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Abstract 

Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are 
being further altered by increasing atmospheric CO2 concentrations ([C02]) and climate change/ particularly in arid 
and semiarid (dryland) regions. In this literahlre review, we 0) summarize expected changes in [C02], climate, 
hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on 
riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are 
becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the tim­
ing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of 
increased [C021and climate change on riparian ecosystems may be similar to effects in uplands, including increased 
heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic 
interactions. Indirect effects due to climate-driven changes in streamflow, however, may exacerbate the direct effects 
of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem 
response to global change. Together, climate change and climate-driven changes in streamflow are likely to reduce 
abundance of dominant, native, early-successional tree species, favor herbaceous species and both drought-tolerant 
and late-successional woody species (including many introduced species), reduce habitat quality for many riparian 
animals, and slow litter decomposition and nutrient cycling. Climate-driven changes in human water demand and 
associated water management may intensify these effects. On some regulated rivers, however, reservoir releases 
could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' 
environmental requirements and monitoring riparian ecosystems to allow rapid detection and response to undesir­
able ecological change. 
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to deforestation, stream channelization, increased graz­
Introduction 

ing, and nutrient pollution (Patten, 1998; Brinson & 
Riparian ecosystems provide critical biological habitat Malvarez, 2002). Flow regulation has reduced flood 
and increase regional biodiversity, particularly in arid magnitude and frequency, altered flood timing, 
and semiarid regions (hereafter, drylands) (Naiman impeded sediment movement and seed dispersal, and 
et al., 2005i Sabo et aI., 2005). Human activities have reduced rates of fluvial geomorphic change (Poff et aI., 
constricted many riparian communities (e.g., Jones 1997; Gra£, 2006). Finally, introduced species have 
et al., 2010), expanded others (e.g., Johnson, 1994), and replaced native riparian species/ particularly in anthro­
altered their composition and dynamics around the pogenically disturbed areas (Richardson et ai., 2007). 
globe (Nilsson & Berggren, 2000; Tockner & Stanford, Increases in atmospheric CO2 concentration (hereaf­
2002). Flood control and water storage projects have ter [C02]) and associated climate change are likely to 
promoted. urban and agriculhlral development, leading further alter dryland riparian ecosystems (Grimm et al., 

1997). Changes in [C02] and climate have direct, local 
Correspondence: Laura G. Perry, tel. + 970 226 9196, effects on plant and animal survival, growth and phe­
fax +970 226 9230, e-mail: lperry@lamar.colostate.edu nology, biotic interactions, and soil processes (Fig. 1) 
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822 L. G. PERRY et ai. 

Fig. 1 Linkages between [C02] and climate change and components of riparian ecosystems in semiarid and arid western North Ameri­
ca (SAWNA). Climate-change effects include both alteration of local weather conditions and alteration of climate in headwater regions 
leading to changes in flow regime. Direct effects of [C02] and climate change on riparian plants, animals, and soils are shown as red 
arrows. Linkages most in need of elucidation are shown as heavy arrows. Not all potential effects described in the text are shown. 
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(Rustad et al., 2001; de Graaff et al., 2006; Parmesan, 
2006). In addition, climate change will influence ripar­
ian ecosystems via indirect, watershed-scale effects on 
hydrology, water management, and fluvial geomor­
phology (Fig. 1). Riparian community dynamics are 
strongly influenced by hydrology and associated fluvial 
processes sensitive to climate change, including base 
streamflow, flood magnitude and timing, and water 
management and use (Poff et al., 1997; Merritt et al., 
2010). Climate change is expected to alter riparian 
hydrology substantially in drylands around the world 
(Barnett et ai., 2008; Nunes et aI., 2008; Pittock & Con­
nell,2010). 

Climate-change effects on rivers in semiarid and arid 
western North America (hereafter, SAWNA) have 
recently been the subject of considerable research, and 
may provide insights into likely effects of climate 
change on dryland rivers globally. Most of this research 
has focused on hydrology, but also has important and 
largely unexplored ecological implications. SAWNA 
riparian ecosystems are temporally and spatially 
dynamic, changing in size, location, geomorphology, 
and species composition in response to natural varia­
tion in climate and hydrology (Webb et al., 2007), novel 

flow regimes from human water management (Poff 
et al., 200n and biological invasion (Friedman et ai., 
2005). These ecosystem dynamiCS make it challenging 
to attribute temporal trends in SAWNA riparian eco­
systems to increased [C~l or climate change. There­
fore, predicting effects of climate change will require 
examining effects of analogous environmental changes 
caused by natural climatic variation or water manage­
ment, as well as testing effects with controlled field and 
laboratory experiments. Here, we review the literature 
concerning likely effects of rising [C02] and climate 
change on SAWNA riparian ecosystems. Specifically, 
we (1) summarize expected changes in climate, hydrol­
ogy, and water management, (2) consider likely effects 
of those changes on riparian plants, animals, biotic 
interactions, and soil processes, and (3) identify knowl­
edge gaps that hinder predictions of riparian ecosystem 
responses, environmentally sound water management 
planning, and adaptation measures. 

Study area 

The SAWNA region (Fig. 2) includes deserts, plains, 
and high plateaus, and is characterized by low annual 
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Fig. 2 Semiarid and arid regions of western North America (SAWNA), including subregions [adapted from CEC (1997)], major rivers, 
and the NA monsoon region [adapted from Adams & Comrie (1997)]. 

precipitation and high warm-season temperatures, 
leading to high evapotranspiration (CEC, 1997). Precip­
itation tends to be lower and temperatures tend to be 
warmer at southern latitudes than at northern latitudes. 
Outside of the North American (hereafter, NA) mon­
soon region (Fig. 2), most precipitation falls during 
winter or spring. Within the monsoon region, some 
areas receive most precipitation during late summer, 
whereas others receive a mixture of summer and winter 
precipitation (Adams & Comrie, 1997). SAWNA river 
reaches vary widely in drainage area, valley width, 
channel gradient, streamflow hydrology, groundwater 
hydrology, parent bedrock material, and sediment 
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dynamics (Poff, 1996; Naiman et ai., 2005). Most large 
SAWNA rivers are regulated by dams, whereas many 
smaller SAWNA rivers remain relatively free-flowing 
(Poff et ai., 2007). Riparian forests vary in species com­
position across the region, but are dominated by native 
cottonwood trees (Populus spp. L.) and willows (Salix 
spp. L.), and the introduced trees tamarisk (saltcedar; 
Tamarix spp. L.) and Russian olive (Elaeagnus angustifo­
iia L.) (Table 1) (Friedman et at., 2005; Scott et al.,2009). 
Riparian ecosystems support a large proportion of 
SAWNA invertebrate, amphibian, reptile, mammal, 
and breeding bird species (Warner & Hendrix, 1984; 
Knopf & Samson, 1994; Naiman et aI., 2005), are critical 
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Table 1 Dominant woody plant species in SAWNA riparian ecosystems, and available information on their responses to [CO2] 

and temperature 

Common NA native/ Range in Ecophysiological 
name Latin name introduced SAWNA responses Citations 

Plains Populus deltoides ssp. Native East 
cottonwood monilifera (Aiton) 

Eckenwalder 
Rio Grande P. deUoides ssp. wisliz.eni Native Southeast 
cottonwood (5. Watson) Eckenwalder 

Fremont PopUlus fremonlii Native Southwest jwarming = earlier seed Stella el al. (2006) 
cottonwood S. Watson dispersal 

Black Populus balsamifera L. ssp. Native North ca. 25°C = optimal Bassman & Zwier 
cottonwood lrichocarpa Brayshaw photosynthesis (1991) 

35°C = ca. 10% 
lphotosynthesis 

Narrowlea£ Populus anguslifolia James Native Higher 
cottonwood elevations 

Peachlea£ Salix amygdaloides Native East 
willow Andersson 

Goodding's Salix gooddingii c.R. Ball Native Southwest jwarming = earlier seed Stella el al. (2006) 
willow dispersal 

Sandbar Salix exigua Nutt. Native Throughout jwarming = earlier seed Stella et al. (2006) 
willow dispersal 

Tamarisk Tamarix ramosissima Introduced Throughout ca. 25°C = optimal Anderson (1982) 
(saltcedar) Ledeb., Tamarix chinensis photosynthesis 

Lour., hybrids 42°C = ca. 50% 
lphotosynthesis 

Russian ElaeagnllS anguslifolia L. Introduced Throughout 
olive 

Eastern P. deltoides Bartram Native n/a ilC02] = 40-50% Will & Teskey, (1997), 
cottonwood ex. Marsh ssp. jphotosynthesis and McDonald et al. (2002), 

deltoides 80% igrowth Murthyel al. (2005), 
HC02] = 25-50% Lewis et al. (2010) 
1stomatal conductance 
and 20-30% jWUE 

Nomenclature follows the USDA plants database (http://www.plants.usda.gov). Eastern cottonwood does not occur in SAWNA, 
but ecophysioLogical responses are included here because it is closely related to plains and Rio Grande cottonwood. 

habitat for Neotropical migrant birds (Skagen et ai., 
2005), and supply the allochthonous stream inputs that 
support aquatic communities (Naiman et al., 2005). 

Observed and projected changes in [C02] and 
climate 

[C02 ] has increased from ca. 280 to ca. 390 ppm (by 
volume) since 1750, and could exceed 850 ppm by 2100 
(Il:JCC, 2007). SAWNA mean annual temperatures 
increased by 0.5-2 °C between 1948 and 2002 (Mote 
et al., 2005; Stewart et aI., 2005; Miller & Piechota, 2008), 
largely as a result of human-induced increases in atmo­
spheric aerosols and greenhouse gases (IPCC, 2007; 
Barnett et aI., 2008). Winter and spring temperatures 

increased significantly (Mote et aI., 2005; Abatzoglou & 
Redmond, 2007), spring warm spells shifted earlier 
(Regonda et al., 2005), and autumn temperatures 
remained relatively stable (Abatzoglou & Redmond, 
2007). Most climate models predict that SAWNA mean 
annual temperatures will rise by another 2-4 °C in the 
21st century (Christensen & Lettenmaier, 2007; Cayan 
et al., 2008; Seager & Vecchi, 2010). 

Trends and predictions for SAWNA precipitation are 
less clear. Some studies detected increases in precipita­
tion (Mote et al., 2005; Hamlet et al., 2007) and seasonal 
delays in monsoon rainfall (Grantz et aI., 2007) over the 
last 50-100 years, whereas others found little change 
(Stewart et al., 2005; Miller & Piechota, 2008). Most pre­
cipitation variation can be accounted for by the EI Nino 
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Southern Oscillation and the Pacific Decadal Oscillation 
(Wolock & McCabe, 1999; Regonda et 01.,2005; Grantz 
et al., 2007; Hamlet et al., 2007). Predictions of future 
precipitation vary considerably, but most models pre­
dict increases in northern NA and decreases in mid­
and southern NA (Christensen & Lettenmaier, 2007; 
IPCC, 2008; Seager & Vecchi, 2010). In particular, win­
ter and spring precipitations are projected to decline in 
southwestern NA (Seager & Vecchi, 2010). Monsoon 
rainfall is especially difficult to predict (Lin et ai., 2008) 
and is ignored in most global climate models (Serrat­
Capdevila et al., 2007). The frequency and magnitude 
of extreme rainfall events increased across the United 
States in the last century (Peterson et al., 2008), and fur­
ther increases are predicted (Diffenbaugh et 01., 2005). 
In southwestern NA, more intense dissipating tropical 
cyclones (Bengtsson et al., 2007) may increase late sum­
mer rainstorm intensity (Corbosiero et at., 2009), and 
more frequent El Nino conditions (Cane, 2005) could 
increase winter precipitation from Pacific frontal 
storms. 

Warming has reduced total snow cover and April 1 
snow water equivalents over much of SAWNA in the 
last century (Barnett et al., 2008; Stewart, 2009). Climate 
models predict continued declines in mountain snow­
pack (Cayan et 01.,2008; IPCC, 2008; Adam et al., 2009). 

Together, warming and changes in precipitation 
increased SAWNA drought frequency, severity, and 
duration over the last 5G-1oo years (Andreadis & Lette­
nmaier, 2006; Groisman & Knight, 2008). Droughts 
occur frequently in western NA (CEC, 1997), but recent 
droughts have been small compared to intense 
droughts that occurred during a warm period between 
900 and 1300 AD (Cook et at., 2004). Several models pre­
dict that droughts will intensify in the next century in 
southwestern NA because of both increased evapora­
tion and decreased precipitation (Cayan et al., 2010; 
Seager & Vecchi, 2010). Even at northern latitudes, 
increased evaporation due to warming is likely to out­
weigh projected increases in precipitation, leading to 
greater aridity (Smith & Wagner, 2006). 

Observed and projected changes in river hydrology 

Warmer temperatures, smaller snowpacks, and precipi­
tation changes are altering SAWNA river flow regimes 
(i.e., timing, frequency, magnitude, rate of change, and 
duration of high and low flows) (Regonda et 01., 2005; 
Stewart et at., 2005; Barnett et al., 2008; Clow, 2010). 
First, spring snow melt peak flows now occur substan­
tially earlier than they did a century ago, and models 
predict even earlier peaks in the future (Table 2). This 
change is most apparent for rivers with headwaters at 
lower elevations, where warmer winter temperatures 
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lead to rainfall instead of snowfall, rain-on-snow 
events, and earlier snow melt (McCabe & Clark, 2005; 
Regonda et al., 2005), but it is also evident at higher ele­
vations (Clow, 2010). 

Second, flood frequency and magnitude may be 
increasing in some regions and decreasing in others. 
Although few studies have reported trends in peak 
flow magnitudes in SAWNA rivers (Table 2), simula­
tions suggest that spring flood magnitudes have 
declined over the last century in cold-winter basins 
(winter mean temperature <-6°C) (Hamlet & Lette­
nmaier, 2007) and models predict smaller spring snow 
melt peak flows in the future due to smaller snowpacks 
in the headwaters (Table 2). In contrast, simulations 
suggest that winter flood magnitudes in California and 
the northwestern United States [where rivers flow 
through both humid and dryland areas (Fig. 2») have 
increased in moderate-winter basins (winter mean tem­
perature -6 to 1 0c) (Hamlet & Lettenmaier, 2007) and 
models predict larger and more frequent winter floods 
in the northwestern United States as rain-on-snow 
events and winter snow melt become more common in 
the headwaters (Table 2). Predictions of more intense 
summer monsoon rainstorms and more frequent win ter 
frontal rainstorms in the monsoon region suggest that 
flooding also will increase on monsoon-dominated riv­
ers (Vivoni et al., 2009). 

Third, low flows are projected to become lower on 
SAWNA rivers under climate change. Late-spring and 
summer flows have declined on snow melt-dominated 
rivers over the last century because of smaller snow­
packs and earlier snow melt in the headwaters, and are 
projected to decline further under future climate sce­
narios (Table 2). Total annual flows and/or base flows 
in the Colorado River (snow melt-dominated), the San 
Pedro River (monsoon-dominated), and the Rio Grande 
(snow melt- and monsoon-dominated) are projected to 
decline across a range of future climate scenarios 
because of greater evapotranspiration and perhaps 
lower precipitation (Nohara et aI., 2006; Christensen & 
Lettenmaier, 2007; Serrat-Capdevila et at., 2007). 

Direct effects of [C02] and climate change on 
riparian plants 

Increased [C02) and climate change will affect riparian 
plant physiology, phenology, and geographic distribu­
tions in many of the same ways that they affect upland 
plants. However, in riparian ecosystems many of these 
direct effects will interact with concurrent effects of 
climate change on streamflow (Figs 1 and 3). We 
discuss direct effects first, and then discuss interactions 
with indirect, streamflow-mediated effects. Although 
increased [C02) and climate change are expected to 
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Table 2 Trends in streamflow and model projections of future streamflow in semiarid and arid western North America (SAWNA) 
snow melt-dominated rivers 

Flow component Historical trends Model projections 

Total annual flow Few trends, but Lins & Slack (1999), Inconsistent Dettinger et al. (2004), 
10-50% decrease in Zhang et al. (2001), predictions; varies Hayhoe et al. (2004), 
northwest United Bum & Hag Elnur with projected Vanrheenen et aL (2004), 
States and Canada (2002), Regonda et al. precipitation Millyet al. (2005), 

(2005), Rood et al. Christensen & 
(2005b) Lettenmaier (2007) 

Winter and early 1Q--{i()% increase Regonda et al. (2005), Projected to Christensen et al. (2004l, 
spring flow Stewart et al. (2005), increase further Dettinger et al. (2004), 

Miller & Piechota Knowles & Cayan (2004), 
(2008), Rood et al. Leung et al. (2004), 
(2008) Maurer (2007) 

Late-spring and 10-20% decrease Regonda et aI. (2005), PrOjected to Christensen et al. (2004), 
summer flow Stewart et al. (2005), decrease further Dettinger et al. (2004), 

Miller & Piechota Hayhoe et al. (2004), 
(2008), Rood et al. Leung et al. (2004), 
(2008) Maurer (2007) 

Spring snow melt 10-30 days earlier McCabe & Clark (2005), Projected to shift Christensen et al. (2004), 

flood timing Regonda et al. (2005), still earlier Dettinger et aI. (2004), 

Stewart et al. (2005), Hayhoe et al. (2004), 

Moore et a1. (2007), Leung et aI. (2004), 

Rood et aI. (2008), Stewart et al. (2004), 

Clow (2010) Maurer (2007), Scibek 
et al. (2007) 

Spring snow melt Decrease in west Zhang et al. (2001) Projected to Dettinger et 01. (2004) 

flood magnitude Canada decrease 
Spring snow melt More gradual Rood et aI. (2008) 

flood rate of change ascension in west 
Canada 

Winter flood Projected to increase Leung et a.!. (2004), 
magnitude and in northwest Kim (2005) 
frequency United States and 

Canada 

affect interspecific competition and facilitation (Brook­
er, 2006), little is known about plant interactions in 
SAWNA riparian communities except for competitive 
suppression of tamarisk (Tamarix spp. 1.) seedlings by 
native tree seedlings (Dewine & Cooper, 2008; Bhatta­
charjee et al., 2009) and suppression of cottonwood 
(Populus spp. 1.) and tamarisk seedlings by closed-can­
opy shade (Reynolds & Cooper, 2010). Therefore, we 
limit discussion to likely effects on individual plants, 
populations, community structure, and spatial distribu­
tions. 

Physiology and growth 

Increased [C02 ] and warming are likely to have con­
flicting effects on SAWNA riparian plant photosynthe­
sis, water status, and growth (Fig. 3). Greater carbon 
availability due to increased [C02] tends to increase 
photosynthesis and growth in C3 plants (Ainsworth & 

Long, 2005; de Graaff eI aI., 2006), including in cotton­
woods (Table 1), which dominate SAWNA riparian 
ecosystems. In addition, increased [C02] reduces sto­
matal conductance and thus increases water use effi­
ciency (WUE) in cottonwoods (Table 1) and many 
other plants (Ainsworth & Long, 2005). Increased plant 
WUE due to increased [C02] can increase plant produc­
tivity in dryland ecosystems (Morgan et al., 2004). 

Warming-induced drought, however, is likely to 
override the positive effects of [C02]-induced increases 
in WUE on plant water status (Frelich & Reich, 2010), 
especially where changes in streamflow further reduce 
water availability. Relatively drought-intolerant ripar­
ian species such as cottonwoods and willows (Salix 
spp. 1.) may be particularly vulnerable to lower 
groundwater tables during more frequent or intense 
droughts. Cottonwoods respond to moderate water 
deficits with reduced stomatal conductance, photosyn­
thesis, shoot elongation and trunk expansion, and to 
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Fig. 3 Potential effects of elevated [C02], climate change, and c1imate-driven streamflow changes (rectangles) on riparian plants 
(ovals). Arrows within the rectangles and ovals indicate the net direction of expected change. Arrol'VS between rectangles and ovals 
indicate linkages between environmental drivers and plant responses, with + and - symbols indicating positive and negative effects, 
respectively, of the expected change in the environmental driver on the plant process or characteristic. For example, the - symbol for 
the linkage between water stress and photosynthesis indicates a negative effect of increased water stress on photosynthesis, contribut­
ing to a net reduction in photosynthesis. +!- symbols indicate that the effect could be in either direction. Direct effects of elevated 
[C02] and climate dlange on riparian plants are shown with orange arrol'VS. Indirect, streamflow-driven effects are shown with blue 
arrol'VS. Dashed arrows indicate linkages that are particularly uncertain. Effects of changes in flood timing and magnitude are shown 
separately for plants on snow melt-dominated and monsoon-dominated rivers. Note that winter floods in snow melt rivers are only 
projected to increase in the northwestern United States. Also, earlier snow melt peaks will affect seedling establishment only for species 
that rely on particular timing of seed release relative to snow melt peak flows, such as cottonwoods and willows. Together, these effects 
will have complex, species-specific and community-specific impacts on riparian plant growth, survival, recruitment, population 
dynamics, geographiC distributions, and community composition and structure. Not all potential linkages discussed in the text are 
shown. 

severe water deficits with xylem cavitation, branch sac­ Oliv.) tolerates higher temperatures (5G-55 °C) (Ferreira 
rifice, and crown die-back (Rood et aI., 2003). Some et aL, 2006). Slightly lower maximum temperatures (25­
studies suggest that Goodding's willow (Salix gooddingii 45°C) can reduce germination, growth, flowering, fruit 
C.R Ball) is more drought-tolerant than Fremont cot­ ripening, and seed set (Wahid et al., 2007). Among 
tonwood (Populus fremontii S. Watson) (Busch & Smith, SAWNA riparian species, high temperatures reduce 
1995; Stella & Battles, 2010), whereas others suggest photosynthesis in tamarisk and black cottonwood 
that Goodding's willow is less drought-tolerant (Hor­ (Table I), reduce growth in velvet mesquite (Prosopis 
ton et al., 2001), making it difficult to predict how velutina Woot.) (Cannon, 1915) and Arizona sycamore 
increased. drought will affect relative abundances of (Platanus wrightii S. Watson) (Stromberg, 2001), and 
dominant native tree species. Increased drought is less increase fungal infection in thinleaf alder [Alnus incana 
likely to affect species that are substantially more (L.) Moench spp. tenuifolill (Nutt.) Breitung]. Warming 
drought-tolerant, such as introduced tamarisk and Rus­ is generally expected to shift temperatures closer to 
sian olive (E. angustifolia L) (Stromberg et al., 2007b; optimal for tree photosynthesis (Saxe et al., 2001; Hyvo­
Reynolds & Cooper, 2010). nen et al., 2007), and may, for example, increase black 

Warming, particularly higher maximum tempera­ cottonwood photosynthesis in Montana where current 
tures, will also increase riparian plant heat stress and average growing season temperatures are <25°C 
thus reduce growth. Temperatures >45 °C, which is at (http://www.wrcc.dri.edu), the optimum for that spe­
the upper end of recent SAWNA maximum air temper­ cies (Table 1). In contrast, photosynthesis may decrease 
atures (http://www.wrcc.dri.edu), damage or kill leaf in SAWNA riparian plants where growing season tem­
tissue of most plant species, although at least one desert peratures already approach or exceed the optimum, 
riparian plant (an Asian poplar, Populus euphratica such as for tamarisk (Table 1) in areas with current 
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average growing season temperatures >25 0C, includ­
ing parts of Arizona, New Mexico, Utah, and Colorado 
(http://www.wrcc.dri.edu). 

Warming also may increase or decrease anoxia, and 
thus affect riparian plants. Soil anoxia can develop 
whenever water tables are high, including in riparian 
wetlands on lower geomorphic surfaces and briefly on 
higher surfaces inundated during floods. The duration 
of anoxia strongly affects riparian wetland community 
composition (Castelli el al., 2000). Under climate 
cllange, lower water tables due to more frequent or 
intense drought may reduce anoxia. When water tables 
are high, however, warmer soil temperatures may 
increase anoxia, and production of toxic anaerobic 
metabolites, by increasing root and microbial respira­
tion (Vartapetian & Jackson, 1997). 

Phenology 

Warming will likely advance spring pllenology of 
riparian plants (Menzel et a[., 2006; Parmesan, 2007). 
Emergence from winter dormancy, loss of cold-hardi­
ness, and spring budburst are largely controlled by 
temperature in most temperate perennials (Rathcke & 
Lacey, 1985; Kozlowski & Pallardy, 2002), including 
cottonwoods (Pauley & Perry, 1954; Kaszkurewicz & 
Fogg, 1967). To break dormancy, plants must be 
exposed to thresholds of chilling and then warming 
temperatures, which vary among species, genotypes, 
bud types, developmental stages, depths of dormancy, 
and photoperiods. The few phenological studies of 
SAWNA riparian plants suggest that fewer chilling 
days under climate change may inhibit floral initiation 
in reed canarygrass (Pha[aris arundinacea L.) (Hanson & 
Sprague, 1953) and more warming days will hasten 
seed dispersal in Fremont cottonwood, Goodding's wil­
low and sandbar willow (Table 1). 

Warming is less likely to affect riparian plant autumn 
leaf senescence and initiation of winter dormancy, 
which are thought to be controlled by photoperiod and 
light quality in most temperate plants (Berrie, 1984), 
including cottonwoods (Pauley & Perry, 1954; Fried­
man et al., 2011). Ecotypic variation in NA tamarisk, 
however, suggests that the cues triggering autumn phe­
nology can evolve rapidly (Friedman et a1., 2011). Also, 
warmer autumn temperatures, if they occur, may slow 
development of cold-hardiness, which is induced by 
cold temperatures in most temperate plants, mcluding 
cottonwood (Park et al., 2008), and could affect the phe­
nology of seed dispersal of autumn-fruiting riparian 
trees such as Arizona sycamore (P. wrightii S. Watson), 
box elder (Acer negundo L.), netleaf hackberry [Celtis 
laevigata Willd. var. retictllata (Torr.) L.D. Benson], and 
velvet ash (Fraxinus velutina Torr.) (Brock, 1994). 

Increased [C02] may delay autumn leaf senescence in 
some riparian species, as it can in upland poplars (Pop­
ulus spp. L.) (Taylor el al., 2008). 

Earlier spring emergence, with or without delayed 
autumn senescence, can extend the plant growing sea­
son and increase productivity (Hyvonen et al., 2007), 

soil resource uptake (Nord & Lynch, 2009), and frost 
injury when late spring frosts occur despite warmer 
spring temperatures (Morin et a/., 2007; Augspurger, 
2009). Changes in phenology also may result in mis­
matches between the timing of plant resource require­
ments and resource availability (Hegland et al., 2009; 

Nord & Lyncll, 2009). 

Geographic distributions 

Climate-change effects on riparian plant physiology, 
growth, and phenology may alter species' geographic 
distributions (Parmesan, 2006; Kelly & Goulden, 2008). 
Plant species that are limited by cold temperatures and 
favored by low precipitation, such as tamarisk (Fried­
man et al., 2008), may spread northward and to higher 
elevations as temperatures increase and/or precipita­
tion declines (Zavaleta & Royval, 2001; Kerns et al., 
2009). Conversely, species that are limited by warm 
temperatures, perhaps including Russian olive (Fried­
man el a/., 2005), may decline in the south and at low 
elevations. Ecotypic variation in cold or heat tolerance 
{e.g., in plains cottonwood [Populus deltoides Bartram 
ex. Marsh spp. monilifera (Aiton) Eckenwalderl and 
tamarisk (Friedman et a[., 2008)} may lead to incremen­
tal northward or upward migration by populations 
adapted to warmer temperatures (Jump & Penuelas, 
2005). 

In riparian ecosystems, warming will also result in 
movement of plant species and ecotypes upstream, 
because rivers and riparian corridors connect high and 
low elevations with distinct climates. SAWNA riparian 
ecosystems exhibit strong gradients in plant commu­
nity composition and structure between downstream 
and upstream areas, changing from plains and Fremont 
cottonwood (P. fremontii S. Watson) to narrowleaf cot­
tonwood (Populus angustifolia James) forests and from 
deciduous to coniferous forests (Patten, 1998). Under 
climate change, plant species and ecotypes that are cur­
rently restricted to relatively low elevations, such as 
some black cottonwood ecotypes (Rood et al., 2007), 
desert willow [Chilopsis linearis (Cav.) Sweet], catclaw 
acacia (Acacia greggii A. Gray), netleaf hackberry [c. lae­
vigata Willd. var. retiCtilata (Torr.) L.D. Bensont Fre­
mont cottonwood, green ash (Fraxinus pennsylvanica 
Marsh) and mule-fat [seepwillow; BacchLlris salicifvlia 
(Ruiz & Pav.) Pers.] (Campbell & Green, 1968), may 
expand upstream. Species that are currently limited to 
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middle elevations, such as narrowleaf cottonwood, Ari­
zona sycamore (P. wrightii S. Watson), and Arizona 
walnut [Juglnns major (Torr.) A. Heller] (Campbell & 
Green, 1968; Gitlin, 2007), may shift still further 
upstream. Species currently at the upper limits of river 
basins, or at the upper limits of perennial flow in small 
streams, may disappear from those basins. Because 
riparian species are likely to respond individualistically 
to warming, community composition and structure 
along longitudinal riverine gradients will change as 
species shift differentially upstream. 

Indirect effects on riparian plants mediated by 
streamflow 

Importance of flow regime to riparian vegetation 

Changes in flow regime, regardless of the cause, can 
substantially alter riparian plant communities because 
species' presence and vigor depend on fluvial geomor­
phic processes and surface water and groundwater 
hydrology (Poff et aI., 1997; Nilsson & Berggren, 2000; 
Naiman et al., 2005; Merritt et al., 2010). Roods drive 
disturbance regimes through erosion, transport, and 
deposition of sediments, vegetation, and debris (Wol­
man & Miller, 1960). In particular, the magnitude and 
frequency of floods over muIti-decadal time scales 
structure the dynamics, complexity, and quality (e.g., 
size, shape, sediment texture) of the fluvial landforms 
on which riparian plants grow (Naiman et al., 2005). 

Many dominant riparian species (e.g., cottonwoods, 
willows) are pioneer species that require bare, moist 
substrates created by floods via scour, sediment deposi­
tion, channel migration, or channel abandonment for 
seed germination (Scott et aI., 1996; Cooper et al., 2003; 

Stella et al., 2011) and strict hydrologic conditions for 
seedling establishment (Mahoney & Rood, 1998; Coo­
per et al., 1999). Furthermore, many riparian plants 
obtain most of their water from alluvial groundwater 
sustained by infiltrating streamwater (Snyder & Wil­
liams, 2000; Horton et aI., 2003), and additional water 
from inundation during floods. Finally, many riparian 
plants rely in part on hydrochory for seed and vegeta­
tive propagule dispersal (Merritt & Wohl, 2002). Spe­
cies vary greatly in their responses to streamflow­
associated stresses (i.e., drought, high water tables, 
inundation, burial, and mechanical stress). 

Climate-change effects on hydrology and riparian 
ecosystems will occur within the context of already 
large temporal variation in flow regime on western riv­
ers. Unregulated rivers exhibit decades-long cycles of 
channel widening and narrowing due to natural varia­
tion in climate and flood magnitude, which in turn 
create cycles in riparian forest community composition 

Published 2011 

(Johnson, 1998; Webb & Leake, 2006). Moreover, ripar­
ian ecosystems along regulated rivers are still adjusting 
to novel flow regimes from human water management. 
Changes in snow melt timing, flood magnitude, and 
low flows under climate change may strengthen or 
diminish current trends in geomorphology and ecology 
on different river reaches. 

Spring snow melt flood timing 

Earlier spring floods on snow melt rivers may reduce 
riparian tree recruitment by de-synchronizing the 
spring flow peak and seed release (Rood et aI., 2008). 

Seed release in cottonwoods and some willow species 
occurs over just a few weeks and must coincide with or 
immediately follow the spring flow peak for the short­
lived seeds to settle in environments favorable for ger­
mination and long-term survival (Mahoney & Rood, 
1998; Merritt & Wohl, 2002; Stella et al., 2006). Warming 
is likely to advance seed release timing as well as 
spring flood timing, but advances in spring flood tim­
ing are likely to exceed advances in seed release timing, 
because spring plant phenology is also constrained by 
photoperiod (Rood et a1.,2008). 

Flood magnitude 

Reduced spring flood magnitude on snow melt rivers 
may dramatically alter riparian plant communities by 
stabilizing channels and exposing lower geomorphic 
surfaces, reducing the fluvial disturbance that drives 
patch dynamics, and redUcing hydrologic connectivity 
between the channel and floodplain (PoEt et al., 1997). 

Reduced disturbance can lead to channel and flood­
plain narrowing, and thus to transient increases in 
suitable establishment sites for pioneer species and 
forest expansion (Johnson, 1994). Long-term reduction 
in sediment transport and deposition and rates of 
channel migration and abandonment, however, even­
tually shrinks the areas where pioneer species estab­
lish (Scott et al., 1996; Friedman et al., 1998; Shafroth 
et al., 2002). Over time, as pioneer forests age, reduced 
disturbance favors shade-tolerant, mid- and late-suc­
cessional species (Johnson, 1998), drought-tolerant 
species on higher geomorphic surfaces, and herba­
ceous species on lower surfaces (Stevens et al., 1995; 

Merritt & Cooper, 2000). Some introduced species are 
likely to be favored, including shade-tolerant Russian 
olive <Reynolds & Cooper, 2010), drought-tolerant 
tamarisk (Stromberg et aI., 2007b), and numerous her­
baceous exotics {e.g., cheatgrass (Bromus tectornm L.), 
Canada thistle [Cirsium aroense (L.) Scop.], and leafy 
spurge (Euphorbia esula L.) (Stromberg & Chew, 1997; 
Ringold et al., 2008). 
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In contrast, increased summer and winter flood mag­
nitude in the monsoon region and increased winter 
flood magnitude in the northwestern United States may 
increase fluvial disturbance, resulting in greater geo­
morphiC complexity and patch diversity, younger and 
more heterogeneous tree age structure, lower herba­
ceous perennial abundance, and greater abundance of 
annuals (Wissmar, 2004; Stromberg et ai., 2007a, 2010). 
Increased winter floods might also increase cottonwood 
and willow recruihnent and abundance. For example, 
many cottonwoods and willows established in the 
Southwest during a period of frequent winter floods in 
the late 20th century, on surfaces created by channel 
widening and floodplain deposition following large 
floods in the early 20th century (Webb & Leake, 2006). 
More intense summer floods, however, would prOVide 
moisture too late for cottonwood and willow seed ger­
mination, and could scour away seedlings established 
following winter floods (Stromberg et al., 2007a). 
Increased summer floods would favor germination of 
tamarisk seeds, which are released throughout the 
summer (Shafroth et al., 1998), but could also increase 
tamarisk seedling mortality (Gladwin & Roelle, 1998; 
Shafroth et aI., 2010). Floods large enough to deposit 
high, thick layers of coarse sediment may create sur­
faces that support xeric pioneer shrubs (Stromberg 
et at., 1997,2010). 

Summer and base flows 

Lower late-spring and summer flows on snow melt riv­
ers may reduce survival and growth of shallow-rooted 
plants, such as seedlings and juvenile trees, that 
become water-limited during that period (Rood et at., 
2008). Rapid groundwater declines can kill riparian tree 
seedlings when root growth is insufficient to maintain 
contact with moist soil (Mahoney & Rood, 1998; Sha­
froth et al., 1998; Amlin & Rood, 2002). Even mature 
phreatophytic trees are adversely affected when water 
tables drop too far or too qUickly (Rood et at., 2003). 
Declining low flows may increase root depths of sur­
viving phreatophytes (Shafroth et al., 2000) and shift 
plant community composition toward more drought­
tolerant native and introduced species. Lower flows 
also may skew tree sex ratios; Arizona walnuts [J. major 
(Torr.) A. Heller; monoeciousl produce more male than 
female flowers under drier conditions (Stromberg & 
Patten, 1990), and male cottonwoods (dioecious) and 
box elders (A. negundo L.; dioecious) tolerate drought 
stress better than females (Hultine et al., 2007). Corri­
dors of mesic riparian vegetation will contract where 
reduced flows lower the water table and reduce soil 
moisture under higher geomorphic surfaces (Rood 
et at., 2003; Auble et aI., 2005). 

Lower base flows in monsoon rivers may have effects 
similar to, but more pronounced than, those in snow 
melt rivers, induding declines in drought-intolerant 
cottonwoods, willows, and perennial herbs, increases 
in drought-tolerant species and annuals, declines in 
canopy height and cover due to changes in species 
composition, and narrowing of the mesic riparian zone 
(Serrat-Capdevila et al., 2007; Stromberg et ai., 2010). 
Some reaches may shift from perennial to intermittent 
flow, dramatically changing community composition 
and reducing patch diversity. Introduced species toler­
ant of intermittent flow (e.g., tamarisk), may become 
dominant (Stromberg et al., 2007a, 2010; Shaw & Coo­
per, 2008), and obligate wetland species requiring a 
consistently shallow water table may disappear (Strom­
berg et aI., 1996; Castelli et al., 2000). The combination 
of lower base flows and larger floods in monsoon rivers 
may particularly benefit tamarisk over other woody 
species and annuals over other herbaceous species, 
because they are both adapted to drought and require 
disturbance for establishment (Stromberg et al., 2010). 

Interactions between direct and streamflow-mediated 
effects 

Lower summer and base flows will exacerbate effects 
of increased drought frequency and intensity on water 
availability under climate change (Fig. 3). Thus, water 
stress is even more likely to drive plant responses to 
increased [C02] and climate change in SAWNA ripar­
ian ecosystems than in upland dryland ecosystems 
(Morgan et al., 2004). Together, lower growing-season 
streamflows and increased drought will likely increase 
plant mortality, decrease growth and recruihnent, and 
shift species' relative abundances in favor of more 
drought-tolerant species. 

Lower summer and base flows also may exacerbate 
effects of warming on riparian plant heat stress, photo­
synthesis, anoxia stress and phenology by further 
increasing soil temperatures. Lower water tables reduce 
vadose zone soil moisture, which affects soil heating 
and cooling (Geiger, 1965). Furthermore, warmer sur­
face water temperatures, due to warmer air tempera­
tures (Kaushal et aI., 2010) and perhaps lower river 
stage, can increase soil temperature through heat trans­
fer during hyporheic flow (poole et al., 2008). 

Effects on riparian litter and soil processes 

Climate-driven changes in streamflow will interact with 
direct effects of climate change on litter decomposition 
and nutrient cycling in riparian ecosystems (Fig. 1). 
Warming has conflicting effects on decomposition and 
nutrient cycling, because it increases biochemical 
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reaction rates and detritivore activity (e.g., Briones 
et al., 2007) but also increases evaporation, reducing the 
soil moisture required for microbial activity (Rustad 
et al., 2001). In mesic upland ecosystems, warming 
tends to accelerate nitrogen (N) mineralization, sug­
gesting that the positive effects of warming on micro­
bial activity outweigh the negative effects of lower soil 
moisture (Rustad et al., 2001). At the same time, 
increased [C02] can increase soil microbial abundance 
by increasing root exudation of carbon-rich metabolites 
(Drigo et al., 2008), and can increase soil moisture by 
increasing plant WUE, and thus increase either micro­
bial N immobilization (Hungate et al., 1997; Dijkstra 
et al., 2010) or N mineralization (Ebersberger et al., 
2003; Dijkstra et aI., 2008). Few warming studies have 
been conducted in drylands, however, where soil mois­
ture might be more important (Dijkstra et al., 2010). In 
SAWNA riparian ecosystems, observational studies 
suggest that decomposition and nutrient cycling are 
slowest in warm, dry microc1imates, and seasons (Nai­
man et aI., 2005; Andersen & Nelson, 2006; Harms & 
Grimm, 2008; Harner et at., 2009). PrOjected lower sum­
mer and base flows and smaller spring floods under cli­
mate change increase the likelihood that the negative 
effects of lower soil moisture will outweigh the positive 
effects of warming on microbial and detritivore activity 
in these ecosystems, leading to slower decomposition 
and nutrient cycling. 

Changes in litter quality and production under 
increased [C02] and climate change may also affect 
decomposition and nutrient cycling. Increased [C02] 

tends to reduce plant litter N slightly, but not enough 
to slow decomposition (Reich et aI., 2006). Changes in 
plant community composition, however, can affect 
decomposition by altering the relative abundance of 
species with different litter chemistry (Reich et aT., 
2006). For example, a shift from predominantly Fre­
mont cottonwood litter to predominantly tamarisk litter 
can slow decomposition (Pomeroy et aI., 2000), and 
greater contributions of velvet mesquite (P. velutinn 
Woot.) and Russian olive litter can accelerate decompo­
sition (Williams et al., 2006; Harner et al., 2009). In addi­
tion, greater drought stress can reduce total litter 
production in SAWNA riparian ecosystems, leading to 
slower N mineralization and lower soil inorganic N 
concentrations (Follstad Shah & Dahm, 2008). 

Changes in flow regime will also affect nutrient 
retention and transport. Downstream N flux in 
SAWNA riparian ecosystems is largely mediated by 
inundation and surface and hyporheic flows during 
floods (Andersen & Nelson, 2006; Harms & Grimm, 
2008). Lower flood magnitudes on snow melt rivers 
may reduce downstream N flux, whereas greater flood 
magnitudes on monsoon rivers and in the northwestern 
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United States may increase downstream N flux. Lower 
soil moisture due to warming, lower summer and base 
flows, and smaller spring floods may increase N reten­
tion by reducing denitrification (McLain & Martens, 
2006). Downstream flux of less soluble nutrients (e.g., 
phosphorus) will depend on how climate and flow 
regime changes affect watershed sediment budgets. 

Changes in decomposition and N cycling may affect 
plant productivity. Low N availability limits riparian 
plant growth in at least some SAWNA riparian ecosys­
tems (Adair & Binkley, 2002). Most plant-available N in 
these ecosystems comes from litter decomposition and 
associated N mineralization or from sediment deposi­
tion and streamwater during floods (Schade et al., 2002; 
Adair et al., 2004). Slower decomposition and N cycling 
due to lower soil moisture, lower total litter production, 
and greater tamarisk relative abundance may further 
reduce plant growth under climate change. Lower soil 
moisture and decreased flooding also may alter ripar­
ian plant nutrient uptake by reducing abundance of 
mycorrhizal fungi associated with cottonwoods, wil­
lows, moist conditions, and disturbance (Beauchamp 
et al., 2006; Piotrowski et al., 2008). 

Effects on riparian animals 

Hent stress and dehydration 

Warmer maximum temperatures will increase heat 
stress in riparian animals. Terrestrial animals have an 
upper lethal limit (ULL) to body temperature (Tb), 

above which they exhibit heat torpor or coma, and 
unless cooling ensues, death. ULLs vary among species 
and with acclimatization, but typically range from ca. 
42 to 46 °C (Denlinger & Yocum, 1998). 

For riparian ectotherms (Le., most arthropods, rep­
tiles, amphibianst which control Tb behaviorally 
through orientation, movement and choice of micro­
habitat, warming is likely to alter behavior and physiol­
ogy, and may reduce survival. For example, the 
Apache cicada (Diceroprocta apache Davis), a faculta­
tively riparian, diurnally active insect and an important 
food item for the federally at-risk yellow-billed cuckoo 
(Coccyzus Ilmericanus L.), seeks shade when Tb > 39.2 DC, 
reduces Tb-raising behaviors such as flight and court­
ship 'singing' at ambient temperatures (T,,) > ca. 40°C, 
and exhibits heat-induced torpor when Tb > 45.6 °C 
(Heath & Wilkin, 1970). Unlike most insects, Apache 
cicadas also respond to Tb > 37-38 °C by extruding 
water for evaporative cooling (Hadley et al., 1991). 

Non-mobile ectotherms (e.g., eggs, pupae) may be 
particularly vulnerable to warming, because they 
cannot move to cooler areas and instead must rely on 
parents or earlier life stages to select sites with favor-
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able microclimates. For example, hawkmoths (Manduca 
soda L.) lay their eggs on the undersides of leaves of 
the facultatively riparian plant sacred thorn-apple 
(Datura wrightii Regel), where evaporative cooling from 
plant transpiration buffers the eggs from fatally high Ta 

(potter et al., 2009). Chemical cues for egg laying or 
pupation on particular plant species may become mal­
adaptive if leaf temperatures increase, for example 
because of reduced stomatal conductance under ele­
vated [C02] or an increase in plant heat tolerance and 
hence a reduction in transpiration. 

Reptiles with temperature-dependent sex determina­
tion (TSD), including western box turtles (Terrapene or­
nata Agassiz) and mud turtles (Kinosternon spp.) (Ewert 
& Nelson, 1991), also may be particularly vulnerable to 
warming. Small increases in temperature (2°C) during 
incubation can dramatically skew sex ratios in TSD spe­
cies (Ewert & Nelson, 1991). For most TSD species, war­
mer temperatures increase female relative abundance, 
which may not reduce population viability as long as 
some males are produced (Mitchell & Janzen, 2010). 
Consistent very high temperatures during incubation, 
however, may produce single-sex cohorts and trigger 
demographic collapse. 

For riparian endotherms (i.e., birds, mammals), 
which maintain Tb within a few degrees of ULL and 
prevent overheating by evaporative cooling, more fre­
quent and severe heat waves are likely to increase mor­
tality from heat stress and dehydration. Evaporative 
cooling is generally limited by size and physiology. For 
example, the elf owl (Mierathene whitneyi Cooper), a 
small raptor associated with southwestern desert ripar­
ian vegetation, has difficulty using evaporative cooling 
to maintam a normal Tb (36-38 °0 when Ta ;:::: 40 0c, 
and dies when Tb = 42.2 °C (Ligon, 1969). Furthermore, 
evaporative cooling can lead to acute dehydration. 
Evaporative water loss in the elf owl rises from ca. 3 to 
ca. 15 mg H20 g-1 h- 1 when Tn rises from 38 to 45 °C 
(Ligon, 1969). Small or young birds may be particularly 
vulnerable to dehydration during extreme heat waves 
because of their limited water storage capacity and, for 
nestlings, their lack of access to water (McKechnie & 
Wolf, 2010). For small mammals, warming may alter 
community structure, increasing abundance of more 
heat-tolerant species, decreasing abundance of less 
heat-tolerant species, and potentially altering the rela­
tive abundance of granivores, omnivores, and herbi­
vores (Terry et al.,2011). 

Changes in streamflow under climate change may 
compound effects of warming on animal dehydration 
by reducing surface water availability (Figs 1 and 4). 
Reduced summer and base flows could mcrease the fre­
quency or duration of zero-flow periods (Stromberg 
et aI., 2010) or lower water tables and reduce riparian 

wetland inundation (Stromberg et al., 1996), thus 
restricting access to water. For example, bat reprOdUC­
tion in the Colorado Front Range decreases during 
warm and dry years with low streamflow, perhaps 
because female bats require surface water near roost 
sites for adequate lactation (Adams, 2010). Low surface 
water availability may also decrease riparian bird 
reproduction (Cae & Rotenberry, 2003). 

Phenology 

Effects of warming on animal phenology in riparian 
ecosystems are likely to be similar to effects in other 
ecosystems. Across Europe and NA, warming is 
advancing the timing of butterfly first flights, frog 
breeding, and bird migration and nesting (Parmesan, 
2006). Warming is also accelerating insect development, 
leading to earlier hatching, pupation, and adult emer­
gence and more generations per growing season (Robi­
net & Roques, 2010). Furthermore, warming can 
accelerate initiation and termination of cold-season and 
dry-season insect diapause, and may sometimes de­
synchronize diapausing life stages from the critical 
photoperiods that induce diapause (Bale & Hayward, 
2010; Robinet & Roques, 2010). 

Geographic distributions 

Warming effects on riparian animal physiology, sur­
vival, behavior, and phenology may alter animal geo­
graphic distributions similarly to plants, with species 
expanding northward, to higher elevations and 
upstream (parmesan, 2006; Robinet & Roques, 2010). 
Warmer winter temperatures are likely to increase ani­
mal survival in the colder parts of SAWNA (Bale & 
Hayward, 2010), while warmer summer temperatures 
may decrease fitness in hotter areas. As in other ecosys­
tems, however, changes in some animal distributions 
may be limited by species' dispersal abilities (Robinet 
& Roques, 2010). Northward or upward dispersal to 
cooler climates sometimes may require long-distance 
mobility (e.g., flight or large size), because many 
SAWNA rivers flow east-west (Fig. 2) or contain long 
segments of inhospitable habitat (e.g., canyons with lit­
tle or no floodplain). 

Habitat quality 

Changes in riparian plant community composition, 
structure, and phenology, whether due to changes in 
[CChL temperature, precipitation, streamflow, geomor­
phology, or soil processes, are likely to reduce habitat 
quality for many riparian animals, including shelter 
cover (e.g., shade), concealment cover and nest sites 
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Fig. 4 Potential effects of elevated [CO~), climate change, and climate-driven streamflow and plant community changes (rectangles) on 
riparian animals (ovals). Arrows within the rectangles and ovals indicate the net direction of expected change. Arrows ben....een rectan­
gles and ovals indicate linkages between envirorunental drivers and animal responses, with + and - symbols indicating positive and 
negative effects, respectively, of the expected change in the environmental driver on the animal process or characteristic. For example, 
the - symbol for the linkage between aquatic habitat and food availability indicates a negative effect of reduced aquatic habitat on food 
availability, contributing to a net reduction in food. availability. Direct effects of elevated [C02) and climate change on riparian animals 
are shown with orange arrows. Indirect, streamflow-driven effects are shown with blue arrows and indirect, plant community-driven 
effects are shown with green arrows. Note that sex ratios will be affected only in reptiles with temperarure-dependent sex determina­
tion (TSD). Together, these effects will have complex, species-specific and community-specific impacts on riparian animal survival, 
recruitment, population dynamics, geographiC distributions, community composition and structure, and trophic and symbiotic interac­
tions. Not all potential linkages discussed in the text are shown. 

(Fig. 4). For example, at least four of the changes in vs. later migration with better breeding habitat (Fon­
SAWNA riparian vegetation expected under climate taine et aI., 2009). 
change are likely to negatively affect riparian birds. Other animals also may be negatively affected by 
First, lower plant structural diversity due to reduced changes in SAWNA riparian vegetation. For example, 
flooding and associated geomorphic change may butterfly species richness and abundance of phreato­
reduce bird diversity, particularly of canopy-foraging phyte-dependent butterflies decline with lower cotton­
and tall-shrub-foraging guilds (Scott et aI., 2003). Sec­ wood and willow abundance, herbaceous species 
ond, decreases in mature cottonwood stands and richness and patch diversity, and with greater tamarisk 
increases in tamarisk may reduce bird population size, abundance (Nelson & Andersen, 1999; Nelson & Wydo­
particularly of canopy- and shrub-nesting species (van ski, 2008). Likewise, reptile and amphibian diversity 
Riper et aI., 2008; Brand et al., 2010). Third, decreases in and density are lower in tamarisk stands than in other 
preferred nest trees may increase nest predation (Mar­ riparian vegetation, perhaps because of lower plant 
tin, 2007). Finally, advances in plant springtime phenol­ structural diversity (Shafroth et al., 2005). In addition, 
ogy may reduce food and refuge quality for lower total canopy cover and reduced shade due to 
Neotropical migratory birds that stop in SAWNA ripar­ greater plant water stress and altered plant community 
ian habitats en route to northern breeding areas. Spring composition may increase animal heat stress. 
temperatures are increasing more rapidly in these Changes in riparian hydrology also may reduce habi­
birds' migratory habitats than summer temperatures in tat quality for animals that rely on surface water for 
their breeding habitats, potentially leading to trade-offs shelter or reproduction. Amphibians and arthropods 
between early migration with better migration habitat that spend some life stages in water may be particularly 
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sensitive to reduced surface water, aquatic habitat, and 
habitat connectivity (Fagan, 2002; Daszak et al., 2005). 
Beaver (Castor canadensis Kuhl) and other semi-aquatic 
mammals may decline on reaches that shift from peren­
nial to intermittent flow. Floods can damage or destroy 
beaver dams (Andersen & Shafroth, 2010), so larger 
flood magnitudes on monsoon rivers and in the north­
western United States also may reduce beaver abun­
dance. Changes in beaver populations in turn could 
affect local and downstream communities, as beavers 
are formidable herbivores and beaver dams increase 
lentic habitat and reduce sediment flux (Andersen et al., 
201l). 

Climate change is likely to improve habitat quality for 
some animals in riparian areas, however. In particular, 
diversity and abundance of upland animal species may 
increase in riparian areas as riparian animal populations 
decline with lower water availability. Also, lower flood 
magnitudes on snow melt rivers may increase beaver 
dam persistence (Andersen & Shafroth, 2010) and small 
mamma! abundance (Andersen & Cooper, 2000). 
Greater tamarisk abundance and lower cottonwood and 
willow abundance also may benefit some species, such 
as bird species that appear to prefer dense tamarisk 
stands [e.g., Abert's towhee (Pipilo aberti Baird), blue 
grosbeak (Passerina caerulea L), Say's phoebe (Sayomis 
saya Bonaparte), and yellow-breasted chat (Icteria virens 
L) (van Riper et al., 2008; Brand et ai., 2010)]. 

Effects on riparian trophic and symbiotic 
interactions 

Disrupted interactions 

As in uplands, changes in riparian species distributions 
or phenology may disrupt plant-herbivore, plant-polli­
nator, parasitoid-host, and predator-prey interactions 
(Parmesan, 2006; Thackeray et al., 2010). Such disrup­
tions may pose particularly large problems for plants 
that lose access to specialist pollinators and for special­
ist pollinators and herbivores that lose access to hosts 
(Memmott et al., 2007). For example, Ute lady's tresses 
(Spiranthes diiuvialis Sheviak), a federally threatened 
SAWNA riparian orchid, may fail to reproduce if 
disassociated from its pollinators, native bumblebees 
(Bombus spp.) (Sipes & Tepedino, 1995). Similarly, cot­
tonwood leaf beetles (Chrysomela scripta F), which 
emerge from diapause with warming spring tempera­
tures and forage on the earliest cottonwood foliage or 
flowers (Andersen & Nelson, 2002), may lose access to 
food if their phenology shifts so that they emerge before 
cottonwood budburst. Changes in species distributions 
or phenology could also intensify competition or shift 
competitive dominance given fewer or different pollin­

ators, flowers, plant tissue, or prey items (Mitchell et al., 
2009). Many disrupted interactions, however, may be 
replaced by novel generalist interactions (Hegland 
et al., 2009). Wide arrays of native and introduced ripar­
ian plants, prey, and pollinators are available to form 
novel associations in SAWNA riparian ecosystems 
(Wiesenborn & Heydon, 2007; Durst et ai., 2008; Wie­
senborn et ai., 2008; Bridgeland et al., 2010). 

Consumption rates 

There are many reasons to expect that increased [C02] 

and climate change will increase riparian herbivore, 
pollinator, and predator consumption rates (Fig. 4). 

Warming may increase temperature-dependent meta­
bolic rates in ectotherms, and thus increase their energy 
demands and consumption (Gillooly et al., 2001). 
Warming also may promote wintertime and springtime 
activity (Roy et al., 2004), and increase the time that 
desert herbivores or predators spend browsing or hunt­
ing in the shade of riparian vegetation. More frequent 
or intense droughts and lower summer and base 
streamflows may intensify predation in riparian areas, 
because mammalian predators remain closer to rivers 
during dry periods (Soykan & Sabo, 2009) and prey 
organisms requiring surface water may be forced to 
aggregate in smaller areas. Reduced inundation due to 
lower flows and smaller spring floods also may 
increase small mammal populations in riparian areas, 
and thus increase herbivory and bird nest predation 
(Andersen & Cooper, 2000; Cain et aI., 2003). Further­
more, lower flows may increase predator access to riv­
erine islands (Zoellick et al.,2005). 

Lower plant tissue nutritional quality due to elevated 
[C02] also may increase herbivore consumption rates. 
Increased [C02] can reduce plant tissue N concentra­
tions, including in cottonwood (McDonald et aL, 2002), 
by increasing tissue carbon, lowering N demand, and 
lowering N supply from transpiration-driven mass 
flow (Taub & Wang, 2008). It also can increase plant tis­
sue concentrations of carbon-rich secondary metabo­
lites that reduce palatability (Bidart-Bouzat & Imeh­
Nathaniel, 2008). Insect herbivores tend to increase con­
sumption to compensate for lower plant tissue N under 
elevated [C02] (Stiling & Cornelissen, 2007). Herbivore 
growth and abundance tend to decline under elevated 
[C02] despite increased consumption, but not when 
temperatures are also increased (Zvereva & Kozlov, 
2006; Stiling & Cornelissen, 2007). 

Greater water stress also may increase consumption 
rates of insect herbivores and predators that obtain 
water from plant tissue and prey. For example, when 
SAWNA riparian wolf spiders (Hogna antelucana 
Montgomery) do not have access to moist microcli-
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mates or surface water, they increase consumption of 
field crickets (Gryllus a/ogus Rehn) to maintain their 
water balance (McCluney & Sabo, 2009). Furthermore, 
the crickets increase consumption of green (Le., moist) 
leaf litter to maintain their water balance. Because the 
spider-cricket interaction relies on plant-available 
groundwater, reductions in groundwater could affect 
plant, detritivore, and predator populations in a trophic 
cascade. 

Increased [C02] and climate change may reduce con­
sumption by some riparian species, however. For exam­
ple, greater plant water stress may increase phloem 
viscosity and thus reduce feeding efficiency of sap­
feeders (Dixon, 1998), which are common on tamarisk 
(Wiesenborn, 2005) and narrowleaf-Fremont hybrid 
cottonwoods (P. angustifolia x fremontii) (Bridgeland 
et al., 2010). Furthermore, increased (C02] may reduce 
consumption by insects that rely on (C02] gradients to 
locate fruit, flowers, prey, or ovipositioning sites (Guer­
enstein & Hildebrand, 2008), although increased [C02] 

does not reduce CO2 receptor sensitivity or host detec­
tion in hawkmoths (M. sexta L.) (AbreU et al.,200S). 

Food availability 

Changes in SAWNA riparian plant and animal commu­
nity composition may reduce food availability for many 
herbivores and predators (Fig. 4). Decreases in native 
woody phreatophytes and increases in tamarisk may 
reduce food availability for beaver (c. canadensis Kuhl), 
which prefer cottonwood and willow over tamarisk 
<Mortenson et al., 2008), and for the myriad insect her­
bivores and secondary consumers that occupy cotton­
woods and willows (Wiesenborn & Heydon, 2007; 
Durst et al., 2008; Bridgeland et al., 2010), but increase 
food availability for the tamarisk leafhopper COpsius 
stactogalus Fieber) and armored scales (Chionaspis spp.), 
which make up most arthropod biomass on tamarisk 
(Wiesenborn, 2005). Lower arthropod diversity or 
abundance in turn may reduce bird reproduction by 
redUcing bird prey availability (Bolger et aI., 200S) or 
increasing nest predation by predators (e.g., snakes, 
skunks) that might otherwise consume arthropods 
(Martin, 2007). Changes in plant community composi­
tion and structure also may reduce abundance and bio­
mass of nocturnal flying insects (Ober & Hayes, 2008), 
thereby reducing food availability for bats and other 
nocturnal aerial insectivores. Warmer streamwater and 
intermittent flows may reduce abundance of some 
aquatic insects (Lawrence et al., 2010; Sponseller et aI., 
2010), which as adults are important riparian prey 
(Richardson et al., 2010). Lower prey abundance could 
be particularly detrimental to predators such as the 
grass spider (Agelenopsis aperta Gertsch) that have 
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adapted to high prey abundance in riparian ecosystems 
by developing behaviors that maximize predator avoid­
ance rather than prey capture (Riechert & Hall, 2000). 

Indirect effects mediated by human activities 

Climate-change effects on human activities (e.g., water 
management, land conversion) and associated socioeco­
nomic drivers will strongly affect riparian ecosystems 
(Harrison et at., 2008; Purkey et at., 2008). Changes in 
water demand and environmental regulation, with or 
without climate-induced changes in streamflow, could 
trigger changes in reservoir storage, dam management, 
and groundwater pumping (Fig. 1; Vicuna et aI., 2007; 
Purkey et al., 2008; Barnett & Pierce, 2009). Many stud­
ies predict increased water demand in drylands 
because of human population increases and climate 
change OPCC, 2008), although water conservation or 
agricultural land-use change could mitigate those 
trends (Lellouch et al., 2007; IPCC, 2008). A model of 
water yield, demand, and delivery on the Colorado 
River predicted water delivery shortages (i.e., sched­
uled deliveries exceed supply) in 60--100% of years by 
2060 (Barnett & Pierce, 2009). 

Along regulated rivers, changes in water manage­
ment to maintain reservoir storage and deliver water 
to municipal, agricultural, and industrial users are 
likely to reduce flow variability, particularly by 
decreasing flood magnitude and/or frequency. These 
reductions in flooding, together with reduced sediment 
supply below dams (Syvitski & Kettner, 2011), may 
supersede the effects of other projected changes in 
flood magnitude (Table 2) on riparian geomorphology 
and ecology (Fig. 1). On some river reaches, earlier 
and larger irrigation water withdrawals could also sub­
stantially reduce late-spring and summer flows (Eheart 
& Tomil, 1999), compounding projected reductions in 
streamflow and further increasing plant and animal 
water stress. 

Human adaptation measures - actions that increase 
resilience and reduce vulnerability of natural and 
human systems (IPCe, 2007) - wilI also shape riparian 
ecosystem responses to climate change (Naiman et aI., 
2005). Adaptation options for riparian ecosystems will 
vary across watersheds and may include both proactive 
and reactive approaches (Palmer et al., 2008, 2009). Pro­
active management is aimed at maintaining or increas­
ing system resilience to climate change in advance of 
changes occurring. Examples include increasing the 
scale of protected area networks and connected private 
lands (Heller & Zavaleta, 2009), securing water rights 
for environmental flows (Palmer et al., 2008), imple­
menting water conservation measures or cropping pat­
tern adjustments (Lellouch et al., 2007; Purkey et a/., 
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2008), and restoring riparian vegetation to increase hab­
itat connectivity, promote linkages between aquatic 
and terrestrial ecosystems, expand thermal refugia for 
wildlife, and protect genetic diversity (Heller & Zavale­
ta, 2009; Seavy et al., 2009). On some regulated rivers, it 
also may be possible to modify water management 
operations proactively to mitigate climate-change 
effects on streamflow (Rood et al., 200Sa; Pahner et af., 
2009; Merritt et al., 2010). Reactive management is 
aimed at responding to ongoing or past impacts 
through active measures such as revegetation, intro­
duced species removal, and rare species protection 
<Palmer et al., 2008, 2009). Outcomes of adaptation mea­
sures can be predicted by linking models of future 
climate scenarios, land cover, water demand and water 
management (e.g., Brekke et al., 2004; Vicuna et at., 
2007; Harrison et al., 2008; Purkey et al., 2008; Rajagopa­
Ian et al., 2009) to biological response models (Harrison 
et al., 200S). 

A global assessment of major river basins identi­
fied three in SAWNA (Columbia, Sacramento, and 
Colorado) that are almost certain to need manage­
ment intervention to mitigate climate-change impacts 
(Palmer et at., 200S). Along highly regulated main­
stem reaches of these rivers, intensively managed 
and site-specific approaches will be necessary, such 
as active revegetation along the lower Colorado River 
(Briggs & Cornelius, 1995). Along reaches that might 
still receive high flows from unregulated tributaries, 
measures such as levee breaching could enhance 
floodplain connectivity (Florsheim & Mount, 2002). 
Furthermore, efforts to de-armor bends and reconnect 
abandoned channels isolated by land conversion 
could increase opportunities for rivers to meander 
and create new surfaces for pioneer forest establish­
ment. Along individual tributaries, more adaptation 
options are possible. In the lower Colorado River 
basin, where water management has already severely 
altered the main stem and virtually all tributaries, 
proactive management efforts are ongoing, including 
securing water rights, establishing protected area cor­
ridors, and institutionalizing environmental flows 
along the San Pedro (Stromberg & Tellrnan, 2009), 
Bill Williams (Shafroth et al., 2010), and Verde rivers 
(Haney et aL, 2008). 

Conclusions 

Semiarid and arid western North American riparian 
ecosystems are likely to change dramatically under 
increased [C02] and climate change. Lower late-spring 
and summer streamflows will compound effects of 
increased drought due to warming, leading to strong 
reductions in water availability. Greater water stress 

will alter plant community composition and structure, 
favoring drought-tolerant species and reducing abun­
dance of currently dominant, drought-intolerant cotton­
woods and willows. Tamarisk seems especially likely 
to increase, but other drought-tolerant species may 
increase instead if the recently released biocontrol tam­
arisk beetle (Diorhabda carillulata Desbrochers) reduces 
tamarisk abundance (Hultine et al., 2010). These 
changes in plant community composition, together 
with scarcer surface water, are likely to reduce habitat 
quality for many riparian animals, leading to lower 
riparian animal diversity and abundance and greater 
abundance of animals associated with drier conditions. 
Lower soil moisture may also slow litter decomposition 
and nutrient cycling. 

At the same time, like in uplands, warming will 
increase heat stress and alter phenology, inducing 
northward, upward and upstream shifts in geo­
graphic distributions and disrupting specialized biotic 
interactions. Furthermore, increased [C021, together 
with warming, may alter plant photosynthetic rates 
and tissue chemistry. Together, warming, reduced 
surface water, increased water stress, and altered 
plant community composition and tissue chemistry 
may increase herbivore and predator consumption 
rates. 

Semiarid and arid western North America is environ­
mentally diverse, however, and many climate-change 
effects will vary in size or direction across the region. 
At northern latitudes, projected increases in precipita­
tion may partly offset increases in water stress due to 
warming and lower summer streamflows, whereas at 
southern latitudes, projected decreases in precipitation 
are likely to intensify water stress. Similarly, warming 
is less likely to induce heat stress at cooler, northern lat­
itudes than at warmer, southern latitudes. Ecosystems 
in the monsoon region and the northwestern United 
States may have greater flood magnitudes and hence 
increased geomorphic complexity and early-succes­
sional species abundance under climate change, 
whereas ecosystems in the rest of SAWNA may have 
lower flood magnitudes and hence reduced geomor­
phic complexity and increased late-successional species 
abundance. Finally, local variation in geology and soils 
may influence climate-change effects. For example, 
changes in flood magnitude may affect geomorphic 
dynamiCS more on wide, alluvial floodplains with 
space for channel migration than in narrow, con­
strained valleys. Furthermore, ecosystems on coarse­
textured soils with low water-holding capacity, such as 
on steep stream gradients or younger geomorphic sur­
faces, may be more vulnerable to reduced water avail­
ability than ecosystems on fine-textured soils (Naiman 
et aL, 2005). 
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Climate-change effects will occur within the context 
of ongoing changes in SAWNA riparian ecosystems 
caused by flow regulation, groundwater pumping, 
deforestation, stream channelization, livestock grazing, 
nutrient pollution, and biological invasion (patten, 
1998; Brinson & Malvarez, 2002; Graf, 2006). Oimate 
change may contribute to some of these changes, and 
be moderated by others. For example, climate change 
appears likely to facilitate invasion by exotic, drought­
tolerant or late-successional woody and herbaceous 
plant species. Furthermore, on relatively pristine riv­
ers, climate change may mimic some of the effects of 
flow regulation and groundwater pumping on flood 
magnitude and water availability, resulting in even 
more widespread hydrOlogiC change. Conversely, on 
regulated rivers, flow regulation may often override 
effects of climate change on streamflow. Also, nutrient 
pollution may partly offset the negative effects of 
lower soil moisture on nutrient cycling and plant pro­
ductiVity. 

Because we lack understanding of fundamental 
niche parameters for most dryland riparian species, 
site-specific, quantitative predictions of ecosystem 
responses to increased [C02] and climate change 
remain highly speculative. In particular, our ability 
to make more specific predictions is hampered by 
lack of knowledge of (1) direct effects of [COll and 
temperature on physiology, phenology, growth and 
survival for most dryland riparian species, (2) biotic 
interactions and their effects on population dynamics, 
community structure, and ecosystem processes, and 
(3) effects of surface and hyporheic flows on soil and 
air temperatures, riparian vegetation, and soil pro­
cesses. Predictions of climate-change effects are also 
limited by uncertainty in projected (4) streamflow on 
rainfall-dominated rivers and (5) human water 
demand and water management. 

Long-term biological monitoring along representa­
tive regulated and unregulated rivers might detect 
effects of ongoing abiotic change, especially on short­
lived taxa, but will not clearly distinguish effects of 
increased rC021 and climate change from effects of 
ongoing natural dynamics, human water management, 
and biological invasion. Therefore, controlled experi­
ments are needed to test cause-and-effect hypotheses 
suggested by fleld observations. In particular, CO2­

enrichment and warming experiments, which have not 
been conducted in riparian ecosystems, could elucidate 
effects on plant physiology, water status and growth, 
trophic interactions, and soil processes. On a larger 
scale, streamflow on some regulated rivers might be 
managed to test effects of projected streamflow changes 
or environmental flows designed to mitigate climate­
change impacts. 

Globally, increased [C02] and climate change may 
affect riparian ecosystems in other dryland regions via 
some of the same mechanisms we expect to operate in 
SAWNA. Warming is hastening snow melt peak flows, 
increasing winter flows, and decreasing summer flows 
in some snow melt rivers in Europe (Amell, 1999; Hor­
ton et al., 2006), Asia (Yang et al., 2002), and eastern NA 
(Hodgkins & Dudley, 2006). Where these rivers flow 
through dryland regions, effects may be analogous to 
those in SAWNA, because low flows limit plant and 
animal survival and growth (Lamontagne et ai., 2005; 
Thevs et at., 2008; Greenwood & McIntosh, 2010), floods 
drive patch dynamics (Steiger et al., 2005), and seed dis­
persal is timed to coincide with high flows (Pettit & 
Froend, 2001; Guilloy-Froget et al., 2002) in riparian 
ecosystems around the world. However, differences in 
climate, hydrology, geomorphology, and ecology (e.g., 
Jacobs et aI., 2007; Naiman et ai., 2010; Mac Nally et aI., 
2011) will lead to unique responses to increased [C02] 

and climate change. 
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