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Population Ecology 

Detection Probability in Aerial Surveys of 
Feral Horses 

JASON I. RANSOM,! US. Geological Survey, Fort Collins Science Cmter, 2150 Cmtre Avenue, Building C, Fort Col/ins, CO 80526, USA 

ABSTRACT Observation bias pervades data collected during aerial surveys of large animals, and although 
some sources can be mitigated with informed planning, others must be addressed using valid sampling 
techniques that carefully model detection probability. Nonetheless, aerial surveys are frequently employed to 
count large mammals without applying such methods to account for heterogeneity in visibility of animal 
groups on the landscape. This often leaves managers and interest groups at odds over decisions that are not 
adequately informed. I analyzed detection of feral horse (Equus caballus) groups by dual independent 
observers from 24 fixed-wing and 16 helicopter flights using mixed-effect logistic regression models to 
investigate potential sources of observation bias. I accounted for observer skill, population location, and 
aircraft type in the model structure and analyzed the effects of group size, sun effect (position related to 
observer), vegetation type, topography, cloud cover, percent snow cover, and observer fatigue on detection of 
horse groups. The most important model-averaged effects for both fi.xed-wing and helicopter surveys 
included group size (fixed-wing: odds ratio = 0.891, 95% CI = 0.850-0.935; helicopter: odds 
ratio = 0.640, 95% CI = 0.587-0.698) and sun effect (fixed-wing: odds ratio = 0.632, 95% 
CI = 0.350-1.141; helicopter: odds ratio = 0.194, 95% CI = 0.080-0.470). Observer fatigue was also 
an important effect in the best model for helicopter surveys, with detection probability declining after 3 hr of 
survey time (odds ratio = 0.278,95% CI = 0.144-0.537). Biases arising from sun effect and observer fatigue 
can be mitigated by pre-flight survey design. Other sources of bias, such as those arising from group size, 
topography, and vegetation can only be addressed by employing valid sampling techniques such as double 
sampling, mark-resight (batch-marked animals), mark-recapture (uniquely marked and identifiable ani­
mals), sightability bias correction models, and line transect distance sampling; however, some of these 
techniques may still only partially correct for negative observation biases. © 2011 The Wildlife Society. 

KEY WORDS abundance, bias, Equus caballus, observation error, population estimation, simultaneous double-count, 
visibility, wild horse. 

Aerial survey techniques are often employed to overcome the percent vegetation cover, topography, and vegetation 
obstacles of large spatial expanses, limited access to all areas type), but many of these potential influences are often 
of interest, and dense vegetation that may prevent observers ignored when estimating animal abundance (Fleming and 
from counting large animals from the ground. These surveys Tracey 2008). 
use fixed-wing and rotary-wing aircraft to view animals from Some of the numerous and variable biases that may arise 
above and can be effective for estimating population size from such factors can often be addressed, with varying 
across large areas (Caughley et al. 1976, Tracey et al. 2008, effectiveness, by using aerial survey methods that employ 
Lubow and Ransom 2009), but heterogeneous sighting con­ statistical sampling theory to make corrections to the actual 
ditions can still lead to observation bias that may signilicantly number of animals observed. The 5 main categories of 
underestimate the true population (Caughley 1974, Borchers sampling techniques are double sampling, mark-resight 
et al. 2006, Laake et al. 2008). Observation bias in aerial (batch-marked animals), mark-recapture (uniquely marked 
surveys may arise from internal factors (aircraft type, observer and identifiable animals), sightability bias correction models, 
fatigue, observer skill, and observer seat position), external and distance sampling (Barker 2008). Such estimators have 
factors (animal behavior, distance from the aircraft, and been historically used for small mammals and animals inhab­
group size), and environmental factors (angle of the sun, iting small spatial areas, though use for large wildlife species 
landscape shading from cloud cover, percent snow cover, has increased rapidly over recent decades (see Schwarz and 

Seber 1999, Williams et al. 2002 for review). However, the 
Received: 4 October 2010; Accepted: 15 May 2011; use of so-called census methods, which assume that all 
Published: 5 August 2011 animals are seen, remains a common practice, This can 

lead to up to one-third of large mammals on the landscape Additional Supporting Inftrmatifm may be found in the online version 
r;, this article. being unaccounted for in aerial surveys (Pollock and Kendall 
E-mai/; ramomj@usgs.gov 1987, Samuel et al. 1987, Ackerman 1988, Bodie et al. 1995). 
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Statistical sampling has rarely been employed to estimate 
feral horse (Equus caballus) populations in the United States 
(Lubow and Ransom 2009), yet this species is often the 
subject of political and public interest, intense management, 
and is at the center of numerous ecological debates. 

Estimating large animal abundance is an important task for 
scientists and practitioners, and is especially critical when 
species of concern are non-native and potentially overabun­
dant. Feral horses, for example, inhabit grasslands, desert, 
montane, and forest environments on every continent except 
Antarctica. Populations may increase over 20% annually 
(Eberhardt et al, 1982, Garrott et al. 1991) and have a 
wide array of influences on native flora, fauna, and ecosystem 
processes (Smith 1986, Fahnestock and Detling 1999, Levin 
et al. 2002, Beever and Herrick 2006, Beever et al. 2008). 
Regardless of the sampling technique employed, understand­
ing sources of bias and the magnitude of effects influencing 
aerial detection ofwildlife can lead to better project planning 
and more informed statistical analyses, and thus may help 
produce better estimates of abundance. 

I used data collected from aerial surveys of feral horses that 
employed dual observers independently collecting data in a 
mark-resight framework similar to that described by 
Graham and Bell (1989) for feral horses, which provided 
trials with the opportunity for each observer to simultaneous­
ly observe or miss horse groups on the landscape. I did not 
evaluate the simultaneous double-count method here be­
cause most of these surveys were performed on popUlations 
of unknown size and abundance estimates could not be 
validated. Instead, I used the repeated paired sighting trials 
to test the influence of several internal, external, and envi­
ronmental factors on group detection in feral horse surveys. I 
sampled multiple populations in the western USA and 
assessed the strength of 45 candidate models incorporating 
these effects for both fixed-wing and helicopter surveys, 

STUDYAREAS 
The populations used in this study occupied public lands in 
the western United States consisting of flat, rolling, and 
mountainous terrain populated predominately by sagebrush 
(Artemisia spp.). Some tree species occurred in the study 
areas, primarily pinon (Pinus edulis) and juniper Uuniperus 
sp.), along with sparse stands of cottonwood (Populus del­
toides). Ungulates sympatric with feral horses in the study 
areas included livestock (Bos spp. and Ovis aries), elk (Cervus 
elaphus), mule deer (Odocoileus hemion us), bighorn sheep 
(Ovis canadensis), and pronghorn (Antilocapra americana). 
Aerial surveys were conducted throughout all seasons from 
2004 to 2009. 

The 15 areas surveyed were the Adobe Town-Salt Wells 
Creek Herd Management Area (HMA) Complex, 
Wyoming (850,115 ha at latitude 41°21/N, longitude 
108°30/W), Buck and Bald HMA Complex (Buck-Bald, 
Butte, Cherry Creek, and Maverick-Medicine HMAs), 
Nevada (1,386,871 ha at latitude 400 141N, longitude 
115° 13/W), Cedar Mountain HMA, Utah (86,625 ha at 
latitude 400 29'N, longitude 112°57'W), Lander HMA 
Complex (Conant Creek, Rock Creek Mountain, Muskrat 

Basin, and Dishpan Butte HMAs), Wyoming (151,880 ha 
at latitude 42°47'N, longitude 107°51W), Little Owyhee 
and Snowstorm Mountains HMAs, Nevada (233,490 ha at 
latitude 41°41'N, longitude 116°59'W), McCullough Peaks 
HMA, Wyoming (44,440 ha at latitude 44°35I N, longitude 
108°401W), and Sand Wash HMA, Colorado (63,390 ha at 
latitude 4Oo47'N, longitude 108°211W). 

METHODS 

Aerial Surveys 
Observers performed aerial surveys using a simultaneous 
double-count method (described by Caughley and Grice 
[1982] and adapted to feral horses by Graham and Bell 
[1989]) in which 2 observers independently collected data 
from the same side of either a fixed-wing aircraft (24 flights) 
or helicopter (16 flights), Observers conducted all surveys 
between 0700 hours and 1800 hours with daily flight times 
ranging 1-8 hr and survey duration ranging 1-6 days. Each 
survey included 3 experienced observers accompanied by 1 
pilot, and observers systematically rotated seat position at 
each fuel stop. Flight time between fuel stops varied per 
flight, but each period incorporated multiple transects. 
Sixteen different observers collected data during the course 
of this study. Individual observers were therefore not com­
mon across all surveys, but each observer participated in 
multiple flights. 

Pilots performed fixed-wing flights using a Cessna 210 
aircraft (Cessna, Wichita, Kansas) and totaled 124.72 hr 
of survey time. Fixed-wing aircraft maintained an above­
ground level (AGL) altitude of approximately 152-183 m 
and airspeed of approximately 259-296 km/hr. Pilots per­
formed helicopter flights using either a 206BIII Jet Ranger 
(Bell Helicopter, Hurst, Texas) or 206LIII Long Ranger 
(Bell Helicopter) and totaled 91.96 hr of survey time. 
Observers did not remove aircraft doors for any surveys 
and there was no fundamental difference in observer view 
from each type of helicopter; Long Rangers were only nec­
essary for conditions where additional power was required to 
safely operate with 4 people on board. Helicopters main­
tained an AGL of approximately 60-80 m and airspeed of 
148-166 km/hr. All transects were pre-determined and 
spaced 1.6-2.1 km apart in parallel arrangement, but transect 
direction varied by survey. Observers only recorded horse 
groups from the transect where the horses were first detected. 
Transect spacing and survey altitude were based on manager 
recommendations from previous experience and maintained 
here for continuity with management practice. All transects, 
flight paths, and horse group locations were followed and 
recorded using a handheld Global Positioning System (GPS) 
unit with an external antenna mounted in the front window 
of the aircraft. 

Observers maintained audio (radio silence) and visual (seat 
partition) isolation during the surveys, with the provision 
that once a group of horses had passed the rear observer, all 
observers were free to discuss the group size and circle back if 
confirmation was needed. This procedure did not affect the 
independent observation record, but ensured that observers 
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recorded the agreed number of animals. Covariate data 
collected during all surveys consisted of: approximate dis­
tance to the group when perpendicular to the aircraft (d; 
<0.8 km, >0.8 km), behavior of horses when first observed 
(b; still, moving), cloud cover (I; clear, partly cloudy, over­
cast), hour of day (h), number of horses per group (a), 
observer name, observation cardinal direction, percent 
snow cover (w), seat position of the observer (P), topography 
(e; uniform, complex), and vegetation type (g; none or grass, 
shrub, tree). Observers recorded distance by visually locating 
topographic or anthropogenic landmarks midway between 
transects and then estimating group position relative to these 
points. Although imprecise, the 2 broad categories allowed 
observers to easily determine if groups were closer to the 
current transect or the adjacent transect and assign a catego­
ry. I defined uniform topography as terrain with topographic 
features less than the size of a horse, and complex terrain as 
terrain with topographic features greater than or equal to the 
size of a horse. Likewise, I defined shrubs as woody vegeta­
tion less than the size of a horse, and trees as woody vegeta­
tion greater than or equal to the size of a horse. Observers 
assigned snow, topography, and vegetation values for the area 
immediately surrounding each horse group, including the 
area containing all members of large groups and within an 
approximately 10-m radius from the center of small groups. 
Observers visually estimated amount of snow cover to the 
nearest 10%. 

I calculated covariate data for fatigue (j), cumulative fatigue 
if'), and sun effect (1) a posteriori. I defined observer fatigue 
as the number of consecutive hours an observer had per­
formed an aerial survey when an observation was made on a 
given day and cumulative fatigue as the number of consecu­
tive days an observer had performed an aerial survey. I 
calculated the effect of sun position on observations for 
each survey location and date (t) of observation using the 
National Oceanic and Atmospheric Administration solar 
calculator (Department of Commerce 2010). This provided 
precise values for apparent sunrise (rt ), apparent sunset (u,), 
solar declination (c,), and solar noon (0,), such that for 
observations directed south, I calculated sun effect as 

23.44-c, 
s, = 46.88 

thus transforming c, to a scale of 0--1, with 1 representing the 
winter solstice when the sun is lowes t on the horizon (directly 
facing an observer) as viewed from the northern hemisphere 
(Fig. 1). For observations directed east, 

Likewise, for observations directed west, 

«h,-o,)!(u,-Ot)) + (1-1,) 
Sw = 2 

Equations for east- and west-directed observations place 
equal value on solar declination and distance of the sun from 
the observation meridian, thus allowing the minimum effect 

1 
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FIgure 1. Diagram of sun movement at 40" North latitude depicting the 
rdationship of sun effect variables In f e• and .Iw to a south-facing aircrnft 
(diagram adapted from National Oceanic and Atmospheric Administration 
[Depanment of Commerce 2010)). 

ofsun on east-west observations to occur at solar noon on the 
winter solstice, increasing to the maximum effect at sunrise 
or sunset on the summer solstice (Fig. 1). 

Statistical Analyses 
I performed analyses on all observations when at least 1 
observer (e.g., front seat) recorded the presence of a group 
and the paired observer (e.g., seat directly behind the front 
observer) had an equal opportunity to do so. Groups detected 
in front of or directly beneath aircraft by the front seat 
observer were not available to the rear seat observer and I 
therefore excluded them from analyses. I omitted observa­
tions made from the seat behind the pilot because the pilot 
was not an observer and therefore a double-count was not 
possible on that side of the aircraft. Analyses did not statisti­
cally account for groups that may have been missed by both 
observers since covariate values were unknown and I did not 
attempt to estimate them. 

I formulated a candidate set of 45 a priori mixed-effect 
logistic regression models (see Tables 51 and 52 available 
online at www.onlinelibrary.wiley.com).using additive and 
interactive formulations of the variables a, d, e,f,f', g, I, p, s, 
and was fixed effects, and observerIpopulation as a random 
effect. Following the notation of Gelman and Hill (2007), 
candidate models took the form of: 

for j = 1, ..., n observations, where the random effect 
intercept ao rv N (IL = 0, c?jI,), for j = 1, ..., n observers 
in k = 1,..., n horse populations. f30 represents the intercept 
for fixed effect Xl with coefficient f3l' I analyzed all models 
using the lme4 package of R version 2.11.1 (http://www.r­
project.org, accessed 14 Jul 2010). I obtained estimates by 
maximum likelihood (Harville 1977), and strength of evi­
dence for models using Akaike's Information Criteria (AlC; 
Burnham and Anderson 2002). I evaluated model fit by 
calculating area under the receiver operating curve (AVC) 
with function somers2 in R package Hrnisc. I computed 
AVC using the fixed effect predictions while holding ran­
dom effects at zero. 
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Figure 2. Size and frequency offeral horse (EquU!f .aballU!f) groups detected 
dueing 24 fIXed-wing flights and 16 helicopter flights over rangelands in the 
western United Srates, 2004-2009 (12 = 2,517). Groups >30 animals were 
rare and are excluded from the figure. 

RESULTS 

Observers detected 1,792 feral horse groups during 24 fixed­
wing flights and 725 groups during 16 helicopter flights. The 
size of groups encountered during these surveys ranged from 
1-86 horses, with mean group size = 5.50 horses (95% 
CI = 5.26-5.75). Over 90% of the groups encountered 
numbered <14 animals and groups of 1-3 horses occurred 
most frequently (Fig. 2). Modeling was stratified between 
fixed-wing and helicopter surveys due to considerable varia­
tion in sighting conditions related to the horses' awareness of 
aircraft. In helicopter surveys, 85.89% (95% CI = 83.35­
88.44) of horse groups were running before being sighted, 
whereas only 7.89% (95% CI = 6.64-9.14%) ofhorse groups 
were running from fixed-wing aircraft before being 
sighted. Consequently, 22.04% (95% CI = 19.91-28.16%) 
ofdetected horses were >0.8 .km away from helicopter trans­
ects, but only 3.22% (95% CI = 2.41-4.04%) of detected 
horses were >0.8 .km away from fixed-wing transects. 

AVC for the fixed-wing global model was 0.613 (predicted 
probabilities ranging 0.65o-D.998), and for the helicopter 
global model was 0.803 (predicted probabilities ranging 
0.346-1.000). Four models were plausible among the 
fixed-wing candidate model set and each of them included 
the factors group size and sun effect, with 2 models also 
inclusive of vegetation and 2 of distance (Table 1). Likewise, 
the 1 well-supported model in the helicopter candidate set 
also included group size and sun effect, as well as topography, 
vegetation type, and observer fatigue (Table 1). Variation in 
detection probability among observers by geographic loca­
tion was an important influence in both fixed-wing and 
helicopter models (Table 2; fixed-wing 0aBS ranged 
0.274-0.294, helicopter OaRS = 0.156). For example, in 
the model-averaged estimate for fixed-wing surveys, the 
poorest observer missed 32.12% (95% CI = 21.46­
45.04%) of 3-horse groups whereas the best observer only 
missed 9.22% (95% CI = 5.54-14.95%) oO-horse groups in 
good conditions (looking away from the sun). In the model­
averaged estimate for helicopter surveys, detection probabil­
ity was very high in good conditions (looking away from the 
sun, no vegetation, open topography, fatigue < 4 hr) with the 
poorest observer only missing 1.83% (95% CI = 1.36­
2.48%) of3-horse groups and the best observer only missing 
0.79% (95% CI = 0.24-2.56%) oO-horse groups. However, 
in poor conditions (looking into the sun, shrub cover, com­
plex topography, fatigue >3 hr), the poorest observer missed 
70.26% (95% CI = 63.48-76.24) of3-horse groups and the 
best observer missed 50.25% (95% CI = 42.64-57.85) of3­
horse groups (Fig. 3). 

Group size was an important effect in aU supported models 
(Table 1; 95% CI for odds ratios do not overlap 1 in any 
model), and models containing this effect accounted for 
99.99% of AlC weight in both fixed-wing and helicopter 
candidate model sets. Observers in fixed-wing aircraft missed 
fewer groups as group size increased, with the model-aver­
aged fixed-wing estimate of 17.51% (95% CI = 16.83­
18.21%) single-horse groups missed in good conditions 
and 34.60% (95% CI = 33.53-35.70%) single-horse groups 
missed in poor conditions. However, observers detected 

Table 1. Most-supported (Ai < 4), and intercept-only, a priori mixed-effect logistic regression models of detection probability from 24 fixed-wing and 16 
helicopter flights to survt:y feral horses (EqlJJJS <aba!!uJ) in the western United States, 2004-2009. Each model incorporates random effects ofobserverlpopulation 
on the interceptterm. Candidate model sets included 45 models for each aircraft type with fixed-wing observations 12 = 1,792, helicopter observations 12 = 725, 
and K number of parameters. Models are ranked by change in Akaike's Information Criteria (AlC; Ail and AlC weight among all candidate models (Wi). 

Model no. Model 

Fixed-wing 
20 Group size + sun 
22 Group size + sun + vegetation 
16 Group size + sun + distance 
44 Group size + sun + vegetation + distance 
12 Group size + sun + group size x sun 
1 Group size 
45 Group size + sun + vegetation + distance + fatigue 
27 Group size + distance 
40 Group size + percent snow 
14 Intercept only 

Helicopter 
45 Group size + sun + topography + fatigue + vegetation 
14 Intercept only 

K Ai 'Wi 

5 0.00 0.190 
6 0.05 0.185 
6 0.78 0.129 
7 0.81 0.127 
6 1.99 0.070 
4 2.30 0.060 
8 2.49 0.055 
5 3.08 0.041 
5 3.65 0.031 
3 32.51 0.000 

8 0.00 0.989 
3 53.82 0.000 
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Table 2. Odds ratios for fixed effects in the most-supported a ptiori mixed-effect logistic regression models of detection probability from 24 fixed-wing 
(n = 1,792 observations) and 16 helicopter (n = 725) flights to survey feral horses (E'luu.rcabaUus) in the western US, 2004-2009. Variance is given as 00BS for 
the random effects of observerJpopula.tion on the intercept term of each model. 

Vegetation 

Model no. Model °08S Group size Sun effect None to shrub None to tree 

FIXed-wing 
20 

22 

16 

44 

Group size + sun effect 
95% confIdence interval 
Group size + sun effect + vegetation 
95% confidence interval 
Group size + sun effect + distance 
95% confidence interval 
Group size + sun effect + vegetation + distance 
95% confidence inteIVal 

0.283 

0.274 

0.294 

0.285 

0.71 
0.678-{).744 

0.707 
0.521-{).959 

0.712 
0.680-{).746 

0.708 
0.676--{).742 

0.599 
0.371-{).968 

0.585 
0.36HJ.948 

0.599 
0.371-{).968 

0.585 
0.361--{).947 

0.745 
0.549-1.011 

0.744 
0.548-1.010 

0.498 
0.082-3.030 

0.492 
0.081-2.997 

Helicopter 
45 Group size + sun effect + topography + 

fatigue + vegetation 
95% confidence interval 

0.156 0.640 

0.587--{).698 

0.195 

0.08Q--{),472 

0.371 

0.128-1.077 

0.422 

0.102-1.741 

nearly a1l30-horse groups from fixed-wing aircraft regardless 
of conditions (Fig. 3A). The same trend occurred in 
helicopter surveys; however, the contrast in detection prob­
abilities of good versus poor conditions was dramatic. In 
good conditions, 98.16% (95% CI = 97.99-98.31%) of sin­
gle-horse groups were detected, but in poor conditions only 
29.47% (95% CI = 27.69-31.30%) of single-horse groups 
were detected and detection still did not reach 100% when 
group size approached 30 horses (Fig. 3B). 

This disparity in group size effect between good and poor 
conditions for helicopter surveys is explained in part by 
sun effect (odds ratio = 0.194, 95% CI = 0.08(}-{).470). 
In good conditions, detection probability only dropped 
5.31% from no sun effect (looking directly away from the 
sun) to full sun effect (looking directly toward the sun) at a 
group of 3 horses (the most frequently observed group size; 
Fig. 4B), but in poor conditions detection probability of the 
same group size dropped 38.30% from no sun effect to full 
sun effect (Fig. 4B). Sun effect on observations from fixed-

wing aircraft followed the same pattern, though with lesser 
magnitude (Fig. 4A). Model-averaged detection probability 
of a group of 3 horses in no vegetation cover declined 
as the observer looked toward the sun from 85.63% 
(95% CI = 76.76-91.49%) to 79.02% (95% CI = 67.60­
87.17%), with a similar rate in tree cover declining from 
81.58% (95% CI = 71.05-88.88%) to 73.67% (95% CI = 
60.79-83.47%). 

Fatigue was an important factor in helicopter surveys (odds 
ratio = 0.278, 95% CI = 0.144-().537), but was not con­
tained in any supported fixed-wing models. In helicopter 
surveys, model-averaged detection probability for a 3-horse 
group in good conditions was 98.62% (95% CI = 95.61­
99.58%) during the first 3 hr of each flight and 95.22% 
(95% CI = 85.82-98.50%) during subsequent hours. In 
poor conditions, this probability declined from 66.91% 
(95% CI = 51.41-79.45%) during the first 3 hr to 35.99% 
(95% CI = 22.73-81.80%) during subsequent hours. 
No models of cumulative fatigue (successive days of aerial 

o 5 \0 15 20 

GrOlJp size 

26 

rtgUre 3. Model-averaged probabilities ofgroup detection as a function of group size in 24 fIXed-wing flights (A) and 16 helicopter flights (E) surveying feral 
horses (E'luu.r caballu.r) in the western United States, 2004-2009. I show model estimates as dotted lines for best conditions (no vegetation, looking away from the 
sun, distance <0.8 km [fIXed-wing] or open topography [helicopter], fatigue <4 hr) and as solid lines for worst conditions (tree cover [fixed-wing] or shrub 
cover [helicopter], looking tOWlll'd the sun, distance >0.8 km [fIXed-wing] or complex topography [helicopter], fatigue >3 hr). I show the random effects of 
observerlpopulation in gray. I present observations (0) as 0 fOt missed groups and 1 for detected groups and otfi;etvalues by the addition or subtraction of a small 
random value in order to help distinguish multiple observ-ations at identical values. 
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Figure 4. Model-averaged probabilities of detecting a 3-horse group as a function of sun effect, based on 24 fIXed-wing (A) and 16 helicopter (B) flights in the 
western United States, 2004-2009 (fIXed-wing: n = 1,792 observations, helicopter: n = 725 observations). I show model coefficients as dotted lines for best 
conditions (no vegetation, looking away from the sun, distance <0.8 km [fIXed-wing] oropen topography [helicopter], fatigue <4 hr) and as solid lines for worst 
conditions (tree cover [fixed-wing] or shrub cover [helicoprer], looking toward the sun, distance >0.8 km [fIXed-wing] or complex topography [helicopter], 
fatigue> 3 hr), model estimates in bold, and observerlpopulation (random effects on rhc model intercept) in gray. Observm are looking increasingly toward the 
sun as sun effect increases from 0 to 1. I show observations (0) as 0 for missed groups and 1 for derected groups and offietvalues by the addition orsubttacrion of 
a small random value in order to help distinguish multiple observations at idenrieal values. 

survey) received support for either fixed-wing or helicopter 
surveys. 

Vegetation type was a factor in supported models for both 
fixed-wing and helicopter detection probability, but the 
magnitude of effect was small in all models (Table 2). 
The model-averaged estimate for vegetation type in fixed­
wing surveys estimated detection probability of a group of 
3 horses in good conditions declining with increasing vege­
tation height, though it should be noted that the range of 
observer performance by vegetation type included the poorest 
observer in all vegetation types performing worse than the 
model-averaged estimate for any individual vegetation type. 
The same small effect occurred in helicopter surveys, but 
horse groups in shrub and tree cover were detected equally 
and slightly less often than horses in no vegetation cover. 
The difference in detection probability for a 3-horse group 
in good conditions and no vegetation cover as compared 
to good conditions but in shrub or tree cover was only 2.03%. 
In poor conditions, this same probability declined 24.45%. 

The best model for helicopter surveys included topography, 
but there was no difference in model-averaged detection 
probabilities between open and complex terrain (odds 
ratio = 0,395, 95% CI = 0.120-1.303). I omitted this fac­
tor from fixed-wing models because 97.67% of observations 
from fixed-wing aircraft were made over uniform terrain, 
leaving the data too homogeneous to be informative. 
Likewise, I omitted the effect of distance from helicopter 
surveys because aircraft presence artificially displaced horses. 
Distance was present in 2 of the most-supported fixed­
wing models, but there was no difference in the model­
averaged detection probabilities (odds ratio = 0.846, 95% 
CI = 0.465-1.539). 

No models containing observer seat position or the effect 
of clouds creating shadow mosaics on the landscape were 
plausible for either fixed-wing or helicopter surveys. Percent 
snow cover was present in 1 weakly supported fixed-wing 

model (~i = 3.646), with 83.49% (95% CI = 76.28­
88.84%) ofJ-horse groups being detected in 0% snow and 
91.95% (95% CI == 87.89-94.73%) being detected in 100% 
snow. The lowest detection probability for a 3-horse group 
(72.06%, 95% CI == 46.10-88.60%) occurred when snow 
cover was recorded as 50%, creating a patchwork of snow 
and dry ground around horse groups. 

DISCUSSION 
Detection probability of feral horse groups on the landscape 
was subject to internal, external, and environmental factors in 
aerial surveys across the western United States. Group size 
and sun effect were the most important influences on the 
visibility of horse groups during both fixed-wing and heli­
copter surveys, but variation among observers produced an 
observer effect that also contributed to detection probability. 
In the best fixed-wing survey conditions (looking away from 
the sun, no vegetation, distance <0.8 km, fatigue <4 hr), 
there was a 22.90% difference in estimated detection proba­
bility of3-horse groups between the best and worst observer. 
In the best helicopter survey conditions (looking away from 
the sun, no vegetation, open topography, fatigue <4 hr), this 
difference was only 1.02%, but in the worst conditions 
(looking toward the sun, shrub cover, complex topography, 
fatigue >3 hr) the difference was 20.01%. Group size and 
sun effect, as well as observer effect, for fixed-wing surveys 
estimated a 15.06% difference between detection of 3-horse 
groups in best versus worst conditions. Likewise, group size, 
sun effect, vegetation type, topography, and fatigue, as well as 
observer effect, in helicopter surveys estimated a 31.71% 
difference between detection of3-horse groups in best versus 
worst conditions. 

The gregarious nature of some species is known to 
cause bias in aerial surveys because large groups are easier 
to detect than small groups, resulting in negatively skewed 
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population estimates (Samuel and Pollock 1981). Feral 
horses are gregarious and results from both types of aircraft 
in my study indicate a strong relationship between detection 
probability and group size. This finding concurs with 
Graham and Bell (1989) who conducted fixed-wing aerial 
surveys of Australian feral horses and found a positive linear 
relationship between detection probability and group size. 
This trend was also found in helicopter surveys of elk, and 
similar to my data, single animals were only sighted 22% of 
the time and groups> 15 elk were all detected (Samuel et al. 
1987). Anderson et al. (1998) found that detection of elk 
groups increased with group size regardless of vegetation 
type or whether animals were active or bedded. 
Unfortunately, the effect of group size on visibility cannot 
be mitigated by simply altering survey design, but it can be 
accounted for using statistical corrections. For example, 
weighting the observed group size by the inverse of the 
probability that groups of that size would be observed at 
least once during the survey creates a bias-adjusted group size 
estimate that can be multiplied by the estimated number of 
groups to derive a population estimate corrected for group­
size bias (Lubow and Ransom 2009). 

In contrast to the strong relationships detected between 
group size and visibility of horses and elk, helicopter aerial 
surveys of bighorn sheep revealed no effect of group size on 
group detection (groups ofl-40 sheep), whereas habitat type 
(topography) and light condition (sun, shade, overcast) were 
highly significant influences (Bodie et al. 1995). That study 
reported an 86% visibility rate for sheep located on flats or 
open slopes, declining to 62% on cliffs or talus. This concurs 
with my findings, but that effect is attributed only to heli­
copter surveys in my study because they are often used 
specifically for areas ofcomplex topography. The same effect 
could occur in fixed-wing surveys but may be confounded by 
other effects, such as altitude and maneuverability constraints 
that apply to most fixed-wing aircraft. The bias attributed to 
topography could be mitigated by arranging flight transects 
closer together in areas of complex terrain and using a 
statistical sampling method that allows for robust estimation 
when the observation of known groups is expected to be 
infrequent (multiple occasion mark-recapture, for example). 

Sun effect helped explain considerable variation in aerial 
detection probability in my study, but surprisingly, few stud­
ies have investigated this important source of bias. Bodie 
et al. (1995) reported lighting condition at the location of 
bighorn sheep groups (sun or shade), but did not address the 
angle of the sun in relation to the observer. Short and Bayliss 
(1985) also reported on visibility bias in sunny versus overcast 
lighting in aerial surveys of kangaroos (Macropus sp.), with 
similar results as Bodie et al. (1995). Surprisingly, I could 
find no studies that examined the direct role of sun direction 
on detection probability during aerial surveys. There is con­
siderable variation in the sun effect data for fixed-wing 
surveys in my study, which is likely due to the overhead 
wing structure of the Cessna 210 blocking the sun from 
direct influence on the observers. The sun still caused shad­
ing and illumination effects on objects located on the land­
scape when viewed from this aircraft, which appears to have 

resulted in the relationship detected. In contrast, helicopters 
allowed unobstructed skyward views and direct influence of 
sun on observer vision; consequently, helicopter sun effect 
data were considerably less variable. Observers did not collect 
data on the potential bias created by pelage color of animals, 
which is heterogeneous in most feral horse populations and 
may be confounded with sun effect. Illuminated white or 
gray horses can be relatively easy to detect, but the same color 
horses can be no more visible than black horses when backlit. 
In contrast, black horses can be no easier to detect in illumi­
nated conditions versus backlit conditions (see Fleming and 
Tracey [2008] for a detailed description of this effect on 
aerial observations). Regardless ofaircraft, bias introduced by 
sun effect during aerial surveys can be partially mitigated in 
many cases by pre-determining linear transects that are 
oriented parallel to the path of the sun. In areas where 
transects must follow topographic contours, this effect 
may be more difficult to mitigate but such topographic 
features may also block direct sun effect in many circum­
stances. Regardless, estimating sun direction and including it 
in candidate models may reduce the amount of unexplained 
variation in aerial survey data. 

Vegetation type and percent cover have been examined in 
several studies oflarge mammals, and as in those, feral horses 
are generally more difficult to detect in tree cover than in 
areas with no cover or shrub cover. Bayliss and Yeomans 
(1989) found this relationship with buffalo (BubalUJ bubalis), 
as did Samuel et al. (1987) with elk, and Short and Bayliss 
(1985) and Choquenot (1995) with kangaroos. Choquenot 
(1995) reported an observation bias by vegetation gradient 
similar to that in my study, with 23% of kangaroos missed in 
grass plains, 70% missed in shrubs, and 89% missed in 
riverine habitat. Unfortunately, avoiding the bias created 
by vegetation cover is difficult in aerial surveys. The best 
approach to mitigating this effect may be similar to that 
suggested for topographic bias, in addition to directly con­
sidering this factor in analytical models. 

I did not detect an effect of distance from the aircraft, 
which is surprising and inconsistent with many other studies. 
Manlyet al. (1996), Walter and Hone (2003), and Melville 
et al. (2008) all report the expected effect that detection 
decreases as groups increase in distance from the aircraft; 
likewise, this relationship fOnTIS one of the principle foun­
dations of distance sampling (Buckland et al. 1993). I suspect 
that either the distance categories used were too broad to 
detect this effect or transects were sufficiently close together 
for observers to be able to detect most groups. Nonetheless, 
this effect is likely important and could contribute to bias in 
surveys that involve wider-spaced transects, as well as in 
populations that consist of large numbers of small groups, 
where group size may interact with distance to create nega­
tive bias (Caughley 1974). 

The effect of snow cover was weakly supported in fixed­
wing surveys and followed the trend of more known animals 
being missed in mixed snow conditions versus 0% or 100% 
snow. Samuel et al. (1987) reported a similar (though also 
non-significant) trend in elk surveys with 90% of groups in 
(}-19% snow cover being detected and only 56% of groups in 
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20-99% snow cover being detected. Detection ofelk in 100% 
snow cover did not increase. Horse pelage color may also 
confound the effect of snow on group visibility since many 
populations have pinto-colored animals that form the same 
patchy white and brown visual as landscape with partial snow 
cover, making them more cryptic to aerial observers. The bias 
of snow effect can most easily be prevented by conducting 
surveys when snow is not present. 

F1eming and Tracey (2008) suggest that psychological and 
physiological limitations of human observers can potentially 
lead to observation bias in aerial surveys. Observer perception 
and brain function can be highly variable and, paired with the 
physical constraints of various aircraft types and survey 
parameters (transect width, airspeed, and altitude), can pres­
ent considerable unmeasured bias (Caughley 1974, F1eming 
and Tracey 2008). My study held airspeed, AGL, and 
transect width, as well as aircraft type for fixed-wing and 
helicopter surveys, relatively constant in order to help control 
these factors. Use of the individual observer, given the 
population, as a random effect also helped limit these biases 
in my analyses; however, the effect of fatigue on observers 
could not be controlled and influenced group detection 
during helicopter surveys. Fleming and Tracey (2008) sug­
gest that some survey efforts attempt to minimize fatigue by 
limiting survey time or taking regular breaks, and the data 
presented here concur that such strategies may be important. 
It does present the particular problem of planning aerial 
surveys with enough hours to complete the survey, but 
not so many hours as to create the bias presented by fatigue. 
It may be warranted to replace observers after 3 hr of survey 
time, though given the variation in observer performance, 
any change of personnel should be directly addressed in 
modeling efforts. Surveys designed to optimize detection 
based on crepuscular wildlife behavior have the added benefit 
of mitigating observer fatigue by using short flight times 
interrupted by a long midday break (see Choquenot 1995, 
Cairns et al. 2008, for example), 

The models analyzed in this study produced somewhat 
disparate results between aircraft types, though the best 
models for both fixed-wing and helicopter surveys included 
group size and sun effect. The differing results are likely a 
product of the behavioral influence of helicopters on horses, 
the lower AGL of helicopter surveys, greater distance of 
horses from helicopters at first observation, or confounding 
effects produced by any combination offactors specific to the 
physical structure of aircraft types. The behavioral effect 
found in my helicopter surveys concurs with Linklater and 
Cameron (2002) and that animals are often easier to detect 
while moving may help explain the disparity in detection 
probability between aircraft types during good conditions 
(Figs, 3 and 4). However, this advantage quickly disappears 
when conditions become poor and other factors are operat­
ing. In addition, such behavioral response may positively bias 
estimates due to individuals being counted repeatedly 
(Linklater and Cameron 2002). It does appear from my 
study that the stationary horse groups, higher altimde obser­
vations, and physical structure of the aircraft experienced 
during fixed-wing surveys likely resulted in fewer overall 

biases on group detection for animals that were available 
to both observers. 

Estimated detection probabilities are often used to form 
sightability bias correction models for adjusting population 
estimates (Caughley 1974, Unsworth et al. 1990, Anderson 
et al. 1998, Barker 2008), However, such models are dynamic 
and specific to the time and location of a given survey and 
may not accurately reflect conditions during future surveys or 
at other locations (Samuel et al. 1987). The data I present 
here should not be considered as the basis for a feral horse 
sightability bias correction model, but rather as a tool for 
planning future surveys and to help mitigate sources of bias 
often encountered. It should also be noted that feral horse 
ranges are diverse in habitat, and some areas may be subject 
to sources of bias that I investigated whereas others may not. 
Regardless, valid statistical sampling techniques must be 
employed in order to help quantify error and correct for 
various sources of detection heterogeneity that may be pres­
ent. Graham and Bell (1989), Bayliss and Yeomans (1989), 
Dawson and Miller (2008), Laake et al. (2008), and Lubow 
and Ransom (2009) have all applied sampling techniques to 
feral horse populations and continued expansion, adaptation, 
and use of these techniques is encouraged, 

MANAGEMENT IMPLICATIONS 
The common use of raw count, or so called census, aerial 
surveys can lead to inaccurate and negatively biased abun­
dance estimates when detection of animals on the landscape 
is inBuenced by heterogeneous observation conditions. Sun 
effect, percent snow cover, and observer fatigue, can be 
minimized or eliminated by carefully planning surveys 
with transect orientation that allows observers to view ani­
mals parallel to the sun's path rather than perpendicular to it, 
conducting surveys when snow is not present, and limiting 
helicopter observer time to <4 hr per flight. Other important 
factors impacting detection, such as group size and topogra­
phy, cannot be completely overcome with planning, but 
increasing survey effort by flying more transects with closer 
spacing may help increase the number of detected groups in 
the sampled area. Employing aerial survey methodologies 
that apply statistical sampling techniques is critical to 
addressing many of the negative biases created by heteroge­
neity of these factors. Use of such techniques can produce 
population estimates with quantified ertors that will 
provide better information for decision making and 
may help bridge gaps between management and the various 
public stakeholders, politicians, and advocacy groups that 
frequently take an interest in feral horse management 
decisions. 
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