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Abstract-This paper describes an Aerosol Robotic Network 
(AERONET)-based Surface Reflectance Validation Network 
(ASRVN) and its data set of spectral surface bidirectional 
reflectance and albedo based on Moderate Resolutiou Imag­
ing Spectroradiometer (MODIS) TERRA and AQUA data. The 
ASRVN is an operational data collection and processing system. 
It receives 50 X 50 km2 subsets of MODIS level 1B (LIB) data 
from MODIS adaptive processing system and AERONET aerosol 
and water-vapor information, Then, it performs an atmospheric 
correction (Ae) for about 100 AERONET sites based on accurate 
radiative-transfer theory with complex quality control of the input 
data. The ASRVN processing software consists of an LIB data 
gridding algoritbm, a new cloud-mask (CM) algorithm based 
on a time-series analysis, and an AC algorithm using ancillary 
AERONET aerosol and water-vapor data. The AC is achieved by 
fitting the MODIS top-of-atmosphere measurements, accumulated 
for a 16-day interval, with theoretical reflectance parameterized 
in terms of the coefficients of the Li Sparse-Ross TlIick (LSRT) 
model of tbe bidirectional reflectance factor (BRF). The ASRVN 
takes several steps to ensure high quality of results: 1) the filtering 
of opaque clouds by a CM algorithm; 2) the development of 
an aerosol filter to filter residnal semitransparent and subpixel 
clouds, as well as cases witb high inbomogeneity of aerosols in the 
processing area; 3) imposing the requirement of the consistency 
of the uew solution with previously retrieved BRF and albedo; 
4) rapid adjustment of the 16-day retrieval to the surface cbanges 
using the last day of measurements; and 5) development of a 
seasonal backup spectral DRF database to increase data cover­
age. The ASRVN provides a gapless or near-gapless coverage 
for the processing area. Tbe gaps, caused by clouds, are filled 
most naturally with the latest solution for a given pixel. The 
ASRVN products include three parameters of tlIe LSRT model 
(k L , kG, and kY ), surface albedo, uormalized DRF (computed 
for a standard viewing geometry, V Z A = 0°, SZ A = 45°), and 
instautaueous DRF (or one-angle DRF value derived from tbe last 
day of MODIS measurement for specific viewing geometry) for 
the MODIS 500-m bands 1-7. The results are produced daily at 
a resolution of I km in gridded format. We also provide a cloud 
mask, a quality flag, and a browse bitmap image. Tbe ASRVN 
data set, including 6 years of MODIS TERRA and 1.5 years 
of MODIS AQUA data, is available now as a standard MODIS 
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product (MODASRVN) which can be accessed through the Level I 
and Atmosphere Archive aud Distribution System website 
(hUp:!Iladsweh.nascom.nasa.gov/datalsearclLhtml). It can he used 
for a wide range of applications including validation analysis and 
science research. 

Index Terms-Aerosols, remote sensing. 

I. INTRODUCTION 

T HE VALIDATION of moderate-resolution ("",1 km) 
surface-reflectance products, including spectral bidirec­

tional reflectance factors (BRFs), albedos, vegeta.tion indexes, 
and others, is an important component of the Earth Observ­
ing System (EOS) [I] and the National Polar Orbiting Envi­
ronmental Satellite System (NPOESS) programs. Its goal is 
to establish the accuracy of environmental data products on 
regional and global scales for a broad range of atmospheric 
and surface conditions, The EOS program has developed a 
multilevel strategy with a strong field campaign component 
[2]-[5]. The field measurements required for direct validation 
analysis provide a detailed and comprehensive look at the 
local properties, but they usually involve significant resources, 
are subject to weather uncertainties, and are strongly limited 
in temporal and spatial coverage. Due to these constraints, 
recent validation efforts have proposed that product accuracy 
assessment should also utilize a globally representative sample 
of sites to complement the direct validation sites [6]. This con­
cept has been endorsed by the Committee on Earth Observing 
Satellites (CEOS) as the Benchmark Land Multisite Analysis 
and Intercomparison of Products (BELMANIP) [7). 

In this paper, we present an alternative validation approach 
for moderate resolution global surface-reflectance products 
over Aerosol Robotic Network (AERONET) sunphotometer 
sites [8). The idea is to collect the best ancillary infonna­
tion on atmospheric aerosol and water vapor and perform an 
independent atmosphel1c correction (AC) of satellite measure­
ments based on accurate radiative-transfer theory with high­
quality control of the input data and results. In the past several 
years, we have implemented this idea in the AERONET-based 
Surface Reflecta.nce Validation Network (ASRVN) which is 
an automated data. collection and processing system resid­
ing on a dedicated workstation. ASRVN operationally re­
ceives the satellite sensors' level IB (LiB) data (currently 
the Moderate Resolution imaging Spectroradiometer (MODIS) 
TERRA and AQUA from Goddard's MODIS adaptive process­
ing system (MODAPS) and Multiangle Imaging Spectrora­
diometer (MISR) from Langley's Distributed Active Archive 
Center) and aerosol and water-vapor infonnation from the 
AERONET server. After a successful test of data. integrity and 
completeness, ASRVN automatically performs rigorous AC on 
each sensor's data, creating a sensor-specific record of spectral 

U.S. Goyernment work not protected by U.S. copyright. 



WANG "al.: ATMOSPHERrc CORRECTION AT AERONET LOCATIONS 

BRF. albedo, and derivative products (e.g., vegetation index) 
over more than 100 AERONET sites globally. For each site, 
products are stored in a gridded fonnat at a I-km resolution for 
an area of 50 x 50 km2 for MODIS and 32 x 32 km2 for MISR. 
Currently, the ASRVN data set contains 6 years of MODIS 
TERRA data (since 2000) and 1.5 years of MODIS AQUA data. 
The AQUA data set will be completed together with MODIS 
Collection 5 land reprocessing, which produces the MODIS 
AQUA subsets for the ASRVN. 

Many of the ideas implemented in ASRVN originated 
in the MODIS bidirectional reflectance distribution function 
(BRDF)/albedo algoritJun [9], [I OJ similarly based on the time­
series analysis within 16-day intervals. In this paper, we will 
be using the term BRF rather than the more commonly used 
BRDF, which is just a factor of 7f smaller than BRF. 

The ASRVN algorithm for MISR data was presented previ­
ously [11). This paper describes the processing algorithm for 
MODIS measurements (Sections II and III). Examples of the 
ASRVN data set are given in Section IV. This paper concludes 
with a summary. 

II. ASRVN INFRASTRUCTURE 

The BRF retrievals from MODIS data use several clear­
sky measurements acquired on successive observations of the 
same area under different viewing geometries. The ASRVN 
processing starts by gridding the latest MODIS swath data (gen­
erated operationally over each AERONET site by the MODAPS 
production system) and placing the resulting ASRVN Tile in a 
16-day processing Queue, which implements a sliding temporal 
window algorithm. Note that the ASRVN Tile is distinct from 
the much larger MODIS Land Team's production Tile. Next, 
it finds a relevant AERONET aerosol and water-vapor record 
and computes radiative-transfer functions required for AC. 
After ensuring the quality of input data by filtering clouds and 
spatially variable aerosols, the ASRVN algorithm perfonns AC 
and checks the quality of the final solution. The next three 
sections will describe preprocessing steps preceding the BRF 
retrieval. 

A. Ancillary Data 
'f 

AERONET sunphotometers sample the direct solar radiation 
every 15 min and the diffuse sky radiance over a wide range of 
angles every 60 min during the daytime. AERONET's automated 
processing sysrem generates aerosol optical thickness (AOT) 
and column water vapor from the direct solar measuremems. 
A typical AOT uncertainty for a field instrument is 0.01-0.02 
and is spectrally dependent. The inversion algorithm [12] uses 
almucantar sky measurements to retrieve aerosol microphysical 
properties (particle size dist.ribution and refractive index) and 
concentration. AERONET applies several tests to ensure the 
reliability of ret.rievals, such as SZA ? 45° and AOTo.44 ? 
0.4. and that there were at least 21 independent angles used 
in each inversion. The tests analyze the sensitivity of retrievals 
to the single scattering albedo and to the phase function at large 
scattering angles. These quality assurance (QA) tests signifi­
cantly reduce the number of complete aerosol characterization 
records, as compared with the number of AOT records. 

The ASRVN algorithm starts with the selection of 
AERONET aerosol optical thickness and column water-vapor 
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values within 30 min of satellite overpass. If these conditions 
are met, the algorit.hm selecLS the inversion record with aerosol 
microphysical parameters and size distribution within 2 h of 
overpass. Otherwise, it uses an aerosol climatology model for a 
given location derived from multiyear AERONET statistics of 
reliable retrievals [13]. Because full AERONET inversions are 
less accurate when aerosol concentration is low. the climatology 
background aerosol model is always used in our algorithm for 
clear atmospheric conditions (currently defined as AOTo.44 S 
0.3). Our testing and earlier prototyping with MISR data [11] 
demonstrated that the aerosol climatology significantly im­
proves the stabiliry of the t.ime series of derived surface albedo. 

Following the selection of aerosol parameters. the ASRVN 
algorithm calculates the aerosol optical thickness (AOTMIE ), 

single scattering albedo, and scattering phase function using 
a lookup table approach [14]. Depending on the AERONET 
sphericity index, either a spherical (Mie) aerosol model or a 
model of spheroids is used. The aforementioned calculations 
provide the spectral dependence of extinction (AOT1v!IE) in the 
MODIS wavelengths. However. the AOT from direct solar mea­
surements may differ from AOTMIE for a number of reasons, 
from the time difference between inversion and direct AOT 
measurement to uncertainties associated with the AERONET 
inversion algorithm [15]. For this reason, AOTJl.HE is further 
scaled by fitting it to the measured AOT at three AERONET 
wavelengths (0.44, 0.67, and 0.87 pm). Once the aerosol optical 
parameters are defined, the radiative-transfer model SHARM 
[16] calculates the required radiative-transfer functions for the 
specific water-vapor and spect.ral response functions of the 
MODIS TERRA or AQUA instrument using the Interpolation 
and Profile Correction method [17]. A pixelwise correction 
for variations of surface elevation (atmospheric pressure) is 
pelfonned using a spectral interpolation method [18]. 

B. Implementation of Time-Series Processing 

To execute time-series processing (sliding window algo­
rithm), ASRVN first grids MODIS LIB calibrated and geolo­
cated data to a regular [-kIll grid. We use the MODIS land 
gridding algorithm [19] with minor modifications that allow 
us to better preserve the angular anisotropy of signals in the 
gridded data when measured reflectance is high, for example, 
over snow, thick clouds, or water with glint. Next, gridded 
MODIS data (Tiles) are placed in the processing Queue, which 
can hold up to 16 days of successive measurements. The 
ASRVN processing uses both individual grid cells, also called 
pixels in the following sections, and fixed-size (25 x 25 km2 ) 

areas or blocks required by the cloud-mask (eM) algorithm. In 
order to organize such processing, we developed a framework 
of C++ classes and structures (algorithm-specific containers). 
The class funct.ions are designed to handle processing in the 
various time-space scales, for example. at the pixel or block 
level, and for a single (last) day of measurements or all available 
days in the Queue, or for a subset of days which satisfy 
certain requirements (filters). The data st.orage in the Queue 
is efficiently organized using pointers, which avoids physically 
moving the previous data in memOl)' when the new datil anive. 

The structure of the Queue is shown SChematically in 
Fig. I. For every day of observations, MODIS measurements 
are stored as Layers for reflective bands 1-7 and thennal 
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Fig. I. SrruClUre of the Queue for ASRVN processiug. The Queue. designed 
for the sliding window algodthm, stores up to 16 days of gLidded MODIS 
ob.~ervatjons at a I-kin re~olution. The eM algorithm uses MODIS bands 1-7 
and 31-32, whieh are slored as Layers (donble-indexed arrays) shown in the 
npper left corner. A dedieated Q-memory is allocated (0 store the ancillary 
informatjon for the eM algorithm in RejcfIl structure, such as a reference clear­
sky image (Rejcm) and the results of dynamic land-water-snow classificatiou 
(mash_LM/S). This information is updated with latest measurements (d<ly 
L) once the given block is found cloud free, thns ad<lpting (Q changing 
snrface conditions. TIle Q-memory also stores results of previous reliable BHF 
retlievals, or AC, foc MODIS bands 1-7. 

bands 31-32, all of which are required by the CM algorithm. 
Aside from swring gridded MODIS data (Tiles), the Queue has 
a dedicated memory (Q-memory) which accumulates ancillary 
infonnation about every block and pixel of the surface for the 
CM algorithm (Refcrn data structure). It also keeps infonnation 
related to the history of previous retrievals, such a~ surface 
BRF parameters and albedo. Given the daily rate of MODIS 
observations, the land surface is relatively static over most 
16-day periods. Therefore, the knowledge of the previous sur­
face state significantly enhances both the accuracy of the cloud 
detection and the quality of AC by imposing a requirement of 
the consistency of the time series of BRF and albedo. 

C. Data Quality Control: CM and Aerosol Filter 

From the start, ASRVN was designed to work with a multi­
pixel area rather than a single pixel centered at an AERONET 
location in order to proVide optimal visual control over the 
input and output results. The visual analysis of red-green-blue 
(RGB) i mages is su perior for compl ex data qual ity assessment 
and troubleshooting situations which is rarely achievable with 
a pixel (or poim)-Ievel analysis. 

Although AERONET produces an internal CM (20], it is not 
sufficient for AC over the 50 x 50 km2 processing area. For 
example. the sunphotometer may provide AOT measurements 
from a direct sun view through a gap in the clouds. Usually, 
the sun photometer's time of measurement differs from satellite 
overpass time, in which case. changes in cloudiness may have 
occurred. For these reasons, we implemented a new multiangle 
implementation of atmospheric correction (MAIAC) CM algo~ 

rithm (21] as part of the ASRVN processing. This algorithm 
uses the time-series analysis and an image-based rather than 
pixel-based analysis. It explicitly addresses the problem of 
cloud searching by identifying a clear-sky comparison target. 

MAIAC CM constructs the reference clear-sky image of the sur­
face and stores it along with other ancillary infonnation about 
reflectance and brightness temperature for every surface block 
(25 x 25 km2). This ancillary infonnation, required for cloud 
detection, is continuously updated with the latest cloud-free 
measurements. This allows the reference image to dynamically 
adjust to gradual (seasonal) and rapid surface changes caused 
by snowfall, fires, floods, etc. The CM algorithm is enhanced 
by an internal dynamic land-water-snow classification. which 
allows processing flexibility over varying surface types. 

Our experience with MODIS data processing dictated 
the need for additional data screening. This is required 
when aerosols have significant spatial variation and a single 
AERONET AOT value does not represent the full processing 
area, as well as in cases of undetected, usually semitransparent 
and subpixel, clouds. This screening was implemented through 
an "aerosol filter." Using the Icnown surface BRF from previous 
retrievals, the algorithm computes the pixel-level AOT in the 
blue band from the latest MODIS measurements. The AOT re­
trieval is a fast algorithm based on a lookup table precalculated 
for a standard continental aerosol model. The computed AOT 
is used solely to assess the spatial homogeneity of aerosols 
over the processing area and to find deviations. which usually 
indicate previously undetected clouds and sometimes spatially 
varying aerosols. Specifically. the algorithm generates an AOT 
histogram from the noncloudy pixels, filters the highest 20% 
values as possibly cloudy, and finds the average value (AOTa\.-) 

for the remaining 80% of the pixels. This AOTav is assumed 
to represent the average clear-sky aerosol loading over the 
processing area, which should con'espond to the AERONET 
AOT. The AOTav is used next to further filter "suspicious" 
(contaminated) data as follows. If the atmosphere is clear 
(AOTav < 0.25), then the algorithm fitters only pixels with the 
high AOT values exceeding the average by 0.15 or more. This 
threshold was determined through trial and enor. Otherwise, it 
filters the high and low values symmetricaUy if the difference 
with AO Tav exceeds ±0.15. This relatively simple technique 
aUows us to filter sub pixel clouds, contrails, and other fonns of 
thin cirrus and semitransparent clouds. With the introduction of 
this additional filter. we witnessed a dramatic enhancement in 
the quality of the ASRVN AC. 

Fig. 2 shows examples of the CM algorithm and aerosol 
filler for the Goddard Space Flight Center (Greenbelt, MD. 
U.S.) site, It shows that the CM algorithm captures most of the 
opaque clouds, whereas the aerosol filter captured additional 
subpixel and semitransparent clouds and cases of spatially 
variable aerosols. The example at the bottom of Fig. 2 also 
shows the detection of cloud shadows by the MAIAC CM algo­
rithm. Shadows are detected with a simple threshold algorithm 
which compares the latest MODIS measurement (pmCab) with 
the predicted top-of-atmosphere (TOA) reflectance from the 
previously retrieved BRF model parameters (pprcd) 

IF pmeas < ppTcd - 0.12 => CLOUD_SHADOW. 

Here, we use a MODIS wavelength of 1.24 porn (band 
5) which experiences minimal atmosphelic distortions and is 
usually bright over land so the change of reflectance due to 
cloud shadow can be easily detected well above the sensor noise 
level. 
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MODIS TOA 
RGB images NBRF eM IBRF AOD 
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Reproducible 
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thin cirrus clouds 
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homogeneous 
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Fig. 2. Example of ASRVN processing for GSFC, U.S., 2006. The rwo left 
columns show the TOA gridded ROB MODIS TERRA images for three differ­
ent sequences of observations. TIle two left images are differently normalized 
to help distinguish clouds. The fourth column shows the lotal generated CM 
(CM legend: (Blue) Clear, (red) cloud, (yellow) possibly cloud, (dark red) cloud 
shadow, (gray) aerosol fiIter). TIle last col umn shows the aerosol optical depth 
(AOO) retrieved from the last day of measurement, which is used in aerosol 
filter. The AOO is shown using a rainbow palette with pink and red representing 
the minimum and lnaximum values, respectively. The third and fifth columns 
show the results of ASRVN AC (see Section HI-C). 

III. AC 

Once the CM, enhanced by the aerosol filter, is applied, the 
ASRVN algorithm filters the time series of MODIS measure­
ments for every single pixel and places the remaining good 
data in a .'container." The container stores measurements along 
with computed Radiative Transfer (RT) functions for the c1oud­
free days of the Queue. If the number of good measurements 
exceeds three for a given pixel (see Section III-B). then the 
coefficients of the Li Sparse-Ross Thick (LSRT) BRF model 
[22] are computed. The LSRT model is used in the MODIS 
BRDF/albedo algorithm [9], [10]. 

A.	 Inversion for LSRT Coefficients 

In the current operational MODIS land processing, the BRF 
is determined in two steps: First, the AC algorithm derives 
surface reflectance for a given observation geometry using a 
Lambertian approximation [23]. Next, three LSRT coefficiems 
are retrieved from the time series of surface reflectance accu­
mulated for a 16-day period [9J. The Lambertian assumption 
simplifies the AC but imparts biases which depend on obser­
vation geometry and atmospheric opacity. Tests show that the 

Lambertian assumption leads to a more Lambertian BRF shape 
while the true BRF is more anisotropic [24]. 

The ASRVN algorithm derives surface LSRT coefficients 
directly by htting the radiative-transfer solution to the measured 
TOA reflectance accumulated over a 4-l6-day period. The 
inversion is based on a high accuracy semianalytical Green's 
function solution [25], [26], which, in combination with LSRT 
BRF model, provides an explicit parametelization of T~A 

reflectance in tenus of the sUlt"ace BRF mOdel parameters K = 
{kL,kG.kV}T. According to the derivation provided in the 
Appendix. the TOA reflectance can be expressed as 

R(Mo, J.L 'P) = RD ({to, Ji, :p) + kLpL (PO. II) 
+ kG pG (Jio, Jt, 'P) + kv pV (Jio, Ji.,..p) 
+ Rn1eJio. {t)	 (1) 

where R D is the atmosphe11c (path) reflectance and Rnl is a 
small nonlinear term proportional to the product of the suIt'ace 
and spherical albedos of the atmosphere (Rn I ex qCO). Func­
tions pL, pV, and pG depend on geometry and atmospheric 
conditions. They are weakly nonlinear in k-coefficients through 
the multiple reflection factor 0< = (1 - qcO)-l. 

The quasi-Iinearfonn of (1) leads to a very efficient iterative 
minimization algorithm 

RAISE = "(r(n) _pLkL(n) _ p Vk V (Il) _ p G kG(n))2 
. L J J J J 

J 

=	 min. r(n) = R - R D _ Rnl(n-l) (2) 
(I?) 

where index j denotes the measurements for different days and 
n is the iteration number. Equation (2) provides an explicit 
least-squares solution for the kemel weights. In matrix fonn, 
the solution is written as 

(3) 

where 

" pGpL
~ J J 
J 

2: (pp)2A= 
J 

2:P',i pG 
.	 J J 

J 

ben) = 

In the first iteration, the small nonlinear teon is set to 
zero, Rjl(O) = 0, and the multiple reflection factor 0: (see the 

Appendix) is set to one, 0«0) = 1. These parameters are updated 
once after the BRF coefficients are calculated in the first itera­
tion, Except for snow-covered suIt'aces, the problem converges 
with high accuracy in two iterations because rhe nonlinear tenus 
are small. Currently, the ASRVN algorithm does not make 
retrievals over snow. 

Prior to inversion. the algorithm checks if the data set 
has a sufficient angular sampling. The MODIS operational 



2454 IEEE TRANSACTIONS ON GEOSCIENCE AND REM(YrE SENSING. VOL. 4i. NO.8. AUGUST 2009 

BRDF/albedo algorithm [9] makes an inversion if at least 
seven cloud-free observations are available during the 16-day 
period. We studied this problem experimentally using MODIS 
data for a number of AERONET sites, varying the minimal 
required number of measurements (from three to ten) and 
testing different metrics of angular sampling. One metric used 
the magnitude of the determinant of the inverse matrix A 
which shows how different the sampling angles are. Although 
such analysis is, perhaps, most straightforward theoretically, we 
found it often too restrictive. In the end, a simple criterion was 
chosen based on the range of the cosine of the view zenith an­
gle (IJmax - IJmin 2:: 0.2), which ensures robust and consistent 
retrievals. 

The described algorithm [(1 )-(3)] has a high computational 
efficiency. Compared to the radiative-transfer computations, the 
time required to evaluate functions Fm(m = L, V, G) and R nl 

is negligible. The integrals required for these functions (see the 
Appendix) need to be calculated only once regardless of the 
number of iterations. Finally, small variations of tbe viewing 
geometry across the processing area are neglected, and the RT 
calculation is done once per observation using the geometry of 
the central pixel of the subset. 

B. Solution Selection. ana Upd.ate 

Although the LSRT model leads to an efficient BRF re­
trieval algorithm, there are several caveats associated with this 
model. The LSRT kernels are not orthogonal, are not positive­
only functions, and are normalized in a somewhat arbitrary 
fashion that is not linked to radiative-transfer theory. These 
factors reduce the stability and uniqueness of the solutions, 
such that small perturbations in measurements may lead to 
significantly different solutions. The high goodness-of-fit at 
the measurement angles does not guarantee the correct shape 
of the retrieved BRF and may result in negative BRF values 
at other angles. The albedo, being an integral function of 
BRF, is particularly sensitive to an incorrect BRF shape. For 
these reasons, we developed several tests to remove unrealistic 
solutions. 

The initial validation of the solution (see Fig. 3) checks that 
the maximal difference over all days of the Queue between 
measured and computed TOA reflectance does not exceed a 
specified threshold (!RMeas - RLSRT I > 0.08). The day (mea­
surement) with the highest deviation is excluded from the 
Queue, 31ld the inversion is repeated. If the number of mea­
surements goes below four after tbe exclusion, no retrieval will 
be made for this pixel. 

If a solution provides a good agreement with measurements 
for all days. the algorithm verifies that values of the direct­
beam albedo (q) at SZA = 15c 

, 45°: and 60° are positive. 
Finally, the new solution must be consistent with the previous 
solution: Iq(45°) - qPrev(45°)1 < 6.(A), where 6. is the band­
dependent threshold currently equal to 0.04 (blue), 0.05 (green 
and red). 0.1 (for the spectral region of 0.8-1.6 Ilffi), and 0.05 
for the shortwave infrared band (2.1 pm). The consistency 
of the time series of BRF and albedo is characterized by a 
status index. Initially, the confidence in the solution is low 
(.status = 0). Each time the new retrieval agrees with the 
previous retrieval, status increases by I. When status 2:: 3, the 
retrieval is considered reliable. 

The thresholds (0.08 and 6.(A) in the LSRT inversion 
routine are selected, on the one hand, tight enough to reject 
most of undetected clouds, which remain the dominant source 
of errors, and sufficiently loose. on the other hand, for the 
solution to adapt to the surface change. The most pervasive type 
of change is seasonal va11ations, related to the spring green­
up and fall senescence at the northern latitudes or greenness 
variations caused by wet and dry seasons in the tropics. The 
total seasonal variation of reflectance (e.g., see Fig. S) is about 
several absolute percent in the visible bands and is significantly 
higher in the near infrared (",0.1-0.2). The ASRVN thresholds 
for the daily variation are selected accordingly. and our analysis 
of a large volume of processed MODIS data confillliS that the 
ASRVN algorithm does not reject measurements when the sur­
face is changing, even in the agricultural regions characterized 
by a rapid reflectance change during harvesting. 

When the new solution is validated, the coefficients of 
the BRF model and direct-beam albedo q(45°), stored in the 
Q-memory, are updated. The update is done with relaxation, 
designed to mitigate random noise ofretrievals 

Rfew = (R~ew + Rrre") /2. (4) 

This method of update increases the quality of the BRF 
and albedo product when the surface is relatively stable, but 
it delays tbe response of the solution to surface changes. 

Often, the solution for some pixels or the full area cannot 
be produced because of the lack of clear-sky measurements. 
In these cases, we assume that the surface does not change, 
and we fill in data gaps with the previous solution for up to a 
32-day period. In most cases, this assumption of a stable surface 
is reasonable. The gap-filled pixel is marked as "Extended" in 
the QA value. with parameter QA.nDelay giving the number of 
days since the last update (see Section III-F). 

C. ASRVN Products 

The ASRVN computes two main products at a 1~krn resolu­
tion for seven SOO-m MODIS bands, the set ofBRF coefficients, 
and the surface albedo. The albedo is defined by (ASa) as a 
ratio of surface reflected to incident radiative fluxes. Thus. it 
represents a true albedo at a given solar zenith angle in ambient 
atmospheric conditions, the value which can be directly com­
pared to ground-based measurements. 

ASRVN also computes several derivative products useful for 
science data analysis and validation. 

1) NBRF-a BRF normalized to the common geometry of 
nadir view and SZA = 45° This product is analogous 
to the MODIS nadir BRF-adjusted reflectance product 
(part of the MOD43 standard product suite). With the 
geometry variations removed, the time series of NBRF 
is useful for studying vegetation phenology, pelfotll1ing 
swface classification, etc. 

2) lBRF-an instantaneous (or one-angle) BRF value for 
the specific viewing geometry of the last day of observa­
tions. In essence, IBRF is a reflectance which would be 
measured if the atmosphere were absent. This product 
is calculated from the latest MODIS measurement. as­
suming that the shape of BRF, known from previous 
retrievals, did not change. To illustrate the computation of 
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Fig. 3. Block diagram of MODIS AC algorithm. 

IBRF, we rewrite (l) for the measured TOA reflectance as 
follows: 

R Surrwhere combines all surface-related tenns and 
can be calculated using the previous solution for BRF 
(BRFA) and AERONnT aerosol information. b is a 
spectrally dependent scaling factor. Then 

This algorithm [(6)] will be refetTed to as scaling. This 
description was given for the purpose of illustration. In 
reality, R Surf is a nonlinear function; therefore, comput­
ing parameter b>, and IBRF is done accurately using the 
formulas given in the Appendix. 

The algorithm computing scaling coefficient (and IBRF) 
is shown in Fig. 3 on the right. First, the algorithm filters 
measurements which differ from the rneoretically predicted 
TOA reflectance based on the previous solution (R~SRT) by 
more than a factor of ~(A). Then, the scaling coefficients 
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TABLE I 
ASRVN PRODL'CT SUITE 

!'roduct Name Dllta Type Dimensions DcscrirtioDs :\<IODTS Product Counterpart 
Cloudtv1;·-csk"'--+---=D::-:FNT=-:::O:-~-:Cl'::TTNc.,··::::T-;:-8-+--:-S70x--=5C:O-+C::7'!o-u--=dc-n-la-sk-;-;r,o-,e7"ld:-'.--=t1c-le-d7"e-::fjc-n--:jlic-- -o-;:"r-:-M:C:--=D:C:3C":Sc-c7"io-u-:d7M7"a-s--:k------'---------,on O

values is s!loy"n i.n Tuble 11. ~' 
NBRF Bidirectional reflectance factor MOD~3B4 Nadlr BRDF~Adjusted R~fleclance (1\B.>.R) 

nonnali7.ed to SZA~45" and nadir 
50.\SOx7DFNTJLOAT32 

VJm', ! 

;;O)(SOx7 Surface albedo at a given solar i A combination of MOD43lB black·sky and wlliic·sky : 
zenith angk i.n ambienl I albocdo weighted I.\iHh respective rdative dirccl ~u,d diffuse. 
atmospheric eondilions. incident fluxes. . 

IBRF i DFNT .. I'LOAT32 50)(50)(7 

Albedo OFNT.FLOATJ2 

Instantaneous iOt one·angle) J3RF MOD09 Surface relleClance I 
lor spccitic viewing geometry of 'I 

~l;;,a:~~'1 :~~:;:~~,li:neS;SOlrOPie i M0D43Bl BRDF/Albedo Model Par~-e-te-r;.---·--!Kis(l DFNT _FI.OAT32 50xSOx7 
coetT!eient. '
 

Kvol DFNTJLOAT32 5Ox50x7
 ERr model parameter, the: ; MOD43B 1 BRDF/Albedo Model Parameter, ! 

..RO~~~"'- -I ·-tic, ···50""_· g:~~:;~~'jI;"':~d~~N,-c----___n___.n j 
are computed, and the consistency requirement is verified as 
0.5 < b), < 2 in the usually dark visible bands and 0.8 < b), < 
1.2 in the bright near-infrared band. The scaling coefficient's 
range of variability is roughly consistent with the thresholds 
for the albedo variations discussed in the previous section. If 
all conditions are satisfied and the stat'l1s of the pixel is high 
(status ~ 3), then the LSRT BRF parameters of the pixel 
stored in the Q-memory are updated with the scaled solution 

(7) 

Based on its definition, IBRF is well suited for the 
validation of the surface-reflectance product of the oper­
ational atmospheric-correction algorithm (standard product 
MOD09 [23]). 

The CM, the ROB browse images for MODIS TOA re­
flectance and for the ASRVN NBRF and IBRF, and the QA 
flag are also standard parts of the ASRVN product suite. The 
products are saved in hierarchical data fonnat (HDF-EOS) 
files, which can automatically keep geolocation information 
and allow data to be ported to virtually any computer platform, 
regardless of the byte order of the native platform. A list of the 
ASRVN products and their MODIS product counterparts are 
given in Table I, and the definition of the CM values is provided 
in Table II. 

D. Update in Case ofRapid Surface Change 

TIme-series processing is intrinsically controversial when a 
surface changes rapidly. Since inversions are generally ill-posed 
problems, one desires all available cloud-free measurements 
and a maximal time window in order to reduce the RJv[SE. 
This approach, which reduces the impact of noise in the data 
(including that of gridding and of residual clouds) and which 
ensures a more robust BRF shape, is best when the surface is 

TABLE II 
CM FIELD DcflNlTlON 

V:I~;~---' Definition ..-----.._~ 

e_1 I Clear 

f-- ._~__ ._ ·_~)~~~I.b~~·_~I~~ __ . __ .. __ ~__ .. ._. 

I
=1 

I ~ POSSlbl) c10llcy 

, "gray" area around cloud pixel, or inhomogeneous aerosol. 

! CJ.eaI ", aler -~ 

1] 

6 

10 

i 4 Cloudy 

S Cloud shadow 

stable throughout the accumulation period. For example, this 
is the case for natural ecosystems in mid latitudinal summers. 
In contrast, detecting and tracking surface changes like spling 
green-up, agricultural harvesting, orfaJ] senescence requires the 
least possible number of days in the inversion Queue. Such re­
trievals may have a considerable amount of spatial and spectral 
noise. Indeed, it is difficult to assess tbe reliability of solutions 
when the surface reflectance is changing rapidly or abruptly, 
particularly given the possibility of data gaps due to clouds. 

While tbe response of the 16-day Solution may be delayed, 
the IBRF tracks spectral changes immediately. The update of 
Q-memory with the latest measurements by (7) was found to 

significantly accelerate the response of LSRT coefficients (X),) 
and, hence. of the NBRF, to changing surface conditions. Yet, 
in some cases, we found this insufficient. To amend results in 
these cases, we added a separate update of the Q-solution with 
IBRF based on change detection. This path is shown at the 
bottom of Fig. 3. Usually, seasonal surface changes related to 
the vegetation cycle are accompanied by a correlative change 
in the red-NIR bands, for example, a simultaneous decrease 
of red and increase of NIR reflectance during green-up and 
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TABLE !II 
QA FIELD DEFINITION 

Range Bit-eode definition
 

00-11
 00 . Good quality 

aI - acceptable quality 

10 - BRf parameters and NBRF "r, filled witll prc"iou6 rcsuhs, IBRF is 1101 cioated 

II - 1>:0 rdrieval is made 

0-1	 i () - Not scaled
 

! 1·- scaled
 

0-3 I , ']11e number of davs since last update of Q-memorv
 ,,_ .__._.._.._.._.. .!__.__.._.._.._. ... ._..: ._._._._. . .__. __'_. .__._._.._..__ , c ••_. ·._••_ ••_ ••_._._._._•• ~·n _ ••_._ 

00-1 ,	 00 - [he BRF consistency parameter s(aTW ='0
 

01 - -,WillS =1
 

10 - ,faiIlS =2
 

11 - SUlllIS >2 (reli"ble solutjclTl)
 

0-1 0 - no adjacenl. cloud
 

I - tbls pi~,c1 is adjacent Lo a cloud} pi:-.el
 

0-1
 0 -the c:llculared IBRF 16 consistent w([h the model prediction 

1 -- the calculated lBRF is not consiskTll with the model pr~dictioJl---'---------_._­
O-! 0 - the PiXel is ckar
 

I - Ihe pixel is eloudy
 

the opposite changes during fall senescence and defoliation for 
broadleaf forests. In our case, the change detection is based 
on the top-of-canopy normalized difference vegetation index 
(NDVI) [27J. The scene-average NDVI is calculated using 
the IBRF (N DVI I) and then is nonnalized to a standard 
viewing geometry of NBRF. It is compared to the scene-average 
,!IfDVIQ calculated using the NBRF stored in the Q-memory 
(previous reliable solution). A change is defined as when the 
difference between the two values exceeds ±0.01. At the same 
time, the red and NIR reflectance should change accordingly. 
For example. the following set of rules defines the change 
during spring green·up: 

NDVI1 -NDVIQ >0.01. Pked -P~ed <0, P~lR -P~IR>O. 

Such an approach filters fluctuations in NDVI caused by 
factors unrelated to the vegetation signal, such as residual 
cloudiness or undetected cloud Shadows. Once the change is 
detected, the Q-memory is updated using (7). Empirically. we 
found that this approach, which is responsible for 10%-' 5% 
of all updates, performs robustly at different global AERONET 
locations, for example, in North America, Eurasia, or Africa. 

The NBRF and albedo are also updated following an update 
of j{-\ coefficients. This method, which requires only one last 
day of measurements when the BRF shape is reliably known, 
is similar to the scheme used in the MODIS BRDF/albedo 
algorithm [10], and its reliability has been tested with a 
global composite Advanced Very High Resolution Radiometer 
(AVHRR) data set [28]. An advantage of this strategy is that, 
once initialized, the algorithm provides a near gapless coverage 
and a continuous time series of NBRF and albedo. 

Aside from providing a faster response to surface change, 
the developed update strategy assures fast removal of retrieval 
artifacts. mainly residual clouds, which is the most common 
problem. 

E.	 Seasonal Ancillary BRF 

When no reliable retrievals are made during the past 
32 days, which is usually caused by high cloudiness, the pre­

vious retrievals are considered unreliable, and the Q-memory is 
refreshed with fill values. After that, the algorithm may take 
a considerable amount of time to reinitialize, during which 
time, no results will be produced. To remedy this situation. we 
developed the historical I-km resolution BRF database from 
five-year retrievals, which is used for BRF scaling when the 
Q-memory is being refreshed. This idea of historical backup 
BRF, providing the angular shape of function, was initially pro­
posed and implemented in the MODIS BRDF/albedo algorithm 
[10]. The ASRVN BRF database contains one set of spectral 
k-coefficienr.s for every pixel for each of the four calendar 
seasons. Initially, the database is built from a multiyear run of 
ASRVN. The images used for averaging are selected according 
to the standard deviation of NBRF (O'NBRF) computed for the 
processing area. Empirically, we found that, with our data QA, 
the top 20% of images with the highest standard deviation 
usually contain artifacts from residual clouds or unreliable BRF 
solutions, whereas the remaining 80% of retrievals have a good 
quality. Thus, for each site and every season, we first generate 
the histogram of O'NBRF. find the 80% threshold, and average 
the images with 0' values lower than the threshold. 

Once the seasonal BRF database is created. it is suppOlted by 
an offline background algorithm which updates it with the latest 
good quality solution. 

F	 QA Flag 

For each execution, the algorithm creates a pixel-level QA 
flag to indicate the overall qualiTy and the imema[ processing 
path. The QA information consists of 16-biT compound bi t 
fields, as summarized iu Table III. 

The QA.overall field indicaTes the overall data quality. Four 
values are possible. 

1)	 Good. This means that the status of solution is three or 
greater. In other words, at least three of the last LSRT 
retlievals agreed, and the calculated IBRF was found to 
be consistent with the model predictions. 

2) Acceptable. In this level, the status is not high (~ 2), 
but the calculated IBRF agrees with the model prediction. 
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This case may represent a good solution where only a few 
retrievals are available because of a gap in AERONET 
data or clouds. 

3)	 Extended. In this case, either the solution was not pro­
duced because of a lack of clear-sky measurements or 
the calculated IBRF did not agree well with the model 
prediction. In this case, the previous reliable solution for 
a given pixel is used to fill in the values of the LSRT 
coefficients and NBRF. TIle IBRF in this case is not 
produced. 

4)	 Not created. This usually happens at the beginning of 
processing when the Q-memory is not yet initialized. 

The field QA.nDela.y gives the number of days since the 
last update of the Q-memory. If QA.nDelay = O. then this 
pixel contains the most recent retrieval. If the Q-memory was 
not updated for 32 or more days, the information for a given 
pixel will be overwritten with the fill value. If the solution is 
calculated with (7), the QA.scale field will be set to one to 
indicate that the solution is "scaled" from the previous reliable 
retrieval. The value of the CM for a given pixel is stored in 
the field QA.cloud. We also mask pixels which are adjacent 
to cloudy pixels, where greater errors in the AC are expected. 
For such pixels, the QA.adjCloud field is set to one (the default 
value is zero). 

IV PROCESSING EXAMPLES 

We selected three AERONET sites, Goddard Space Flight 
Center (GSFC, 38.9925 ON, 76.84 OW), Mongu, Zambia 
(15.25 0S, 23. I5 0E), and Solar Village, Saudi Arabia (24.9 [ ON, 
46.41 °E). to illustrate the ASRVN data set. These sites have 
very different land cover types, atmospheric conditions, and 
seasonal variations. 

•	 The GSFC site is located in a northern suburb of 
Washington, DC. It is a mixture of urban residential area, 
small deciduous broadleafforest stands, and smaJi patches 
of agricultural cropland. 

•	 The Mongu site is located on the eastern side of 
Zambezi River in westem Zambia. The westem part of the 
area is a floodplain mostly covered with grasses, and the 
eastern part is mainly a sandy soil with sparse vegetation. 
Significant biomass burning takes place in August and 
September. In the wet season (November-March), this 
area has a high cloudiness. 

•	 The Solar Village site is a desert area with stable surface 
conditions. The dominant aerosol source is dust. 

In the following, we provide several examples to demonstrate 
ASRVN products, data quality, and potential applications. For 
this study, we exclusively used MODAPS Collection 5 data. 

A.	 NBRF Time Series 

The NBRF product has been corrected for both atmospheric 
effects and variations of view geometry. Thus, NBRF variations 
shOUld be closely related to changes in surface conditions. 
Fig. 4 shows the seasonal dynamics of the NBRF images 
for the three sites. The "true color" images are composed of 
equal weights from the red, green. and blue spectral bands. 
The columns show the gridded TOA reflectance, NBRF, and 

Seasonal changes are easy to observe in the nrst two columns. 
The vegetative cover reaches a maxImum in July-August for 
the GSFC site. whereas at Mongu, green vegetation is most 
abundant in January-February. at the height of the wet season. 
Surface reflectance at the Solar Village site exhibits little varia­
tion throughout the year as is expected for a desert location with 
little vegetation. 

To demonstrate the algorithm's performance with different 
surface types, we selected two pixels for GSFC that differ 
in the amount of vegetation-a "green" pixel [pixel (16, 36)J 
in the middle of a small deciduous forest stand to the northeast 
of the center and a relatively bright "urban" pixel (pixel (46, 3») 
representing a typical residential area with miXed vegetation at 
the lower left comer of the image. For comparison, we also 
selected a "bright" pixel [pixel (lO. 20)] in the desert region 
of Solar Village. The locations of these pixels are Shown by 
colored circles in Fig. 4. The NBRF time series for these 
pixels are shown in Fig. 5. For the green pixel, the NBRF 
in the NIR band increases rapidly during springtime, While 
the red, green, and blue reflectances decrease. There is an 
interesting dynamic between the red and green signals. In the 
early spring, reflectance in the red channel is greater than in 
the green channel. This is typical of most soils. With the spring 
green-up, the red band reflectance decreases significantly due 
to chlorophyll absorption while the change in the green band 
reflectance is much smaller. During the autumn season. the 
bands change in the reverse direction as expected for senescing 
vegetation [Fig. 5(a)l. The urban pixel shows a similar temporal 
trend, but with much smaller amplitude [Fig. 5(b)]. TIle time 
series of the bright pixel at Solar Village does not show much 
variation throughoLlt the year. The NBRF of band 7 and the 
NIR, red, green, and blue bands remains around 0.5, 0.42, 0.35, 
0.24, and 0 14, respectively. The variation is about ± 0.03-0.05 
in each band. 

The data gap in Fig. 5 in year 2004 is due to the incomplete­
ness of the MODIS data set we acquired to date. The remaining 
gaps will be filled in upon completion of the MODIS land 
Collection 5 reprocessing. which also generates the MODIS 
subsets for the AERONET sites for the ASRVN. 

B.	 IBRF Versus NBRF 

As discussed in Section III-D, the NBRF, which is retrieved 
from 4 to 16 days of measurements, may have a delayed 
response to surface changes. In contrast, the IBRF. derived 
from the last day of measurements, tracks surface spectral 
changes immediately. This improvement in temporal sensitivity 
is sometimes achieved with compromised data quality. 

Fig. 6 shows a comparison of NBRF and IBRF for the GSFC 
site for the spring green-up period (days 95-122) of Z005. There 
is a seven-day gap in the AERONET records due to cloudiness 
after day 101. As a consequence, the NBRF and IBRF images 
show a noticeable color difference on day 108, representing 
a delayed response of the NBRF to surface change. With the 
accumulation of six additional measurements, the color of the 
NBRF and fBRF images become consistent again on day 117. 
The lag in NBRF depends on the number of available clear-sky 
measurements and the rate of surface change. 

Note that the brightness of the IBRF images in Fig. 6 vary 
the new CM (the CM legend is given in the figure's caption). with the view zenith angle. This occurs because the IBRF 

________l
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Fig. 4. Temporal dynamics of surface NBRF for (a) GSFC in year 2005. (b) Mongu sile in year 2005, and (e) SoJar Village sire in year 2006. Shown from left to 
righ[ are [he RGB TOA MODIS gridded images, the RGB NBRF images. and the CMs. The true color images are composed from equally weighted red, green. 
and blue bands. The CM legend is the same as shown in Fig. 2. The red, yellow, and blue dots in panels (a) and (c) show (he locution of selected green, ulban, and 
bright pixels, respectively. The greeu dot in panel (b) shows the location of the (est pixel in Fig. 7. 

Day J I 

f 
images are not normalized, whereas the NBRF images show 
a stable green-up trend as expected. This confirms thar IBRF is 
more useful for detecting surface changes as well as effects of 
storms. fires. etc. The more stable NBRF is more suitable for 
characterizing stable periods, detecting the long-term trends, 
and support process models, which require low noise of the 
input data. 

To illustrate differences and similarities between NBRF and 
IBRF quantitatively, we compared the NBRF and IBRFN. 
nonna!ized to the fixed viewing geometry of NBRF, for the 
pixel shown by a green circle on the image of the Mongu 
test site [Fig. 4(b)]. The results for the red and NIR bands 
are shown in Fig. 7 for 2002-2003. The gaps correspond to 
the rain seasons with almost continuous cloudiness. The dry 
season retrievals show a strong seasonal pattern of vegetation 
superimposed on the signals of soil and drying ponds of flood 
waters. Compared with I B RF'v, the response of NBRF to 
surface change is delayed by as much as five to eight days. 
Because cloudiness is very low during the dry season, these 
NBRF retrievals were obtained with typically 10-16 clear­
sky measurements. Fig. 7 also shows a solution obtained with 
the last four clear-sky measurements. Obviously, the four-day 

solution shows a much smaller delay (1-2 days) but also 
a higher noise in the form of several outliers. With higher 
cloudiness typical of the global performance of ASRVN and 
with other uncertainties in the input data including the footprint 
variability, the four-day solution is usually notably noisier than 
the cun-em Solution which uses all clear-sky measurements in 
the 16-day Queue. The time del ay of the NBRF can be removed 
by comparing it with the time series of I B Rp'Y, which is very 
similar between the four- and ten-day solutions. 

As aforementioned, the variability of footprint with the view 
angle is the main source of variability of IBRF. To illustrate 
this point, Fig. 7 shows an IBRFN averaged over an area of 
3 x 3 pixels (9 Jan2), which has a substantialJy lower noise 
than the I-km solution. It is interesting to see that spatial 
averaging also reduces the temporal bias between I B RFN 
and NBRF. 

C. NDVI 

The NDVI is a corrunonly used parameter to characterize 
vegetation canopies. NDVI can be directly derived from the 
ASRVN BRF and albedo products. NDVI can be generated 
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Fig. 5. NBRF time series for (n) green pixel. GSFC site; (b) urban pixel, 
GSFC site; and (c) bright pixel. Solar village site. 

from different reflectance parameters, and its sensitIvity to 
viewing geometry and atmospheric conditions can change 
accordingly. Fig. 8 shows the NDVI time series for the green 
and urban pixels of the GSFC site as calculated from NBRF, 
surface albedo, IBRF (representing different fonns of top-of­
canopy NDVI), and TOA reflectance. One can see that, in 
agreement with the expectations, the variation ofNDVI derived 
from NBRF and surface albedo is much smaller than that 
derived from IBRF and TOA reflectance. The NDVls derived 
from the armospherically corrected products (NBRF, albedo, 
and IBRF) are also greater than the TOA NDVI. This is ex­
pected since AC tends to reduce the red-band reflect.ance more 
than the NlR signal. Comparing the NDVIs derived from IBRF 
and NBRF, we find that the NBRF NDVI generally responds to 
the seasonal changes with a small delay of several days, with an 
exception of cases when a larger delay can be traced to a gap in 
the AERONET data. 

D. MODIS Terra Versus Aqu.a 

ASRVN creates a sensor-specific time-series record of the 
surface reflectance over AERONET sites. Fig. 9 shows the 
NBRF time series for 1.5 years for the bright pixel of 
the Solar Village site. The NBRFs are generally very close to 
each other. which suggests a good relative calibration between 
the MODIS TERRA and AQUA instruments. The difference 
may be higher during periods of high cloudiness, when the 
retrievals are affected by undetected residual clouds and cloud 
shadows. For example, the maximal NBRF difference for the 
cloudy period around the end of 2006 is as high as 0.04. For 

Day]OI
 

Day 108
 

Day 117 

Fig. 6, Comparison of NBRF and IBRF tor GSFC. U.S .. day 95-122,2006. 
Images shown from left to right are the RGB TOA jl.loms gridde.:l images. 
RGB NBRF images, RBG IBRF images, and eM. The CM legend i, the same 
as in Fig. 2. 



WANG" al ATMOSPHERIC CORRECTION AT AERONET LOCATIONS 2461 

0.15 r-
I '
 
I 'Red
 

0,1 

0.05 

o~ 

3/15/2002 10/1/2002 4/19/2003 11/5/2003 

0.5 

0.4 

0.3 

0.2 

0.1 

3/15/2002 10/1/2002 4/19/2003 11/5/2003 

• 4-day_NBRF ' NBRF IBRp'! 0 9-km IBRFI'< 

Fig. 7. Comparison of (red) NBRF llJld (yellow) I BRFN normalized to the standard viewing geometry of NBRF for the Mongu site for the pixel shown hy a 
green circle in Fig. 4(b). Furthermore. shown is the NBRF obtained from Ihe (green) last four clear-sky days of [he Queue and (blue) the I BRF'''' averaged over 
an area of9 km 2 

the most part, conditions when retrievals are less reliable are 
captured by the QA flag. For instance. the QA flag indicates 
lower product quality for about l.5-month period at the end of 
2006 to the beginning of 2007. 

Generally. the cross-calibration of sensors flying in different 
orbits is a very difficult task. With tbe accumulation of a longer 
time record and sufficient global statistics, the ASRVN data set 
may become a valuable source for tbe cross-calibration analysis 
of different sensors. 

V. CONCLUDING REMARKS 

This paper has presented a new operational data collection 
and processing system ASRVN, which was initially designed 
for the validation of the surface-reflectance products. ASRVN 
collects MODIS and MISR LIB data for 50 x 50-km2 areas 
for about 160 AERONET sites and performs independent rig­
orous AC using AERONET aerosol and column water-vapor 
data. The AC is achieved by fitting 4-16-day (multiangle) 
sets of MODIS TOA measurements with theoretical reflectance 
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Fig. 9. Compmison of MODIS Terra and Aqua NBRF for a brighl pixel (Solar 
Village). Here. triangles and solid circles represent Aqua and Terra NBRF, 
respecliYely. 

accurately parameterized in terms of the coefficients of the 
LSRT BRF model. The algolithm has a thorough data quality 
analysis component. including a CM, an aerosol filter, and 
the control of the time-series consistency of surface BRF and 
albedo. 

The algorithm is optimized in tenus of noise reduction and its 
ability to track both seasonal and rapid surface change. During 
stable surface conditions, such as periods of maximum green­
ness during summertime in the Northern Hemisphere, a 16-day 
BRF retrieval gives a solution characterized by low noise. When 
the surface changes tapidly (e.g., agricultural harvesting). the 
algorithm gives greater weight to the last MODIS measurement 
of the period, thus quickly adjusting to the surface change. 

We have also developed a backup mechanism to cover 
extended peliods of high cloudiness, when the number of cloud­
free MODIS measurements in the l6-day Queue is insuffi­
cient for the BRF retrieval. In this case, we use BRF scaling. 
This approach requires the knowledge of the BRF shape 

t which usually comes from the previous solution stored in the 
Q-memory. If no retrievals were made in the past 32 days. the 
algorithm substitutes the Q-solution with the historic seasonal 
BRF. which represents a quarterly average BRF over years of 
rettievals. This method allows us to rapidly initialize retrievals 

after long periods of cloudiness and provide continuous gap­
filled imagery of high quality. 

The ASRVN suite of products includes three parame­
ters of the LSRT model (k L, kG, and kV), surface spectral 
albedo, NBRF (a BRF value computed for a standard viewing 
geometry, VZA = 0°, SZA = 45°), and lBRF (a BRF value 
for specific viewing geometry of the last MODIS measure­
ment). All parameters are produced daily for seven SOO-m 
MODIS bands at a gridded 1-km resolution. We do not store 
vegetation indexes like NDVI which are easy to produce from 
the available data. 

The ASRVN data set. including six years of MODIS TERRA 
and 1.5 years of MODIS AQUA data, is available now as 
a standard MODIS product (MODASRVN) which can be 
accessed through the Levelland Atmosphere Archive and 
Distribution System website (http://ladsweb.nascom.nasa.gov/ 
data/search.htrnl). The products are accompanied by a QA flag 
and color-composite ROB browse images for the TOA MODIS 
reflectance, NBRF, lBRF. eM, and QA. 

The algorithm has high computational efficiency. For exam­
ple, a full ASRVN reprocessing of six years of MODIS TERRA 
data at 100 AERONET sites takes about 24-30 h using one 
processor of a 2.2-GHz workstation. 

The results show very stable and reproducible NBRF and 
NDVI time series for any given pixel. The main sources of er­
rors in the developed algorithm are the residual cloudiness and 
the variation of MODIS pixels with scan angle, which increase 
by a factor of eight from the nadir view to the edge of scan. 
This effect is partially mitigated by a I-km resolution gridding 
procedure, but it cannot be cancelled entirely. This source 
of uncertainry is important in regions with the high surface 
heterogeneity at the scale comparable to the grid size of 1 km. 
In this regard, the expansion of ASRVN with data from 
the geostationary sensors, such as the future Geostationary 
Operational Environmental Satellite-R, is expected to produce 
a higher quality data set. 

The ASRVN applications range from product validation and 
science analysis to sensor calibration support and long-term 
trending and stability studies. We believe that the products from 
ASRVN fit well into the CEOS BELMANlP framework and 
will assist in more reliable and quantitative intercomparison 
analysis over the AERONET sites. Recently, we conducted a 
validation study of the MISR surface BRF and albedo prod­
ucts [11]. Because ASRVN produces a multiyear record for 
each sensor of interest. these data are useful for sensor cross­
calibration analysis [30] and detection of long-term calibra­
tion trends. The latter are particularly important for climate 
applications. 

The ASRVN prepares a foundation to support the NPOESS 
validation program for the Visible Infrared Imaging Radiometer 
Suite (VIIRS) which will replace MODIS and the National 
Oceanic and Atmosphelic Administration's AVHRR as the 
nation's wide-swath multispectral sensor. The 22-band VIIRS 
will provide most of the spectral measurements and capabilities 
afforded by MODIS, with bands highly compatible with the 
existing ASRVN framework. A constrained pixel growth with 
the scan angle of the VIIRS as compared to MODIS is an 
important factor in the data set quality. Because NPOESS is an 
operational program. validation resources will be significantly 
more limited than during the EOS era. The NPOESS Validation 
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Team has defined an initial strategy that strongly emphasizes 
t.he use of operational field network data sets (e.g.. AERONET 
+ ASRVN) over field campaigns. We envision that, similar 
to MODIS, the operational processing center will generate 
VIIRS spatial subsets for ASRVN in near real time. Several 
targeted postlaunch field campaigns will be undertaken to verify 
ASRVN results and document performance. 

Our approach can be considered as an indirect validation 
network for current MODIS or MISR surface-reflectance and 
associated products (e.g., NDVI). If supported by periodic 
ground measurements over carefully selected stable homoge­

v' nous test sites with different surface brightness levels, which 
would establish an absolute reference for BRF and albedo, 
this approach can also be considered a full validation that is 
easily expandable to a global level given the AERONET global 
infrastructure. 

ApPENDIX 

A. Parameterized Expression for the TOA Radiance 

The algorithm is based on a high-accuracy semianalytical 
formula derived with the Green's function method [25], [31). In 
the following. T is the atmospheric optical thickness, TiS>. is the 
spectral extraterrestrial solar irradiance, and s = (11 = cos 8. <p) 
is a vector of direction defined by zenith (8) and azimuthal (<p) 
angles. The z-axis is pointed downward; therefore, flo > 0 for 
the solar beam. and /l < 0 for the reflected beam. The TOA 
radiance L(So, s) is expressed as a sum of the atmospheric path 
radiance (D) and surface-reflected radiance (D.), directly and r 
diffusely transmitted through the atmosphere 

The surface-reflected radiance is written as 

L.9 (so. s) ~ S>./loe.-·!I'O {p(SO. s) + aCOPl (Il)P2(1l0)} 

+; j Ds(so. s')p(s', s)Il'ds' CA2) 

n+ 

where D s is the path radiance incident on the surface, Co is the 
spherical albedo of the atmosphere, and 

Pl(P') = ~ jP(s',S)dS' P2(/lO) = 2~ j p(so,s)ds.
2" 

n+ 0­
(A3) 

a is a multiple reflection factor, 0. = (1 - q(/lO)CO)-I, where 
q is surface albedo. The diffusely transmitted surface-reflected 
radiance at the TOA is calculated from L s with the help of the 
I-D diffuse Green's function of the atmosphere 

L~(so,s) = j Cd (SI,S)Ls (sO,Sl)ds1 . (A4) 

n-

The function rrCd is often called bidirectional upward diffuse 
transmittance of the atmosphere. The method of its calculation 
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was discussed in detail in [23]. The surface albedo is defined as 
a ratio of reflected and incident radiative fluxes at the surface 

q(Jio) = pCP(llo)!pDown (/lo) (ASa) 

pDown(~(o) = "SA/lOe-r//Jo + j DsCso, S')/llds' 

0+ 

=p;>ir (110) +psDif (/lO) (ASb) 

plJp(/lO) = rrS>-./loe-'/I'°qz(1l0)+ j Ji' q2(/l')D,(So. Sf) ds' 

0+ 

qZ(/lO) = ..!. jP(SO, s)Ji.ds. (ASc)
7r
 

0­

These formulas give an expli.cit expression for the TOA 
radiance as a function of surface BRE The accuracy of the 
aforementioned formulas is high. usually within a few tenths 
of a percent [25]. ln the follOWing, we will use the TOA 
reflectance, which is defined as 

(A6) 

B. Expressionfor the TOA Reflectance Using LSRT 
BRF Model 

Based on the described semianalytical solution, we can ex­
press the TOA reflectance as an explicit function of parameters 
of the BRF model. We are using a semiempirical LSRT BRF 
model [32] as a basis. This is a linear model. represented as a 
sum of Lambertian, geometric-optical, and volume scattering 
components 

It uses predefined geometric functions (kernels) IG and Iv to 
describe different angular shapes. The kernels are independent 
of the land conditions. The BRF of a pixel is characterized by a 
combination of three kernel weights, j{ = {k L , kG, kV} T. The 
LSRT model is used in the operational MODIS BRFJalbedo 
algorithm (9]. 

The substitution of (A7) into (A L)-(A5) and normalization 
to the reflectance units gives the following expressions for the 
surface-reflected signal (the last two terms of (A I )]: 

Rs(/lO, I)" <p) = e-'/I'O {k L + kG IC(/lo. /l, if!) 

+kv Iv (/lo. /l, <p) +aCOPl (Ji)P2(/l0)} 

+ Q/l(/ {k L Eg(/lo) + kG Db(/lo, 1l,:P) 

+kvD~(JiOl/l,ip)} (A8) 

R~(/lO,/l,<P) =e--r/I'o x {[k L Ca"(Il) 

+ kCCh(/lo,/l,<P) +kvC~(/lO.li,<p)] 

-+- QCo [k LC 3V (II.) +kGC:!(Il) 

+kv cV' (~i)] P2 (Ilo)} 

+ allo 1 
{ kL Eg(llo)C3V (/l) +kG Hb(llo, /l, 'P) 

+kv H~(Jio. /l, ip)}. (A9) 

_________________l
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The sunace albedo is written as 

q(J.1,O) = Eil1(flO){J.1,Oe-T//.'°Q2(J.1,O) + kLEg(J.1,o) 

+ kG D&(J.1,o) + kVDt·(J.1,O)}. (AID) 

The different functions of these equations represent dif­
ferent integrals of the incident path radiance (Ds ) and 
atmospheric Green' s function (C) with the BRF kernels. 
They were described in [28} along with the numerical 
calculation method. In the following, we give only the integral 
expressions: 

PI (J.1,) = kL +kGfMfl)+k V g (J.1,) (AI 1) 

P2(J.1,O) =kL+kGf~(J.1,o)+kV f~(J.1,o) (AI2) 

Q2(J.1,O) =k0+kGf6(/-Lo)+k V !?(J.1,O) (Al3) 
1 2... 

Dt,(IJ,Q, J.1" tp-;po) =.~ J /-L'dfl' J dip' D,(flo, J.1,', ;p'-yo) 
o a 

x A (J.1,', fl, 'P-<p') (AI4) 
2... I 

D~(fl{» =;: J d<p' J J.1,'fr(J.1,')Ds (J.1,o.J.1,'; ;p')dP! 
a 0 

(AI5) 
a 2". 

C'weJ.1,) = J dfl1 J Cd (J.1,l,J.1"tp-;pddYl 
-1 a 

(A16) 
o 2r. 

Gl1 (J.1,) = J fl(JlI)d~L1 J Cd (J.1,l' J.1" cpv-;P1)d'P1 
-1 a 

(AI?)

° 2". 

cleJ.1,o,J.1,.<p-;po) = JdJ.1,l J Gd (J.1,1,J.1,,;P-'P1) 
-1 0 

x fk(JlO, J.1,1,.p1 -<PO)d.p1 (A18) 
a 2r. 

Hl(J.1,o,J.1,.<p-<po) = /dJ.1,l J Cdelll.Il,-.p-rpl) 
-1 0 

X Dk(J.1,o, J.1,1, <P1-rpo)d;Pl' (A19) 

The subscript k in the aforementioned expressions refers to 
either geometric-optical (C) or volumetric (V) kernels, and the 
supplementary functions of the BRF kernels are given by 

1 2... 

f~(fl) = 2~ J dfl' J ik(~/.fl,<p' -y)drp' (A20a) 

o a 
o 2" 

ff(J.1,o) = 2~ / dJl1 J !J.,(J.1,O, Ill, 'PI - .pO)d<pl (A20b) 

-1 ° 
o 2;r 

it(Il') = ;: J fldll J f;,,,(Il'. J.1,. t.p - .p')d:p. (A20c) 

,- -1 0 

The diffuse and total spectral surface irradiance are calcu­
lated from (A5b) as 

Eo(lJ,Q) = F Down (flO)/( roS>..). 
(A21) 

Let us rewrite these equations separating the kernel weights. 
First. single out small terms proportional to the product 
CQP2(JlO) imo the nonlinear term 

R"l (~LO; ~i) = ilCOP2 (~LO) 

/ 1xe-T/I-'U {e-T 1'I pl (fl) + kLCav(ll) 

+ kGC~ (Il) + kV cU (Il)}. 

(A22) 

Second. collect all remaining multiplicative factors for the 
kernel weights 

pL (~l{), fl) = (e-'T/1-'0 +oJli/ Eg(J.1,O)) (e- r / 11l1 +Cav (~L)) 
(A23) 

F k (Po, fl·;..p) 

= {e- r /l'°fk(IlO.Il,<P)+OIl"[/ DkePo. /-L. <p)} e- T /'1l 1 

+ e-T//.'uCl(llo, Il, :p) +OJ.1,o l Hl (flO , fl, 'P). 
k = VG. (A24) 

With these notations. the TOA reflectance becomes 

R(llo, Jl, If) = RD (flO, fl, t.p )+kL 
pL (flO. fl) +kGFG(IlO, 1l,:P) 

+kvFV(J.1,o.J.1"tp)+Rnl(flo.~L). (A25) 

This equation, representing the TOA reflectance as an ex­
plicit function of the BRF model parameters, provides the 
means for an efficient AC. 
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