assessment Program, Regional Environmental Monitoring 
Assessment Program, Wadable Streams Assessment, and the 
current study, the Central Colorado Assessment Program, are 
conducted at large spatial scales (e.g., continental United States, 
Colorado, the central Colorado Mountains) over which climate, 
vegetation, and geology change from site to site. Commensurate 
with these changes in landscape characteristics are changes in the 
concentrations of major cations, anions, and DOC that alter the 
bioavailability of contaminants in aquatic ecosystems [2,15,16]. 
Regional-scale biological assessments of trace-metal contamina­
tion would benefit from a model that incorporates site-specific 
variation in aqueous chemistry to more precisely approximate the 
bioavailable fraction of trace metals to aquatic organisms [17,18]. 

The BLM is capable of modeling the bioavailable fraction of 
dissolved trace metals in surface water. However, the BLM was 
designed to predict acute toxicity (Le., 48-h concentration of 
metal at which 50% mortality occurs) to fish and was empiri­
cally calibrated to predict toxicity to aquatic invertebrates 
(Le., Daphnids) [19]. As a result, some of the underlying 
mechanisms, although robust, are not specific to the physiology 
of aquatic invertebrates [19]. For example, the current BLM 
may not appropriately model Ca2+ and Mg2+ in competitive 
interactions with trace metals for the biotic ligand in aquatic 
invertebrates [19]. The primary assumptions are that all aquatic 
organisms have a biotic ligand that responds to trace metals in 
the same general way and that the biotic ligand is the primary 
pathway of toxicity. However, the BLM has not been tested to 
determine whether the criteria set by the model are protective of 
indigenous organisms under field conditions. 

Applied as intended, the BLM is not especially useful for 
bioassessment. The primary output of the BLM (concentration 
of metal at which 50% mortality occurs) is not ecologically 
meaningful, because it does not describe possible consequences 
to higher levels of biological organization (e.g., populations, 
communities, ecosystems) [20]. Neither does the model predict 
the effects of metal mixtures on aquatic communities, a sit­
uation more common in areas influenced by acid rock drainage 
[1,2]. If the BLM is to be employed to set site-specific water­
quality criteria protective of aquatic communities, it should be 
capable of predicting the responses of natural populations and 
communities in streams [21]. 

We have developed a method that uses the BLM for the 
purpose of ecological assessment of trace-metal pollution in 
natural systems. We developed a toxic-unit model of additive 
trace-metal toxicity derived from BLM outputs and compared it 
with another toxic-unit model, CCU. This new model, the 
chronic criterion accumulation ratio (CCAR), is derived from 
BLM outputs, thereby incorporating current theory about the 
interactions between aqueous constituents (i.e., hardness, DOC, 
pH) that affect trace-metal toxicity and accumulation of bio­
available trace metals on the respiratory surface of aquatic 
organisms. In contrast, the CCU accounts only for the influence 
of hardness on trace-metal toxicity through the use of empirical 
equations derived from single-species toxicity tests. 

The primary objective of this research is to explore the use of 
the BLM as a bioassessment tool to predict responses of benthic 
macroinvertebrate communities to trace metals in streams 
throughout Colorado. We make comparisons between this 
new BLM-derived estimate of trace-metal toxicity and the 
model of additive toxicity on the basis of hardness-adjusted 
chronic criterion values. Cadmium, Cu, and Zn are the metals of 
interest in this investigation because they have been identified 
as compounds of concern for this region by previous research­
ers, they are common to the mineralogy of the region, and they 
have BLM models developed and commonly available [1,2,13] 

MATERIALS AND METHODS 

Development of toxic-unit models 

Because most trace-metal-contaminated streams are influ­
enced by a mixture of metals at chronic concentrations, a 
measure of chronic toxicity resulting from metal mixtures 
was necessary. Water-quality criteria for individual metals 
represent concentrations that, when exceeded, likely harm 
aquatic organisms. Because criterion values are established 
for individual metals, alternative models are necessary to 
estimate toxic effects of trace-metal mixtures. Although most 
research investigating the toxicity of trace-metal mixtures has 
focused on acute effects, previous studies have shown additive 
effects at chronic concentrations [1,12,19]. The CCU was used 
to evaluate toxicity resulting from trace-metal mixtures and 
assumes that interactions among trace metals are additive. The 
CCU is defined as the ratio of the measured trace-metal con­
centration to the U.S. EPA hardness-adjusted chronic criterion 
value, summed for each metal (Cd, Cu, Zn) ata location [7]. The 
cumulative criterion unit is calculated as: 

",m
CCU = L.J""":' (I) 

i Ci 

where mj is the total dissolved trace-metal concentration and Ci 

is the hardness-adjusted continuous chronic criterion (CCC) 
value for the ith metal. Because water hardness affects toxicity 
and bioavailability of some trace metals, criterion values for Cd, 
Cu, and Zn were modified to account for variation in water 
hardness among streams [7]. For example, at a water hardness of 
100 mg/L (CaC03), criterion values for these three trace metals 
would be 0.25, 9.0, and 120 J.LglL, respectively. The CCC is 
developed by averaging toxicity test data across species and 
genera to determine a concentration of trace metal that will be 
protective of 95% of the species at a specific site. Therefore, a 
CCU value of 1.0 or less represents a mixture of metal concen­
trations that should be protective of aquatic communities. This 
model is a common approach for assessing toxicity caused by 
metal mixtures and will be used to evaluate the BLM predictions. 
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Because the BLM predicts acute tOXICIty resulting from 
individual trace metals, it must be modified to account for 
metal mixtures and for comparison with the CCU model. The 
chronic criterion accumulation ratio (CCAR) is a procedure that 
modifies BLM outputs for use as a toxic-unit model similar to 
the CCU model and assumes additive toxicity of trace-metal 
mixtures on the basis of BLM-predicted outputs. The CCAR is 
defined as the ratio of the BLM-calculated accumulated free 
metal ion on the biotic ligand to that accumulated on the biotic 
ligand in water at the U.S. EPA criterion value, summed for 
trace metals of interest at a location. The CCAR is calculated as 
follows: 

CCAR = L BLM calculated site ~pecific [gill metal] (2) 

includes most of the Rocky Mountains in Colorado and repre­
sents approximately 20% of the land area of Colorado (Fig. I). 
This area includes a geographic feature called the Colorado 
Mineral Belt that has been exploited for the past 150 years for its 
mineral resources. The sample sites in the current study are at 
high altitude, ranging from 2,330 to 3,550 meters above sea 
level. The climate of the study area is temperate continental, 
with generally more than 50 cm precipitation per year, espe­
cially at higher altitudes. Much of this precipitation occurs as 
snow in winter or as rain, primarily between June and August. 
Vegetation ranges from deciduous cover at lower altitudes and 
in riparian zones, to conifer forests, and at the highest altitudes, 
open tundra. Soils within the study area are thin (rarely greater 
than 10 cm) to nonexistent, the latter occurring in areas domi­

i BLM calculated [gIll metal] at CCC nated by bedrock outcrops. Thicker (up to a meter or more) 
immature soils, as well as unconsolidated overburden, occur 

where BLM calculated site-specific [gill metal] and BLM 
calculated [gill metal] at CCC are measurements developed from 
BLM outputs. The BLM calculated [gill metal] is the BLM 
predicted accumulation of the ith trace metal on the biotic ligand 
(gill surface), calculated by running the BLM in speciation mode, 
using site-specific water quality parameters (temperature, pH, 
DOC, alkalinity, Caz+, Mgz+, Na+, K, SO~-, SZ-,Cl-). The 
BLM calculated [gill metal] at CCC is the BLM predicted 
accumulation of the ith trace metal on the gill surface, calculated 
using the "normalization chemistry" water-quality parameters 
from Table I ofthe U.S. Environmental Protection Agency water 

intermixed at lower elevations and along streams. 
Small catchments (first to third order) predominantly under­

lain by a single rock-type categorized on the basis of lithology 
were targeted for sampling. The purpose of this sampling 
strategy was to target a large variety of water-quality conditions 
resulting from interaction with the underlying rocks to test the 
BLM and develop lithologic-specific geochemical baselines 
[2,22]. This approach uses geological principles to identify 
locations expected to have low metal concentrations and loca­
tions in which metal concentrations are expected to be high. 

quality criterion document [8] and the ith metal CCC [7]. A 
CCAR of 1.0 or less represents a mixture ofmetal concentrations 
at or below CCC, accounting for the modifying effects of several 
water-quality parameters known to alter trace-metal bioavail­
ability, and protective of an aquatic community. We used CCAR 
to predict toxicity to benthic communities, individual species of 
which have differential sensitivity to trace metals. By using the 
CCC, a value derived to protect aquatic communities, rather than 
a species-specific response point such as the amount observed to 

Each catchment was characterized as to the presence or absence 
of geological processes that influence the acidity and trace 
metals found in catchment bedrock (Le., hydrothermal alter­
ation and ore deposit formations) and the presence or absence of 
mining. Further details about how hydrothermal alteration and 
ore deposits were used for site selection can be found in Schmidt 
et al. [23]. 

Geochemical and benthic macroinvertebrate samples were 
collected from 153 catchments during base-flow conditions in 
the summers of 2003 (n = 20), 2004 (n = 41), 2005 (n = 38),

cause mortality to 50% ofa population of standard test organisms 
for Daphnids or fathead minnows, we can predict toxicity more 

2006 (n = 31), and 2007 (n = 23) (Fig. 1). All geochemical and 
benthic macroinvertebrate samples were either collected simul­

generally to the entire benthic community. Specifics on model 
constants and assumptions can be found in HydroQual [13]. 

Study area and sampling strategy 

taneously, or in a few cases, within a lO-d period of each other. 
Geographic Information Systems (ArcGIS 9.2) were used to 
delineate catchments for sampling, and digital elevation models 
(30 x 30 m) were used to define catchment boundaries, area, 
slope, and relief ratio [24]. The Colorado Vegetation Model 
(http://wamercnr.colostate.edu/,,,davetJcvm.html; 30 m x 30 m 

The study area is central Colorado from Wyoming to New 
Mexico, USA, an area of approximately 54,000 kmz that 

Table I. Benthic macroinvertebrate metrics selected on the basis of performance in past regional-scale assessment of the effects of metals on stream 
communities 

Metrics Clements et al. [11]a Crane et al. [l7]b Griffith et al. [33]C Hirst et al. [1st Malmqvist et al. [32]" 

Richness metrics 
Total taxa richness 
EPT f richness 

x 
X X 

X 
X 

X X 
X 

Abundance metrics 
Total abundance 
Mayfly abundance 
Heptageniidae abundance 

X 
X 
X 

X X 

Functional metrics 
Scrapper abundance 
Predator abundance 

X 
X 

a Metrics distinguished different levels of metals contamination based on cumulative criterion unit (CCU), Colorado Rocky Mountains, USA.
 
b Metrics used to assess European Water Framework Directive Quality Standards for dissolved metals in England and Wales, United Kingdom.
 
C Metrics that detect differences between sites that were above or below environmental quality standards for water or sediment, Colorado Rocky Mountains,
 

USA. 
dMetrics were significantly correlated with CCU metric in Wales and Cornwall, United Kingdom. 
e Metrics detected differences in streams contaminated with metals in Dalarna Provence, Sweden. 
f EPT= Ephemeroptera + Plecoptera + Trichoptera. 
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Fig. 1. Map of the United States showing the central Colorado study area in the Rocky Mountains from New Mexico to Wyoming. 

resolution) was used to eliminate areas of development (i.e., 
agricultural, residential, and commercial development) to make 
sure we targeted catchments that were not influenced by anthro­
pogenic factors other than mining. 

Physicochemical parameters 

Current velocity was measured with the U.S. Geological 
Survey Price pygmy current meter and depth were measured 
across the stream channel at 15 to 25 intervals, depending on 
stream width. Stream discharge (f3/S) was calculated using 
the continuity equation. Stream substrate size measurements 
and densiometer (Forest Densiometers, Model A) readings of 

canopy cover were collected from each location where benthic 
samples were collected from 2003 to 2005. After the third year 
of the study, we screened the data (Le., exploratory statistical 
analysis) to determine whether local habitat variables were 
important determinants of benthic macroinvertebrate commun­
ity structure. Stream substrate size (DlO, D50, D95, frequency 
of all size classes from 22.5 to 180 mm) and canopy cover 
contributed little to no descriptive power in statistical models 
predicting biological responses (Bray-Curtis similarity); these 
two habitat parameters were not collected in the final two years 
of the study. 

Water samples in 2004 to 2007 were collected using methods 
described in Wilde et al. [25] to meet the requirements of the 
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BLM [13,25J. Routine water-quality parameters (temperature, 
conductivity, and pH) were measured in the field using a Horiba 
D-24 combination meter [26]. Meters were calibrated at the 
beginning of each day with certified standards and checked 
periodically throughout the day. All water samples processed 
in the laboratory were filtered through an Acrodisc Premium 
25-mm Syringe Filter with 0.45-j.Lm nylon membrane at the site 
and stored at 4DC until analyzed. Water samples for DOC were 
filtered through a 0.70-j.Lm glass-fiber filter, acidified with 
concentrated hydrochloric acid (12 molar) to a pH of less than 
2, and stored in baked amber glass bottles. A Shimadzu TOC­
5000A total organic carbon analyzer was used to measure DOC. 
Dissolved trace-metal samples were acidified with concentrated 
nitric acid (13 molar) to a pH less than 2 and stored in poly­
ethylene bottles. Samples for anions were collected and stored 
in polyethylene bottles. Water analyses were conducted at the 
analytical laboratories of the U.S. Geological Survey Geologic 
Discipline Laboratory in Denver, Colorado. Concentrations of 
major cations (Na+, K+, Mg2+, and Ca2+) were analyzed by 
inductively coupled plasma-atomic emission spectrometry, 
whereas trace-metal concentrations (Cd, Cu, Zn) were analyzed 
by inductively coupled plasma-mass spectrometry, and major 
anions (Cl-, F-, NO.3, SO~-) were measured by ion chroma­
tography [26]. High concentrations of SO~- (>25 mg/L) were 
determined by inductively coupled plasma-atomic emission 
spectrometry, and alkalinity was determined by titration [26]. 
For metal concentrations below detection, half the detection 
limit was substituted as the value. 

Analysis methods for 2003 differed in that major cations and 
trace metals were analyzed by flame (Zn) and furnace atomic 
absorption (Cd and Cu) spectrophotometry (PerkinElmer model 
372). This analysis was conducted at the Colorado State Uni­
versity Fish, Wildlife, and Conservation Biology Department, 
Fort Collins, Colorado, USA. The detection limits were differ­
ent between sampling periods as follows; Cd (0.0 I j.Lg/L in 2003 
vs 0.02 j.Lg/L in 2004-2007), Cu (Om j.Lg/L in 2003 vs 0.5 j.Lg/L 
in 2004-2007), and Zn (5 j.Lg/L in 2003 vs 0.5 j.Lg/L in 2004­
2007). These detection limits are equal to or lower than those 
commonly reported for field assessments in the literature, and 
well below any previously reported toxic concentrations for 
these metals. These differences in minimum reporting limits 
between 2003 and all other years are unlikely to be meaningful. 

Benthic macroinvertebrate sampling 

Five replicate benthic samples (n = 5) were collected using a 
0.I-m2 Hess sampler (350-j.Lm mesh net) from shallow riffle 
areas «0.5 m). Representative sample localities were selected 
on the basis of the following criteria: location was a riffle or 
run habitat unit, depth was 0.10 to 0.25 (m), and substrate 
was representative of the stream reach. Overlying substrate 
was scrubbed of algae and diatoms, and inorganic debris was 
removed. All individual substrate particles larger than 22.6 mm 
were removed from the Hess sampler and measured along the 
intermediate axis. Underlying substrate was disturbed to a depth 
of approximately 10 cm, and the remaining material was sieved 
using a 350-j.Lm mesh sieve. All organisms retained were 
preserved in 80% ethanol in the field. 

In the laboratory, samples were processed to remove debris 
and subsampled until 300 organisms (±IO%) were removed 
from the sample, using methods described in Moulton et al. 
[27]. Invertebrates were identified to the lowest practical taxo­
nomic level (genus or species for most taxa; subfamily for 
chironomids) [28,29J. The Invertebrate Data Analysis System 
(U.S. Geological Survey, USA) version 4.2.10 was used to 

T.S. Schmidt et al. 

resolve taxonomic ambiguities and reduce the influence of rare 
taxa on this large-scale regional environmental assessment [30]. 
Taxa that were not found to occur in at least 20 sites were 
dropped from analysis, to reduce the influence of rare taxa on 
study results. Ambiguities in community data sets occur when 
closely related specimens are identified at different levels of 
taxonomic resolution. This usually occurs because the variation 
in life history of closely related species results in a wide range of 
individual maturity. Characteristics used to separate species or 
genera are developed from mature specimens and may not be 
present in earlier instars or damaged individuals. As a result, a 
sample may contain a group of individuals from the same 
family, but not all can be identified to the genus level; the 
resulting taxa list may show some identified to genera and 
others only identified to family. When characteristics needed to 
identify an organism to a finer level (for example, species level) 
are not present, assumptions about their identity beyond the 
coarser level (for example, genus level) lead to ambiguities. 
Including ambiguous taxa in a data set can inflate richness or 
other measures of community structure. Ambiguities resulting 
from differing levels of identification were resolved by distrib­
uting individuals identified at coarser levels to finer levels 
dependent on their abundance. 

Means of the five replicate benthic samples, once processed 
in the Invertebrate Data Analysis System as described, were 
used to calculate benthic macroinvertebrate community metrics 
(Table I) [29]. These metrics were selected based on a literature 
review of large-scale (at least 50 locations investigated 
in multiple watersheds) bioassessment studies evaluating 
the effects of metals on benthic macroinvertebrates 
[1,17,18,31,32]. For a comprehensive analysis of stream com­
munities, we sought to include measures of community rich­
ness, abundance, and function. We considered all benthic 
macroinvertebrate metrics that were significantly related to 
metals contamination from these past studies and refined the 
list to include those metrics used in multiple studies or dis­
tinguished between multiple levels of metal contamination in 
the Clements et al. study [I]. 

Data analysis 

All statistical analyses were conducted in R version 2.7.2 
([33]; http://www.R-projecLorg). Scatter plots of the data sug­
gested nonlinear and possibly threshold responses by benthic 
macroinvertebrate communities. Piecewise linear regressions 
[34] fit two linked line segments connected at a threshold where 
an abrupt change in response required a different slope to fit the 
regression. The threshold and 95% confidence intervals were 
estimated using a bootstrap method resampling the raw data 
1,000 times [34]. Akaike information criteria (AIC) values were 
calculated to determine which of the two competing models 
(CCAR or CCU) had the highest probability of being the best 
model [35]. We used a version of AIC (AICc ) that corrects for a 
small sample size. The AICc was standardized by subtracting 
the minimum AICc score from each of the candidate model 
AICc values to derive .:1, and facilitated the ranking of candidate 
models [35]. Akaike weights (w;) were calculated to determine 
the probability of a model being the best model among those in 
the candidate set. For thoroughness, Spearman correlations 
between the two toxic unit models and habitat variables were 
evaluated to determine whether the difference in the predictive 
nature between these two toxic unit models was attributable to 
collinearity with habitat variables. 

Unlike previous research conducted in this region [1,32], the 
current study made an effort to target streams with relatively 



Bioassessment of metals in streams Environ. Toxieol. Chern. 29, 2010 2437 

low contaminations of trace metal. We were interested in 
determining whether effects could be detected at these lower 
metal concentrations. First, data were binned into two catego­
ries of toxic-unit ranges, sample locations with CCAR at least 
0.1 and sample locations with CCAR greater than 0.1 but less 
than or equal to 1.0. These values were selected because 
previous analysis suggests that CCAR = 0.1 is the average 
background value for all catchments in the study area not 
influenced by lithologies with acid-generating capacity or that 
release metals into streams. The upper range (CCAR = 1.0) was 
selected because this value is expected to protect aquatic 
communities [21,23]. This approach eliminates leverage on 
the statistical model caused by obvious declines in benthic 
macroinvertebrate communities at very high metal concentra­
tions. Because nonlinearity and heterogeneity of the response 
variables were observed in the scatter plots and sample size was 
unbalanced (n = 34 vs 74), a nonparametric Mann-Whitney U 
test (p :::; 0.05) was employed to quantify differences between 
categories [36]. Percent differences in mean metric values also 
were calculated. 

RESULTS 

Physicochemical characte ristics 

Habitat characteristics of targeted catchments were typical 
of small to mid-sized headwater streams (Le., Ist to 3rd order) 
of the Rocky Mountains and indicated that anthropogenic 
influences other than mining (i.e., mean area as agriculture = 
0% ± 1 SD, mean area developed; urban and commercial 
development = 0% ± 2 SD) had little direct effect on water 
quality and benthic macroinvertebrate communities (Table 2). 
The large variation observed in some local (e.g., D50, dis­
charge, and percent cover) and landscape-level (e.g., percent 
forest area) parameters were expected because we sampled 
catchments underlain by different lithologies to capture a wide 
range of both chemical and physical differences of streams 
within the study area (Table 2). Spearman correlations (Table 3) 
between the two toxic-unit models and habitat variables were 
weak (r < 0.6), and no differences were found in the pattern of 
intercorrelations, suggesting that differences in the performance 
of the two toxic-unit models were not attributable to collinearity 
with habitat variables. 

Field sites in the current study showed a broad range of 
variation in water quality; however, these values were within 
the range of water-quality parameters used to develop the BLM 

Table 2. Range and mean ± standard deviation (SD) for habitat parameter 
measured in study catchments 

Parameter Range Mean±SD 

Dso (mm)",b 22.6-90 38± 14 
CFSc 0.2-137 11 ± 15 
Cover (%)b,d 1-96 58±29 
Alpine (%)" 0-97 36±28 
Forest (%) 
Agriculture (%/ 

2-95 
0-1 

44±36 
o±o.o 

Developed (%)g 0-2 O±O.O 
Site elevation (m) 2,329-3,535 2,975 ± 287 
Watershed area (km2

) 2-480 36±58 

• Median particle size in millimeters.
 
b Not measured in years 2006 to 2007.
 
C CFS = cubic feet per second.
 
d Percent area obscuring the sky.
 
e Sum of area as bare ground and ice/snow. ,
 
f Sum of area as pasture and hay.
 
g Sum of area as residential or commercial development.
 

Table 3. Spearman rank correlations between habitat factors and toxic-unit 
models' 

Variable CCUb CCARc 

CFSd 0.39 0.39 
Alpine (%)e 0.39 0.44 
Forest (%) -0.39 -0.46 
Agriculture (%)f 0.11 0.04 
Developed (%)g 0.14 0.15 
Site elevation (m) 
Basin area (km2

) 

0.25 
0.25 

0.36 
0.19 

• Italic correlation coefficients were significant at p ::; 0.005 to correct for 
experimentalwise error (i.e., Bonferroni' s adjustment). 

b CCU =cumulative criterion unit. 
C CCAR =chronic criterion accumulation ratio. 
d CFS = cubic feet per second. 
C Sum of area as bare ground and ice/snow. 
f Sum of area as pasture and hay. 
g Sum of area as residential or commercial development. 

(Table 4) [13]. Exceptions included temperature (3-1 8°C), pH 
(3.5-8.5 pH), Cl- (0.04-9.5), and alkalinity (0-141 mg/L), 
which were occasionally less than the specified limits of the 
BLM. 

Comparison of models of trace-metal toxicity 

Calculations of CCU in the current study differ from pre­
vious investigations [1] in that toxicity was estimated using total 
dissolved trace-metal concentrations instead of total metal 
concentrations. However, dissolved metal concentrations were 
only marginally lower than total metal concentrations in the 
current study. Other studies in this region included AI, Fe, Mn, 
or Pb in their calculations of CCU [1,32]. These metals were not 
included in our toxic-unit calculations because BLM models are 
not available for these metals, and therefore no comparisons 
could be made between toxic-unit models. Cadmium, Cu, and 
Zn cause toxicity by disrupting similar physiological processes, 
unlike the other metals, and these metals were observed at low 
concentrations as compared with Cd, Cu, and Zn. Of the four 
metals not included in our CCU calculation, Al and Fe exceeded 
CCC (87 and 1,000 j..Lg/L, respectively) at two (AI) and one (Fe) 
locations. By incorporating these four metals into our CCU 
calculation, only 12 additional sites exceed CCU = 1. This 
demonstrates that few sites (8%) were falsely classified as 
below the threshold thought benign to aquatic life, because 
we did not include all the metals measured in water in our index 
of trace-metal toxicity [1]. Inclusion of these metals in regres­
sion models did not improve model fit. 

Chronic criterion accumulation ratio values for the sum of 
Cd, Cu, and Zn ranged from 0.02 to 268, whereas CCU values at 
these stations ranged from 0.05 to 125. A direct comparison of 
the two models of trace-metal toxicity shows that CCAR 
underpredicts toxicity, especially at low metal concentrations 
(Fig. 2A). Although CCAR calculates the bioavailability of free 
metal ions and CCU calculates the bioavailability of total 
dissolved metals, the difference in the magnitude of concen­
trations does not explain the underprediction, because each 
toxic unit is normalized and therefore unitIess. However, by 
including DOC in the calculation of CCAR, the amount of free 
metal ion available to bind to the biotic ligand is decreased, 
especially at low metal concentrations. Chronic criterion accu­
mulation ratio overpredicted toxicity relative to CCU at 20 sites. 
In 17 of these cases, alkalinity was less than 8 mg/L, and in all of 
these cases the total dissolved metal or free metal ion was 
relatively high compared with all other cases. In 11 other cases, 
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Table 4. Range, median ± standard deviation (SD), and biotic ligand model design range for chemical parameters measured in the current study 

Parameter Range Median±SD BLMa design range [13] 

Temperature eC) 3-18 9.6 ± 2.75 10-25 
pH (Standard units) 3.5-8.5 6.9 ± 1.0 4.9-9.2 
Dissolved organic carbon (mglL) 
Humic acid content (%) 

0.3-8.1 1.4 ± 1.10 
lOb 

0.05-29.65 
10-60 

Hardness (mglL) 
Ca2 + (mglL) 
Mg2 + (mglL) 

5-163 
1.5-45.4 
0.2-16 

41 ±31 
12.0 ± 8.4 
2.2 ± 2.8 

NA" 
0.204-120.24 

0.024-51.9 
Na+ (mglL) 0.2-36 1.5±3.1 0.16-236.9 
K+ (mglL) 0.15-4.2 0.55 ± 0.55 0.039-156 
SO~-(mglL) 0.7-167 7.8 ± 28.8 0.096-278.4 
cr (mgIL) 0.04-9.5 1.20 ± 1.42 0.32-279.72 
Alkalinity (mglL) 0-141 25±26 1.99-360 
DIC (mmollL)d Estimated Estimated 0.056-44.92 
S2- (mg/L) 
Cd2+ (fLglL) 
Cu2 + (fLglL) 
Zn2 + (fLglL) 

NMc 

0.0If-7.92 
0.15-935 

0.25h-1940 

NMe 

O.Olf ± 1.07 
0.50 ± 13.6 

3.40 ± 254.81 

0-0 
NLg 
NL 
NL 

aBLM = Biotic ligand model. 
b Not measured but default value was used as recommended, 10% [13]. 
C Not applicable. 
dDissolved inorganic carbon=BLM estimates DIC from measured values of alkalinity and pH [13]. 
e Not measured but default value used as recommended, I . E - 10 [13].
 
fDetection limit.
 
gNo limits are set for trace-metal concentrations.
 
h Half detection limit.
 

alkalinity was less than 8 mglL; however, in these cases CCU 
overpredicted toxicity relative to CCAR, and they all had 
relatively low metal concentrations. 

Each metal's contribution to a toxic-unit model changed 
depending on the concentration of the metal and toxic-unit 
model considered (Fig. 2B, C). The BLM incorporation of DOC 
resulted in a lower contribution of Cu at toxic-unit values below 
10, as compared with CCU. At toxic units of 10 or greater, Cu 
was found to dominate toxic-unit values, the result of high 
concentrations of Cu, a decrease in the capacity for DOC to bind 
Cu, and the inability for hardness to competitively interact 
with the biotic ligand to ameliorate toxicity. Most sites with 
toxic-unit values of 10 or greater were found to have low 
alkalinities and pH and consistently fell below the regression 
line (Figs. 3-5). These sample locations were also influenced by 
substantially higher concentrations of Al and Fe. 

Community-level responses to metals 

Piecewise linear regression analyses using AIC for model 
selection found that CCAR was the most likely predictor of the 
benthic macroinvertebrate metrics (Figs. 3-5). The cumulative 
criterion unit received no weight as the top model in most cases, 
with the highest observed likelihood = 0.07. The threshold for 
all metrics evaluated exceeded CCAR = 1: richness = 1.06, 
EPT (Ephemeroptera + Plecoptera + Trichoptera) richness = 

I.ll, total abundance = 1.47, Ephemeroptera abundance = 1.21, 
Heptageniidae abundance = 1.16, predator abundance = 1.19, 
and scrapper abundance = I. I6 (Figs. 3-5). However, in almost 
every case the 95% confidence interval ranged well below 
CCAR = I: richness = (0.17-1.25), EPT richness = (0.39­
1.68), Ephemeroptera abundance = (0.76-2.07), Heptageniidae 
abundance = (0.69-1.97), predator abundance = (0.89-4), and 
scrapper abundance = (0.35-1.49), the lone exception being 
total abundance = 1.47 (1.06-5.52), (Figs. 3-5). 

Visual inspection of Figures 3 to 5 indicates that trace-metal 
concentrations (characterized as CCAR) caused various effects 
in benthic macroinvertebrate communities from central Colo­

rado mountain streams. Slopes for all piecewise linear models 
were negative, suggesting negative effects occurred below the 
threshold of chronic toxicity. This is also supported by the 
confidence intervals ranging well below CCAR = I (Figs. 3-5). 
Results of a Mann-Whitney U test showed significant differ­
ences in mean metric values between background sites and 
CCAR = 1.0, the theoretical threshold of toxicity (Table 5). 
Significant differences were observed in total taxa and EPT 
richness (- 7 and -6% mean differences, respectively), Ephem­
eroptera and Heptageniidae abundance (-33 and -43% mean 
differences, respectively), and predator abundance (-26% 
mean difference). The number of samples included in each 
category was different, n = 34 versus n = 74, and although the 
ranges of benthic macroinvertebrate metric values were similar, 
a proportionately larger number of samples were observed to 
have lower benthic macroinvertebrate metric values at 
CCAR = 1.0 as compared with background (Figs. 3-5). 

DISCUSSION 

The intent of this work was to develop and evaluate the BLM 
as a bioassessment tool capable of predicting benthic macro­
invertebrate community responses to trace-metal mixtures. This 
is an important step in improving our ability to link field-based 
community and population responses to metal toxicity while 
including the modifying effects of water quality in the deter­
mination of trace-metal bioavailability [17,18]. However, the 
BLM was developed to predict toxicity to standard test organ­
isms and has not been evaluated to determine whether it can 
predict the response of communities to trace metals in surface 
water [9]. We developed a toxic-unit model that uses BLM­
derived outputs (CCAR) to predict responses of benthic macro­
invertebrate communities to mixtures of trace metals and 
evaluated its performance relative to the CCU. This evaluation 
was conducted as part of a regional-scale environmental assess­
ment of the effects of geology on the environment in Colorado, 
which provided a diversity of lithologies and physicochemical 
conditions to test this new model of trace-metal toxicity. 
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Fig. 2. Graphs depict the relationship between 10gIO (CCU) (cumulative 
criterion unit) and 10glO(CCAR) (chronic criterion accumulation ratio) (A), 
and the relative contribution ofeach metal (Cd, Cu. Zn) in terms oftoxic units 
to CCAR (B) and CCU (C). Filled circles, CCAR versus CCU. 

Streams in the Colorado Rockies are generally oligotrophic, 
with low concentrations of dissolved solutes. We observed this 
to be true of the streams we sampled, in which most phys­
icochemical characteristics were within the range of those used 
to develop the BLM. However, a number of water-quality 
parameters (e.g., pH, alkalinity, CI~) were found to be on 
the lower end of the design range. This condition generally 
increases the bioavailability of trace metals as compared with 
water of high ionic strength and DOC concentrations [5,14]. 
However, CCAR, which accounts for DOC, measured a 
decrease in trace metal available as compared with CCU in 

0.01 0.1 1.0 10 

CCU r (Cd + Cu + Zn) 

streams with relatively low metal concentrations. In contrast, at 
locations where low pH and high trace metal concentrations co­
occurred, CCAR predicted higher toxic-unit values as com­
pared with CCU. This increase in trace-metal bioavailability 
was substantial and demonstrates that low pH can overwhelm­
ingly increase trace-metal toxicity despite the influence of other 
water-quality parameters [8]. These results highlight the need to 
incorporate a suite of water-quality parameters that can affect 
trace-metal bioavailability in field studies [16,17]. 

Chronic criterion accumulation ratio is far superior to CCU 
as a predictor of benthic macroinvertebrate community 
responses to metal mixtures. We anticipated that CCAR would 
outperform CCU because CCAR incorporates a mechanistic 
understanding of the chemical processes that control trace metal 
bioavailability to aquatic organisms and accounts for physio­
logical processes. However, the BLM was recalibrated to model 
invertebrate responses to acute concentrations of free metal ion; 
mechanisms of toxicity to chronic exposure to trace-metal 
mixtures may be different [19]. Under conditions of chronic 
exposure, benthic macroinvertebrates regulate, detoxify, and 
eliminate metals, processes not modeled by the BLM [37,38]. 
Nor does the BLM recognize the accumulation or regulation of 
metals through the diet [38]. Our empirical statistical analysis 
suggests that CCAR is a better predictor of benthic macro­
invertebrate community responses as compared with CCU; 
however, this approach should be improved on to make it more 
mechanistic. 

We identified that benthic macroinvertebrate community 
metrics exhibited a threshold response to trace-metal mixtures. 
The 95% confidence interval for this threshold included 
CCAR = I in every metric except for total taxa abundance. 
This finding could be interpreted as evidence that the CCC or 
the BLM are protective of aquatic life; however, this is not the 
case. The piecewise linear models identified a threshold at 
which higher rates of decline in benthic macroinvertebrate 
community metrics were observed at CCAR near 1, whereas 
lower rates of decline were observed at CCAR < 1. We con­
clude that profound changes in aquatic communities were 
observable near CCAR = 1, whereas measurable but highly 
variable responses were observed at toxic-unit values below 1. 

Previous studies report significant reductions in community 
richness and abundances of sensitive taxa at 2 CCUs or greater 
[1,39]. Other researchers suggest that benthic macroinverte­
brate communities responded negatively to trace-metal mix­
tures only once concentrations exceeded the threshold of 
chronic toxicity, CCU = 1.0 [32]. The results of our study 
corroborate earlier findings that trace metals negatively affect 
benthic macroinvertebrate communities at or near water-quality 
criterion. Novel to our study are data that suggest losses in 
benthic macroinvertebrate richness, abundance, and function 
occurred at concentrations below the CCC. These previous 
studies included other metals (AI, Fe, Pb) into their calculation 
of CCU, or utilized total metals [1,39] or total dissolved metals 
[32], which would increase the toxic-unit values at all sites, 
forcing the observed declines in benthic macroinvertebrate 
communities to occur at higher toxic-unit values. Our direct 
comparison of the predictive capacity of free metal ion versus 
the total dissolved metal fractions suggests that the free metal 
ion is a better predictor of biological responses. Had earlier 
investigations considered free metal ion concentrations, likely 
their observations of adverse effects would occur at lower toxic­
unit values. 

Our observed changes in benthic macroinvertebrate com­
munities below CCC does not mean that water quality standards 
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Fig. 3. Piecewise linear regressions showing the relationship between benthic macroinvertebrate community richness metrics and loglQ(CCAR) (chronic criterion 
accumulation ratio). Summaries of model selection analysis are depicted in the table showing Akaike information criteria values. Vertical lines indicate the limit 
above which adverse effects in aquatic communities are expected. Horizontal segmented lines are the piecewise linear association between richness metrics and 
CCAR. The 95% confidence interval for piecewise threshold is depicted by horizontal arrows and brackets, and the threshold is identified as the black circle within 
the confidence intervals. AIC = Akaike information criteria; AICc = second-order correction of AIC to account for small ratio of model parameters (K) to 
observations (n); ~I = AICc standardized by subtracting the minimum AICc score from each of the candidate models; Wi = Akaike weight or the probability the 
model is the best model among the candidate set; CCU =cumulative criterion unit; EPT =Ephemeroptera + Plecoptera + TrichQptera. 

or the BLM are not protective of aquatic life in Rocky Mountain 
streams. Water quality standards were established to protect 
95% of genera [21] in a water body, not just benthic macro­
invertebrates. Because we did not measure responses in 
all the necessary phyla, classes, and families (e.g., fish, algae, 
crustacean) specified in the guidelines for deriving water 
quality criteria [21], we did not test the suitability of these 
standards to protect aquatic life. Also, water quality standards 
were established to protect aquatic communities in receiving 
waters of the discharge of a single pollutant, not nonpoint 
sources of complex trace-metal mixtures. However, we 
suggest that if water quality criteria are used as a benchmark 
of successful restoration of complex acid rock drainage, 
benthic macroinvertebrate communities exposed to trace-metal 
mixtures at these concentrations may not recover to levels 
found in streams with lower concentrations of trace-metal 
mixtures. 

The observation that population-level abundance metrics 
suffer greater losses than richness metrics when exposed to 
similar levels of metal mixtures is not a novel finding. Previous 
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studies, both field and laboratory based, have documented that 
sensitive mayflies and stoneflies experience population declines 
at much greater rates than observed in generic-level total taxa 
richness [1,40]. Furthermore, single species toxicity tests using 
a sensitive mayfly of the genus Rhithrogena have shown 
that mature nymphs can tolerate very high metal concentrations 
and survive an acute exposure, whereas populations of 
less mature individuals suffer great loses at lower metal 
concentrations [39-41]. 

The current study confirms that richness metrics are not the 
most sensitive indicators of the effects of trace-metal mixtures 
on aquatic communities in streams. However, we observed 
great declines in the abundance of metal-sensitive benthic 
macroinvertebrate populations in response to levels of trace­
metal mixtures never reported before. Such declines in abun­
dance cause disruptions of in-stream ecosystem function such as 
the processing of detritus, secondary production of inverte­
brates, and flow of energy into food webs [42]. This disruption 
of energy flow into food webs is not limited to aquatic food 
webs, because disturbance-induced declines in abundance of 
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Fig. 4. Piecewise linear regressions showing the relationship between benthic macroinvertebrate community abundance metrics and 10glQ(CCAR) (chronic 
criterion accumulation ratio). Summaries ofmodel selection analysis are depicted in the table showing Akaike information criteria values. Vertical lines indicate the 
limit above which adverse effects in aquatic communities are expected. Horizontal segmented lines are the piecewise linear association between richness metrics 
and CCAR. The 95% confidence interval for piecewise threshold is depicted by horizontal arrows and brackets. and the threshold is identified as the black circle 
within the confidence intervals. AIC = Akaike information criteria; AICc = second-order correction of AIC to account for small ratio of model parameters (K) to 
observations (n). ~l = AICc standardized by subtracting the minimum AICc score from each of the candidate models. Wi = Akaike weight or the probability the 
model is the best model among the candidate set. 
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Table 5. Results of Mann-Whitney U test showing the mean ± standard deviation metric values between background CCARa and the threshold of chronic 
toxicity 
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Richness metrics Abundance Functional 

CCARa n Total taxa EPTb Total taxa Ephemeroptera Heptageniidae Predator Scrapper 

0.1 
I 
% difference 

34 
74 

19.7±2.2 A 
18.4 ± 3.3 B 

-7 

11.2 ± 1.6 A 
10.5 ± 1.7 B 

-6 

591 ±491 
566±539 

-4 

171±114A 
114±75 B 

-33 

28 ±28 A 
16± 12 B 

-43 

86±62 A 
64±38 B 

-26 

67±60 
54±48 

-19 

aCCAR=chronic criterion accumulation ratio. 
b EPT = ephemeroptera + plecoptera + trichoptera. 
Capital letters designate significant differences between metric values determined by Mann-Whitney U test (p:'O 0.05). 

immature insects has been likened to declines in the emergence 
of adults [43]. Because terrestrial predator density is controlled 
by, among other things, the productivity of emergent adults 
[43,44], in-stream disturbances that cause declines in the abun­
dance of benthic macroinvertebrates also limits the food supply 
to highly dependent terrestrial consumers [43]. Little is known 
about functional changes to streams in response to disturbance; 
however, what is known suggests that functional measures are 
highly sensitive to disturbances, and changes to in-stream 
function can propagate effects into adjacent terrestrial ecosys­
tems. Future research should focus on the influence of chemical 
stressors on both in-stream function and also reciprocal changes 
in the structure and function of dependent terrestrial consumer 
communities. 

CONCLUSIONS 

We developed a toxic-unit model using BLM outputs 
(CCAR) and compared it with CCU to determine which model 
best predicted benthic macroinvertebrate community responses 
to trace-metal mixtures. The CCAR was a superior predictor of 
community responses because it uses the latest knowledge in 
aqueous geochemistry and physiology of aquatic organisms to 
predict metal toxicity. Great losses in benthic macroinvertebrate 
community structure and function were observed near the 
threshold of chronic toxicity, CCAR at least I. We report the 
first measureable losses in benthic community structure and 

function at a concentration of metals previously thought benign. 
Our results suggest that CCCs for metals in mixtures are not 
protective against losses in benthic macroinvertebrate commun­
ity richness, abundance, and function in Rocky Mountain 
streams draining mineral deposits. 
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