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Additional Background 
Thus far, recent tree mortality and forest die-off events due to 
climatic disturbance have primarily been observed in case studies 
focusing on particularspecies and regions ofinterest (e.g., refs. 1-3). 
Assessments encompassing a broader range of forests have been 
limited because the temporal and spatial coverage offorest-growth 
data are insufficient (but see refs. 4 and 5). This problem may 
eventually be overcome in the US, in part by the USDA Forest 
Inventory and Analysis program that now collects a vast amount of 
forest-growth data annually throughout the country. Also holding 
promise are studies that use satellite imagery to monitor growth 
dynamics across large geographic areas (6-8). Like forest inventory 
data, however, satellite records are at present relatively short, 
and there are challenges in identifying and interpreting tree mor­
tality from satellite data (e.g., compare the divergent findings 
of refs. 9-11). 

Conveniently, many trees have been growing for hundreds or 
even thousands of years while annually recording environmental 
changes and tree growth rates in the form of their growth rings 
found in the cross-sections of their trunks. In general, wide rings 
are produced during years of optimal climatic conditions while 
thinner rings grow in response to poor conditions (12, 13). Sta­
tistically and mechanistically quantifiable' relationships between 
ring widths and climate have provided a basis for using tree-ring 
width chronologies for reconstructing numerous past climate 
histories. Tree-ring scientists have collected cores and cross­
sections from many thousands of trees and measured time series 
of tree-ring widths for thousands of sites around the world. 
A large database of annual tree-ring widths and standardizing 
ring-width index chronologies are archived in the International 
Tree-Ring Data Bank (ITRDB and maintained by the National 
Climate Data Center (NCDC) (see www.l1cdc.noaa.gov!palco! 
trc;ering.htmJ). 

Although tree-ring width chronologies have most commonly 
been used to provide long-term "proxy" estimates of regional and 
broader-scale climatic variations, they have infrequently been 
used to estimate forest growth variations. A problem with using 
existing tree-ring width chronologies originally developed for 
climatic studies to evaluate forest growth is that the sites and 
trees within them were usually systematically selected and sam­
pled for maximum climatic responsiveness, and not for obtaining 
an unbiased representation of forest populations or the spatial/ 
geographic distributions of forests. At least two studies that we 
are aware of, however, have demonstrat~d that widely distrib­
uted (spatially) tree-ring width chronologies from relatively small 
numbers of sampled trees per site (stand) can provide useful 
representations of forest growth at the stand to regional scales. 
The two examples are from studies in southern Finland and 
SW US where ring-width records were directly compared with 
complete or statistically unbiased growth-inventory data repre­
senting many thousands of trees and large areas (14, 15). 

Several other studies to date have attempted to infer forest 
growth responses to climate variability from ring-width chro­
nologies. For example, Peterson and associates have collected 
and analyzed tree-ring data from many sites to determine the 
primary climate variables that affected annual growth rates for 
various species across a number of climate regimes within the 
montane Pacific Northwest (16-20). McKenzie et al. (21) ana­
lyzed 185 tree-ring records in search of positive growth trends 
since 1850 in western North America. They found that although 
annual growth rates had not significantly increased at the rna-
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jority of sites, pronounced increases had occurred at some high­
elevation and high-latitude sites. Although this conclusion is 
subject to the same concerns described above (nonrandom se­
lection of the original sites and trees), no other dataset con­
taining annual tree growth information across such a broad 
geographical, temporal, or taxonomic range is available. In this 
light, the McKenzie et al. (21) study represented an inspiring use 
of a multicentennial dataset of tree growth to evaluate an im­
portant ecological response to global climate change. 

The tree-ring component of our study builds on these previous 
studies that have implicitly or explicitly inferred forest growth 
across geographic regions, species, and climate types from ring­
width chronologies. It would certainly be valuable to carry out 
detailed assessments of the strengths and weaknesses of existing 
ring-width chronology data sets for estimating forest growth at 
various spatial scales. For example, it should someday be possible 
to compare tree-ring chronologies with incipient long-term in­
ventory data sets (e.g., experimental forests, FIA plots etc.) at 
stand to regional scales. 

Methods of Tree-Ring Analysis. Tree-ring data. We obtained 1,148 
chronologies of tree-ring width index values for all sites within the 
continental United States listed by the ITRDB in September 2009, 
as well as four unpublished chronologies provided by the authors 
and H. Grissino-Mayer. Each chronology represents the average of 
multiple trees at asite (typically >10 trees). As opposed to raw ring 
widths, ring-width index (RWI) values were used for each site 
because they have been standardized to preserve interannual 
variability and remove long-term growth trends caused by aging 
and increasing trunk diameter (22). Removal of these long-term 
biological trends typically increases the proportion of interannual 
variability in ring-width values that can be explained by climate. 
Although RWI values cannot translate directly to estimates of 
productivity or growth rate in absolute terms (e.g., wood volume 
or whole-tree biomass increment per year), they generally rep­
resent relative radial growth rates fluctuating around a common 
mean index value of 1.0. A RWI value of 2.0 represents a year 
when radial growth was twice that of a normal year. A RWI of 0.5 
represents a year when radial growth was half that of a normal 
year. We used the existing standardized index chronologies in the 
ITRDB that were provided by tl1e contributors. Although the 
specific standardization approach (i.e., types of curves fitted to 
ring-width series, and various averaging and other time series 
treatments) varied among the chronologies, in general, the 
chronologies were developed to preserve most of the interannual 
to decadal variance that was in common among sampled trees 
within sites. See "The use of pre-standardized ring-width index 
records" in Sf Text for more on this issue. 

To increase the probability that each RWI record was not 
unduly influenced by anomalous individual trees, but instead 
represented the productivity of numerous trees, we only con­
sidered RWI values that were calculated using five or more tree 
cores. Notably, the ITRDB only clarifies how many cores, not 
trees, are represented in each chronology, but commonly, two 
cores are collected from each tree. We only considered chro­
nologies with at least 60 annual RWI values (years) after 1895 so 
that we could evaluate statistical relationships between ring-width 
indices and a seasonal climate dataset that began in fall 1895. 
Ring-width records fit these criteria at 1,097 sites. 

Notably, most RWI records used in this study were collected in 
the 1980s and 1990s and do not extend through much ofthe recent 
warming event that began in the mid-1970s. Seventy-three records 
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extend through 1979, 35% extend through 1989, and only 9% 
extend through 1999. This means that the majority of RWI 
records cannot reflect potentially long-term nonlinear growth 
responses to the warming trend of the most recent decades, such 
as adaptation or substantially decreased growth rates beyond 
some temperature threshold. All RWI records do, however, 
overlap with the warming trend that occurred between the 1910s 
and 1940s. The 1910s-1940s warming trend was comparable in 
magnitude and duration to the recent warming trend, allowing 
RWI records to more accurately represent long-term relation­
ships between tree growth and temperature variability than they 
would have in the absence of a multidecadal trend. Notably, the 
past warming trend is not a perfect analog to the current trend 
because temperatures were generally cooler in the first half of 
the 20th century. Also, within the SW region, precipitation was 
relatively stable about the long-term mean during the 1910s 
through 1940s period. SW precipitation has declined from above 
the mean to below.the mean during the recent warming event, 
likely exacerbating drought stress caused by increased temper­
atures (Fig. 51). See Sf Text on growth models for a further 
discussion of nonlinear growth response to climate. 
Climate data. We obtained monthly gridded climate data (total 
precipitation and average daily maximum, minimum, and dew 
point temperature) for 1895 through 2008 from the PRISM group 
at Oregon State University. PRISM datasets are grids with 2.5­
arcminute (~4 km) spatial resolution. For each tree-ring site, we 
averaged the records of the 9 grid cells (3 by 3) centered on the 
reported site because the locations of the .sites were not always 
precisely reported. Using eac,h site's monthly record of the four 
climate variables listed above, we calculated annual total pre­
cipitation, average daily minimum temperature, average daily 
maximum temperature, and average relative humidity for each 3­
mo season, beginning with October through December and end­
ing with July through September. 

Notably, increasing concentrations of atmospheric carbon di­
oxide (C02) will likely have important impacts on plants, and 
these effects are anticipated to vary widely by region and species 
(23). The effect of CO2 enrichment on tr~e growth is difficult to 
identify in RWI records, however, because the concentration of 
atmospheric CO2 has been steadily rising throughout the in­
dustrial era without substantial interannual variability. Therefore, 
the decreasing radial growth rate that generally occurs in growing 
trees may mask a positive growth relationship with CO2, The 
naturally negative trend in ring-widths may also cause a negative 
growth relationship with increasing CO2 to be difficult to in­
terpret. The statistical standardization process used to eliminate 
ring-width trends associated with increasing tree-size are likely to 
remove any long-term growth trends associated with increased 
atmospheric CO2• We therefore made, no&pecific effort to include 
the effects of the increasing atmosphy'ric ',C02 on tree growth. 
Growth model. Treating each. of the 1,097 RWI records in­
dependently, we used multiple linear regression analysis to create 
a climate-based growth model for each tree population. Often, 
growth is most responsive to a given <;limate parameter (pre­
cipitation, maximum temperature, minimum temperature, and 
relative humidity) during a portion of the year, and depending on 
the time of year, the growth response may be positive or negative. 
We therefore evaluated the effect of each climate parameter 
during each of the four 3-mo seasons over a 12-mo period that 
begins in October and ends in September (4 climate parameters X 
4 seasons = 16 variables). " . ", 

To reduce the probabilitY. of using climate variables that are 
statistically associated with, but do not· actually impact tree 
growth, we only incorporated a given climate variable in a growth 
model if it made a "substantial contribution" to the predictability 
of ring-width indices. To do this, we conducted a forward step­
wise regression. For each model, we began with the single vari­
able that most strongly correlated with the RWI record. Using 
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this first variable, we initially developed a simple univariate lin­
ear model to predict RWI values. We established the strength of 
the initial model by calculating the coefficient of determination 
(R2

) between predicted and actual RWI values. Next, we in­
dependently tested each variable as a second potential predictor 
of RWI in a bivariate linear model. We chose the single variable 
that contributed to the greatest improvement in the model R2

, 

and if R2 improved by >0.02, we accepted the new variable as 
a second RWI predictor. We repeated this process until the 
multivariate model R 2 could no longer be improved by >0.02 by 
adding a single variable. 

With many potential predictors, there is a substantial risk of 
overfitting a multivariate model. To reduce this risk, we used 
cross-validation to evaluate the true predictive power of each of 
the 1,097 growth models. Cross-validation involves sequentially 
removing one RWI value at a time, calculating new regression 
coefficients using the climate and ring-width data from all other 
years, and predicting the missing RWI value. The correlation 
coefficient yielded by correlating these modeled RWI values with 
actual values is more representative of each model's true pre­
dictive power because each modeled RWI value was calculated 
using a model developed using independent data (24). 

Cross-validated correlation of modeled and actual RWI re­
cords produced a significance of P < 0.01 for 963 of the 1,097 
(88%) records evaluated. However, a P value of 0.01 under­
estimates the true probability of a false statistical relationship 
between modeled and actual ring widths because each growth 
model had more than one opportunity to include a false but sta­
tistically present relationship. We therefore limited all projections 
of 21st century growth to the 853 sites where modeled and actual 
RWI values correlated with a cross-validated P value of <0.001. 
Although significance tests (P values) are not technically valid for 
cross-validated correlations, we felt that using such a strict stan­
dard for model acceptability sufficiently minimized our risk of 
using growth models that assumed false relationships between 
growth and climate. 

Importantly, climate can affect tree growth over more than just 
one growing season. Physiological and stand-dynamics effects that 
are not related to climate can also affect growth over multiple 
consecutive growing seasons. These multiyear effects on tree 
growth often cause autocorrelation within RWI records. To 
isolate only year-to-year variability in the ring-width record, this 
autoregressive component is often removed before analysis in 
tree-ring studies (25). After extensive testing, however, we de­
termined that removing the autoregressive component from 
ring-width records did not result in a substantial improvement to 
the accuracy of most ring-width models. In fact, many models 
performed substantially worse on these "pre-whitened" ring­
width records. 

Climate also impacts tree growth in a nonlinear fashion. For 
example, additional precipitation may only contribute to con­
tinued growth until the soil is saturated. Growth models often 
account for issues such as above-ground runoff and hygrostatic 
soil properties using a soil water balance term that accounts for 
how precipitation rate, temperature, humidity, soil properties, 
and conductive properties of overlying vegetation interact to im­
pact water availability to plants (26-28). We did not use such a 
variable in this study, however, because we did not know enough 
about the soil or plant properties at each site to make accurate 
calculations of soil-water balance. 

An alternate method of dealing with nonlinear relationships 
between climate and ring width was to simply include nonlinear 
growth predictors into the growth models. In an analysis where 
models were allowed to include quadratic relationships, nonlinear 
relationships with precipitation were most commonly chosen at 
sites throughout the Rocky Mountains. Nonlinear relationships 
with temperature were most common in the northwestern US. 
However, there was no obvious commonality among sites and/or 
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species within these regions where nonlinear relationships sub­
stantially improved model 'performance; "Therefore, it seemed 
likely that the addition of a nonlinear COij1ponent to the model­
building process would lea~· to overfitting of many ring-width 
models, and we ultimately did not allow for the incorporation of 
nonlinear relationships in any of the ring-width models. 
Growth response to 27st century climate. We used the PRISM climate 
dataset to model RWI values at each site from 1950 to 1999. We 
then used four distinct scenarios of 21st century climate to model 
2050-2099 RWI values. For each scenario, we compared the 
average modeled 1950-1999 RWI value to that for 2050-2099 
and then calculated the percent change in annual growth rate 
due to climate change (cf. ref. 29). 

The datasets representing the first two scenarioswere developed 
by the National Center for Atmospheric Research (NCAR) using 
the CCSM3 General Circulation Model (GCM). We obtained 
these datasets from the World Climate Research Program's 
(WCRP's) Coupled Model Intercomparison Project phase 3 
(CMIP3) multimodel dataset. The first scenario represents the A2 
case, which assumes business-as-usual greenhouse gas emissions 
throughout the 21st century (30). The second scenario represents 
the AlB case, which assumes that the rate of greenhouse gas 
accumulation in the atmosphere will slow after 2050 (31). These 
model datasets are gridded, with l.4-degree spatial resolution, 
and are identical from 1896 through 1999. 

We downscaled the l.4-degree CCSM3 climate projections so 
that they matched the 1896-1999 mean and variability at each 
tree-ring site. To do this, we first upscaled the original 2.5 arc­
minute PRISM data to l.4-degree spatial resolution and adjusted 
the CCSM3 modeled datasets so that their means from 1896 to 
1999 matched those of the upscaled PRISM datasets. We then 
determined the linear relationship between the l.4-degree 
PRISM data and the site-specific (3 by 3 grid around each tree­
ring site) PRISM data using linear regression. Finally, we used this 
relationship between site-specific and l.4-degree PRISM climate 
data to downscale the already adjusted C~M3 modeled climate 
data to represent each site;,' . " 

The third and fourth 21st sentury climate scenarios did not use 
low-resolution climate data generated by a GCM. They assumed 
that linear climate trends already established during previous 
decades will continue throughout the 21st century. The third 
scenario assumed that any linear climate trends established in the 
PRISM dataset from 1895 through 2008 will continue through 
2099. The fourth scenario only considered linear trends estab­
lished from 1979 through 2008, when observed warming accel­
erated globally. For each tree-ring record, we created annual 
climate projections for 2009 through 2099 py shifting the values 
from 1909 to 1999 according to' the appropriate linear trend, In 
the cases ofvery strong trends in these third and fourth scenarios, 
we did not allow extrapolated precipitation to become negative 
and we confined extrapolated relative humidity values to between 
zero and 100%. 
The use of prestandardized ring-width index records. An unavoidable 
drawback to using records of tree-ring widths to establish rela­
tionships between tree growth and climate variability is that there 
are trends in records of tree-ring widths that are caused by 
nonclimate factors. These trends generally occur over the course 
of decades to centuries and, because th~y,\lre not associated with 
climate, they must be statisiiCaily .removed from the ring-width 
records before associatiOlis ~~tween ring widths and climate can 
be accurately quantified (12, 22). 

The standardization process is partly subjective but usually 
implemented systematically. Careful consideration of individual 
tree-ring series is often required to determine the appropriate 
standardization technique, and although some series may be 
detrended by specifically choosing curve types, most series within 
sites are based on a common curve fitting approach. The most 
common trend that is remove~ is a negativyexponential-type trend . , 

of declining ring widths caused by the ever-increasing cross­
sectional area of the trunk of a growing tree. Also common is 
a temporary trend toward increasing ring widths during the be­
ginning years or decades of a tree's life as its roots become in­
creasingly established and growth allocation gradually shifts from 
height to girth (32). Changes in ring widths may also be removed if 
they are believed to be caused by stand dynamics that are not di­
rectly related to climate variability. For example, ring widths may 
be temporarily suppressed due to broken branches caused by 
a fallen neighboring tree or ring widths may become wider due to 
reduced competition after the death or removal of a neighboring 
tree. These effects may be indicated by unique growth changes 
within just one or a few trees rather than the whole set of trees 
sampled in a site. 

Without substantial care, however, standardization can easily 
counteract its purpose by introducing false trends in ring-width 
records. The ends of ring-width records are particularlyvulnerable 
to these effects (33). For example, the removal of a linear trend 
from a record that decreases somewhat logarithmically causes an 
artificial increase in ring-width index values at the end of the re­
cord. On the other hand, removal of a negative exponential trend 
from a record that decreases linearly causes an artificial decrease 
in ring-width index values at the end of the record. To avoid ar­
tifacts of standardization, it is fairly common to apply a smoothing 
spline to remove all low-frequency variability that occurs beyond 
some temporal threshold. This type of trend removal must be 
done with care, however, because it does not discriminate be­
tween low-frequency variability caused by nonclimate processes 
and those caused by relatively slow climate processes such as the 
Pacific Decadal Oscillation, Medieval Warm Period, and Little 
Ice Age. 

A shortcoming intrinsic to all standardization techniques is that 
relationships between tree growth and climate variability on de­
cadal to centennial scales are often removed. This means that, to 
some degree, standardized ring-width index records do not fully 
reflect trees' ability to acclimate to long-term trends in environ­
mental conditions. Such acclimations are known to occur and 
have been observed as reallocations of resources among various 
parts of the tree (7). In an attempt to identify long-term growth 
trends in forests across western North America, McKenzie et al. 
(21) performed very conservative standardizations to remove 
ring-width trends caused by tree size and keep as much low-fre­
quency variability in ring widths as possible. The goal of that study 
was to identify tree populations that may have experienced in­
creased radial growth in recent decades, so the conservative 
standardization techniques used were meant to safely error on the 
side of retaining negative growth trends associated with tree size. 
This gave the authors confidence that the few populations that 
showed positive poststandardized ring-width trends truly did ex­
perience a positive growth trend. 

To error on the side of understandardization, however, is to 
introduce false statistical relationships between RWI values and 
climate. Thus, we chose to use the prestandardized ring-width 
index records provided by the ITRDB because they were pre­
sumably standardized by individuals who carefully considered how 
to best standardize each individual ring-width record using a cer­
tain amount of expertise on the site and the sampled population. 
We felt that although it may appear to be more scientifically sound 
to start with raw ring-width records and standardize all records 
using a consistent and conservative technique, an automated 
standardization process would likely cause more problems than it 
would solve, particularly by introducing artificial trends to the ends 
of ring-width index records that could easily be misinterpreted as 
responses to 20th century climate change. 

To evaluate the impact of standardization on the relationships 
between the RWI records used in this study and low-frequency 
climate variability, we tested how well modeled and actual RWI 
records correlate after both records undergo varying degrees of 
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smoothing. The theory is that modeled ~WI records reflect the 
climate processes that occi,1ri~~aCross abrOad range of time scales 
but actual RWI records do not. Forexample, ifa ring-width record is 
standardizedby removing the'45-y running mean, then the resultant 
RWI record can onlyreflect climate processes that occurredon time 
scales shorter than 45 y. Therefore, modeled and actual RWI 
records smoothed with, say, a 5-y running mean should correlate 
fairly well, but modeled and actual RWI records smoothed with 
a 51-y running mean should not correlate well because the modeled 
record would still reflect low-frequencyclimate variabilitywhile the 
actual record would consist only of values very close to 1. 

Fig. S2 indicates that for the vast majority of the 853 RWI re­
cords with well-performing 'models within the continental US, 
correlations between modeled and measured RWI records re­
mained strong when running means wl;:re calculated with windows 
as wide as 50-60 y. For SW populations, correlations between 
running-mean modeled and actual RWI records tended to be 
stronger, but they also tended to decrease substantially when 
running means were calculated using 50- to 60-y windows. These 
results indicate that RWI records generally represent climate 
variability on time scales of a half century and shorter. This is 
particularly true among RWI records from the SW US. 

This analysis indicates that the majority of SW ring-width re­
cords have been standardized in a relatively conservative manner 
that preserves multidecadal variability in interannual growth rates. 
Although anthropogenic climate change is certainly expected to 
occur on time scales longer than several decades, the accurate 
representation of growth response to climate processes on time 
scales out to 50 y and often beyond indicates that if low-frequency 
climate variability causes trees to begin using adaptation strate­
gies within 50 y or so, then those adaptation processes are likely 
reflected in many of the growth equations for tree populations in 
the SW US. 

Methods of Wildfire and Bark-~eetle Analysis. In September 2009, we 
obtained annual shapefiles of insect-induced forest mortality for 
Arizona, New Mexico, Utah,and Colorado from the US Forest 
Service (USFS) Forest Health Technology Enterprise Team 
(FHTET, Vol\'Vw.fs.fed.us/foresthealth/tcchnology/ads_slandards. 
sbunl). This dataset represented years 1997 through 2008. We 
constrained our analysis to tree mortality attributed to bark-beetle 
infestation because it is likely that warming and drought stress 
within a forest both contribute to increasing the probability ofbark­
beetle infestation (34-36). We also obtained fire-burn severity data 
for all wildfires within the SW US from 1984 to 2006 from the US 
government's Monitoring Tr~nds in Bum Severity project (MTBS, 
www.lmbs.gov). For each year, we calculated the percent of SW 
forest and pifton-juniper woodland area that was reported to have 
been affected by each of these mortality processes. 

For bark-beetle-induced mortality, FHTET identified regions 
where >50% of trees had been killed. For fire-induced mortality, 
there is no calibrated measure of the percent of trees killed. 
Instead, MTBS classifies burned pixels as "low," "moderate," 
and "severe." We inferred that "moderate" and "severe" classi­
fications within forest or pifton-juniper woodland areas indicate 
that there was substantial tree mortality. The detailed method­
ology that MTBS follows to '"Iassify bum' severity is described in 
Key and Benson (37). In short, bum severity classifications were 
based on the total change in'the Normalized Burn Ratio (NBR) 
during the peak of the growing season before and after burn 
events. NBR is based on the difference between near-infrared 
(0.76--0.90 ilm) and middle-infrared (2.08-2.35 ilm) surface re­
flectance, similar to the popularly used normalized difference 
vegetation index (NDVI). High reflectance in the near-infrared 
is associated with low chlorophyll content. Low reflectance in the 
middle-infrared has been shown to be associated with low water 
content and high amounts of soil, ash, and,charred wood (38). So, 
subtracting the postbum ~R f~omt~e preburn NBR results in 
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a positive value (dNBR). The more positive the dNBR, the more 
severe the fire is assumed to have been. Notably, basing burn se­
verity classifications upon the total difference in NBR between 
images leads to a bias toward low-bum severity classifications in 
areas with low vegetation densities such as pifton-juniper wood­
land. Although much of the existing vegetation in a sparsely pop­
ulated area may be thoroughly burned, the average near- and 
middle-infrared reflectance across a 30-m pixel will not result in as 
high of a change in NBR values as they would in a more densely 
populated stand of trees. For this reason, a relativized version of 
the dNBR (RdNBR) has been developed (39-41). However, 
generalized rules for bum-severity classification using the RdNBR 
have not yet been established and applied to the long-term wildfire 
record used in this study. Therefore, our estimates of forest and 
woodland area experiencing "moderate" and "severe" wildfire 
burns are very likely conservative underestimates. 

To calculate the percent of forest and pifton-juniper woodland 
affected by substantial tree mortality, we first estimated the dis­
tribution and total area of SW forest and pifton-juniper woodland 
before 1984 (the first year ofthe bum-severity analysis). To do this, 
we used three datasets of land cover. The datasets were the 1981 
Brown and Lowe classification of biotic communities in the SW 
US (42), the 1992 National Land Cover Data Set (NLCD, h11p:; 
landco\'cLusgs.gov), and the 2004 Southwest Regional Landcover 
Data (ReGAP, htlp://carth.gis.usu .cdu/swgap/landcovcr. html). 
We accessed each ofthese datasets in September 2009. The NLCD 
and ReGAP datasets have 30-m spatial resolution. The Brown and 
Lowe dataset is a set of geographic polygons (ArcGIS shapefile) 
with relatively coarse spatial resolution (1:1,000,000). We re­
sampled this dataset to convert it to a grid of 30-m pixels. 

We originally considered forested areas to be areas classified by 
Brown and Lowe as any kind ofconifer forest. We considered pifton­
juniper woodland areas to be areas classified by Brown and Lowe as 
"Great Basin conifer woodland" or "Madrean evergreen wood­
land." However, the coarse spatial resolution of the Brown and 
Lowe dataset causes inaccuracies in the locations of the boundaries 
between land-cover types. For example, areas identified as wood­
land in the Brown and Lowe analysis were often classified as co­
nifer forest in the NLCD and ReGAP datasets. We therefore 
incorporated the higher resolution NLCD, making the assumption 
that, in general, anything classified as "evergreen forest" or "mixed 
forest" in the 1992 NLCD was probably the same in 1981. In other 
words, we considered forest to be present in all locations classified 
as forest by either Brown and Lowe or 1992 NLCD. We could not 
make this same assumption for pifton-juniper woodland because 
the 1992 NLCD does not distinguish between pifton-juniper 
woodland and other types of nontree shrubland. However, the 2004 
ReGAP analysis does make this distinction. We therefore consid­
ered pifton-juniper woodland to be present at any nonforest loca­
tion identified as "Great Basin conifer woodland" or "Madrean 
evergreen woodland" by Brown and Lowe and/or as both "wood­
land" by the 1992 NLCD and "pifton-juniper woodland" by the 
2004 ReGAP. Finally, we also made the assumption that all areas 
field-mapped as displaying bark-beetle mortality since 1997 must 
be either forest or pifton-juniper woodland. There were 647 km2 

affected by beetle-induced tree mortality which were not classified 
as forest or pifton-juniper woodland using the classification method 
described above. We classified these zones as pifton-juniper 
woodland because the vast majority of these zones were near the 
low-elevation pifton-juniper ecotone. Because we incorporated the 
Brown and Lowe classification, which only extends to 37.5 ON, the 
SW region evaluated in the mortality analysis was 8% smaller 
(55,501 km1

) than the SW region considered in the tree-ring 
analysis, which extends to 38 ON. 

Certainly, given this rather complicated land-cover classifica­
tion scheme, there are errors associated with our estimates of the 
area of forest and woodland affected by fire- and beetle-induced 
tree mortality. To evaluate the possible magnitude and range of 
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these errors, we repeated the annual analysis using five different 
methods to define forest and pinon-juniper woodland. These five 
methods were as follows: 
Method 1. 

Forest. 
i. Any area defined by Brown and Lowe as conifer forest. 

ii.	 Any area defined by 1992 NLCD as evergreen or mixed 
forest.
 

Pinon-juniper woodland.
 
i.	 Any nonforest area defined by BroWn and Lowe as Great 

Basin conifer woodland 'or Madrean evergreen woodland. 
ii. Any nonforest area defined by 1992 NLCD as woodland and 

by 2004 ReGAP as pifion-juniper woodland. 
iii.	 Any area affected by bark-beetle tree mortality but not 

found to be forest or pifion-juniper woodland using the 
above methods. 

Method 2. 
Forest. 
i. Same as in Method 1.
 

Pinon-juniper woodland.
 
i.	 Same as in Method 1, except not including pinon-juniper 

woodland areas defined in (iii) above. 
Method 3. 

Forest. 
i. Any area defined by Brown and Lowe as conifer forest. 

Pinon-juniper woodland. 
i. Any area defined by Brown and Lowe as Great Basin conifer 

woodland or Madrean evergreen woodland. 
Method 4. 

Forest. 
i.	 Any area defined by 1992 NLCD as evergreen or mixed 

forest.
 
Pinon-juniper woodland..
 
i. Any nonforest area defined by 1992 NLCD as woodland and 

by 2004 ReGAP as pifion-juniper woodland. 
ii.	 Any area affected by bark-beetle tree mortality but not 

found to be forest or pifion-juniper woodland using the 
above methods. 

Method 5. 
Forest. 
i. Same as in Method 4.
 

Pinon-juniper woodland.
 
i.	 Same as in Method 4, except not including pifion-juniper 

woodland areas defined in (ii) above. 

Among these five methods, method 2 produced the lowest 
estimate of percent forest and pifion-juniper woodland affected 
by 1997-2008 beetle-induced tree mortality and method 4 pro­
duced the highest (7.33% and 11.31%, respectively). Impor­
tantly, four of the five methods produced estimates between 
7.33% and 9.06%. For 1984-2006 wildfire-induced mortality, 
method 2 produced the lowest estimate (2.68%) and method 5 
produced the highest (3.07%). Table 52 lists how each method 
impacted the overall size of the SW region considered, the total 
areas of forest and pinon-juniper woodland, and the amount of 
each of these land-cover types mapped as affected by tree 
mortality associated with bark beetles from 1997 to 2008 and 
wildfire burns from 1984 to 2006. 

1.	 Allen CD, 8reshears DO (1998) Drought-induced shift of a forest-woodland ecotone: 
Rapid landscape response to climate variation. Pro< Natl Acad Sci USA 95:1483~ 14842. 

2.	 Breshears DO. et al. (2005) Regional vegetation die-off in response to global-change­
type drought. Proc Nat! Acad Sc/USA \02:15144-15148., 

3.	 Swetnam TW, Betancourt k (1998) Mesoscale disturbance and ecological response to 
decadal climatic variability in the American Southwest. J Clim 11:312S-3147. 

4.	 Allen CD, et al. (2010) A global overview of drought and head-induced tree mortality 
reveals emerging climate change risks for forests. Forest Ecol Manag 259:66CH;B4. 

Williams et al. www.pnas.orglcgVcontentishortJ091421110/ 

Although estimates of total area of forest and pifion-juniper 
woodland affected by these mortality agents varied according to 
the methods used to define vegetation type, the annual calcu­
lations were impressively consistent among the five methods (Fig. 
S3). This was also generally the case when forest and pifion­
juniper woodland areas were considered independently. As an 
exception, there was substantial variability among annual records 
of pinon-juniper woodland affected by fire-induced mortality. The 
percent area of pifion-juniper woodland affected by fire was very 
small compared with the percent forest area affected by fire, 
however. Therefore, disagreement among estimates of pifion­
juniper area burned did not result in large differences in estimates 
of overall forest and pifion-juniper area affected by fire-induced 
tree mortality. 

Notably, these estimates of area experiencing substantial tree 
mortalitydue to fire are probablytoolowbecauseofthebias inherent 
in the dNBR calculation, described in the second paragraph of this 
section. To evaluate the degree to which this bias may impact our 
calculations, we included "low" burn areas and recalculated annual 
and total percentages of forest and pifion-juniper woodland area 
that experienced tree mortality due to fire. We made these calcu­
lations using method 1 (described above) and duplicated them with 
method 4 to again test the impact ofour uncertainty in the pre-1984 
spatial distribution of forest and pifion-juniperwoodland. The two 
methods resulted in generally similar annual calculations (Fig. 55). 
By including low burn areas in the fire-induced mortality analysis, 
the overall area of forest and pifion-juniper woodland affected 
increased by 72% using method 1 (method 4: 75%). Although high 
amounts of tree mortality certainly did not occur in all low burn 
areas, including all low burn areas offers an estimate of the absolute 
highest possible error that could have occurred because of the 
dNBR bias. 

For forest area only, including low burn areas increased esti­
mates of forested area affected by fire-induced mortality by 68% 
(method 4: 70%). For pifion-juniper woodland, the area increased 
by 95% (method 4: 106%). Given that the bias toward lower burn 
severity is strongest in areas with low tree density, it is likely that 
the underestimation of mortality due to "moderate" and "severe" 
burns was larger for pinon-juniper woodland than it was for 
forest. However, this impact of this error in pifion-juniper 
woodland probably has only a small impact on the estimates of 
overall forest and pinon juniper area that experienced mortality 
due to fire because the overall burned area of pinon-juniper 
woodland is relatively low. As an example, the overall area of fire­
induced mortality within SW forest and woodland would only 
increase from 2.68% to 3.21% if low severity burns in woodland 
were considered to lead to widespread mortality (method 4: 
3.03% to 3.36%). 

Fig. S5 demonstrates that the annual percent of area burned 
within each vegetation type increased for all three burn severity 
classes from 1984 through 2006. As the annual burned area 
tended to increase over time, the annual percentage of forest 
and pinon-juniper woodland area burned at low severity in­
creased faster than the percentage of the more severe burn types. 

Viewed in another way, interesting trends emerge. Although 
burned area increased from 1984 to 2006 among all three severity 
classifications, Fig. 56 indicates a shift toward a greater proportion 
of severe fires within forests and a greater proportion of low and 
moderate severity fires in pifion-juniper woodland. The reason for 
this is not immediately clear and warrants further investigation. 
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Fig. 51. Running s-y average departure from mean daily maximum temperature (A) and minimum temperature (8) anomaly in the southwestern region 
highlighted in Fig. 1 (orange area and red line) and the rest of the continental United States (gray area and gray line). Thick lines represent the median PRISM 
pixel value within the region. Shaded areas represent the inner quartiles of pixel values (50% of pixel values lie within the shaded region). 
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Fig. 52. Box plots of correlation coefficients calculated by comparing smoothed time series of modeled RWI values to smoothed time series of actual RWI 
values. Smoothing was done using running means across various window lengths ranging from 1 to 67 y. All correlations used at least 3S y of smoothed data. 
We only considered the BS3 models used in our main analysis. Boxes bound inner quartiles. Whiskers bound the inner 90% of values. Thick black lines represent 
median values. . 
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Fig. 53. Annual percent of forest and pii'ion-juniper area impacted by mortality caused by bark beetles (A) and moderate and severe wildfire burns (B) for 
each of the five methods used to define forest and pii'ion-juniper woodland. The five methods are described in 51 Text: Methods for Wild Fire and Bark-Beetle 
Analysis. Method 1 was used in our final analysis. 

Fig. 54. (A) Annual mean and S-y running mean Palmer Drought Severity Index (PDSI). Annual PDSI was calculated as mean monthly October-September in 
the SW region. PDSI data are gridded spatially at 2.S-degree spatial resolution (1). (B) Annual percent of forest and pii'ion-juniper area impacted by mortality 
caused by bark beetles (orange) and moderate and severe wildfire burns (red) overlaid on annual PDSI. Note that the wildfire burn area is multiplied by Shere 
for visualization. 

1.	 Dai A. Trenberth KE, Qian T (2004) A global dataset of Palmer Drought Severity Index for 1870-2002: Relationship with soil moisture and effects of surface warming. J Hydromereoro/5: 
1117-1130. 
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Fig. 55. Annual percent of forest and pillon-juniper woodland (A), forest only (8), and pinon-juniper woodland (C) only burned by low (blue), moderate 
(orange), severe (brick red) fire. Solid lines and dashed lines represent time series calculated using methods 1 and 4, respectively. These methods are described 
in 51 Text: Methods for Wild Fire and Bark-Beetle Analysis. 
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Fig. 56. The percent of annual area burned classified as low (blue), moderate (orange), and severe (brick red) within forest and pinon-juniper woodland (A), 
forest only (8), and pinon-juniper woodland only (C). Thin solid lines and dashed lines represent time series calculated using methods 1 and 4, respectively. 
Thick lines follow linear annual trends for method 1 calculations. Methods 1 and 4 are described in 5/ Text Methods for Wild Fire and Bark-Beetle Analysis. 
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Table 51. Projected changes in 50-y mean RWI values for the 235 
chronologies from the 5W region, comparing 2050-2099 to 1950­
1999 

ll.RWI, % 

Species	 Scenario Mean Median Upper 25% Lower 25% 

PIED	 A2 -40 -38 -15 -62 
AlB -27 -24 -8 -47 
114-y -11 -4 4 -27 
30-y -140 -104 -78 -164 

PIPO	 A2 -48 -48 -15 -72 
A1B -34 -34 -5 -28 
114-y -17 -11 5 -28 
30-y -123 -99 -45 -171 

PSME	 A2 -48 -43 -23 -63 
AlB -35 -32 -lS -50 
114-y -14 -11 0 -24 
30-y -119 -111 -63 -161 

PIED, pirlon pine; PIPO, ponderosa pine, PSME, Douglas fir. 

Table 52. 5W Area (km2) impacted by tree mortality due to wildfires from 1984 to 2006 and bark beetles from 1997 
to 2008 

Method 

2 3 4 5 

SW Area Overall SW area 664,839 664,839 664,839 720,392 720,392 
Area of Forest 123,395 123,395 60,811 122,350 122,350 
Area of Woodland 116,443 115,796 147,154 59,933 55,424 
Area of Forest or Woodland 239,838 239,191 207,965 182,283 177,774 
% Forest 18.56 18.56 9.1S 16.98 16.98 
% Woodland 17.51 17.42 22.13 8.32 7.69 
% Forest or Woodland 36.07 35.98 31.28 25.30 24.68 

Bark beetles Total'Area 18,177 18,177 18,177 20,619 20,619 
Area of Forest 13,251 13,251 7,899 13,542 13,542 
Area of Woodland 4,926 4,279 8,616 7,078 2,568 
Area of Forest or Woodland 18,177 17,530 16,515 20,619 16,110 
% Forest 10.74 10.74 12.99 11.07 11.07 
% Woodland 4.23 3.70 5.86 11.81 4.63 
% Forest or Woodland 7.58 7.33 7.94 11.31 9.06 

Wildfire Total Area 9,596 9,596 9,596 9,965 9,965 
Area of Forest 5,076 5,076 3,326 4,963 4,963 
Area of Woodland 1,344 1,336 2,270 566 489 
Area of Forest or Woodland 6,420 6,412 5,596 5,528 5,452 
% Forest 4.11 4.11 5.47 4.06 4.06 
% Woodland 1.15 1.15 1.54 0.94 0.88 
% Forest or Woodland 2.68 2.68 2.69 3.03 3.07 

Wildfire or beetle Total Area 27,288 27,288 27,287 30,080 30,080 
Area of Forest 17,844 17,844 10,882 18,015 18,015 
Area of Woodland 6,245 5,598 10,777 7,588 3,049 
Area of Forest or Woodland 24,089 23,442 21,659 25,604 21,065 
% Forest 14.46 14.46 17.89 14.46 14.46 
% Woodland 5.36 4.83 7.32 4.83 5.36 
% Forest or Woodland 10.04 9.80 10.41 9.80 10.04 

The five columns represent unique methods of defining forest, woodland, and the SW US. These methods are described in 51 Text on 
"Methods of Wildfire and Bark-Beetle Analysis." The main text reports the results of method 1. 
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