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IMPROVING NATIONAL-SCALE INVASTON MAPS: TAMARISK
IN THE WESTERN UNITED STATES

Catherine S, Jarnevich 'S, Paul Evangelista?, Thomas J. Stohlgven!, and Jeffery Morisette!

ABSTRACT—Now invasions. hetter Reld data, and novel spatial-medelng technigues often dvive the need to revisit
previous maps and models of invasive species, Such s the case with the at least 10 species of frmariy, which are
invading riparian systems in the western Unitid States and expanding their vange throughaat Noth Awicrica. In 2006,
we developed a Nationdd Tamavisk Map by using a compilation ol presence and absence locations with vemintely sensed
daka and statistical modeling techwiques, Sinee the pubhcation of that waork, our database of Twnwix distnbulions has
grows significantly.

Using the updated database of species ocramrence, new predictor variables, and the masimuom entropy ( Maxent)
model, we have revised our potential Tameriy distribution map for the western United States. Distance- to-water was the
strongest predictor m the moeddd (38 1%, while meaun temperature of the warmest quarler was the second best predictor
(18.4%. Model valulation, averged from 25 made] iterutions, indicated that our analysis had steong predective perfor-
mance (AUC = 0,93} and that the extent of Taongriv distnbutions is much greater than previously thought. The south-
western United States had the greatest suitable habutat, and this resolt dilfercd from the 2006 model Our work hizh-
lights the utility nf itevative modeling {or invasive speeies balatat mndetimg as new inlormation beeemes available.

Re st sy —A menudo las nuevas invasionus. mejores datos de camipo y téenicas novedosas de modelado espacial
impulsan ta actnalizacién de los mapas v du las madelns existentes de especies invasoras, Este os el case de al menos 10
especies de Tamarix, las cuales estdn ivadiendo Jos sistemas vibereiing en ¢l acste de los EE.UU. v extendiendo su
distnbucian por toda Nortcamérica. L 2006, desarrollamos un mapa nacional del tamariseu (National Tamarisk Mapi
utilizando una conipilacian de sitos de presencia y avsencia con datos de sensores rematos y téenicas de modelacian
estadistice. Desde Ja publicacidn de este tralwo, noestra base de datos sobre Ja dhstribucion de Tmaaric ha erecerdu
considerablemente.

Eblizando Ju base de datos actualizada de presencia de especies, nuevas variobles predictoras v el modelo de
méxima entropia (AMaxent], humos modificade nmestro mapa de la distribucion potencial de Tamarix para ¢l ocste de los
EE UL El predictay mis foerte en ¢l models fue la distancia al agua (58,1%), y la lemperatura promedio dol trimestie
mis cdlido fue ¢l segundo (38.4%5, La validaeaén de modele, caleuladi como @l promexdio de 23 iteraciones del modelo.
indicd gue puestra andlisis tuvo nna alta capacidad predictiva (ABC = 0.93). v que Ja distribucion de Taonariy ¢s mucho
wis extensa de lo gue se pensaba. Tl surocste de los EE.UU tivo la mayor cantidad de habitat adecuado para lu
especte, ¥ oste resnltada difirio del mmdelo de 2006, Nuestra trubajo enfatiza Lo utildad del modelado iterativo para
modclar el hidbitat de las especies tnvasoras a medida que se disponga de nueva informacion.

Riparian ecosystems throughout the south-
western United States have beeu invaded by
Twnarix species, collectively known as tama-
risk or saltcedar. Introdueed from Eurasia in
the carly 1800s to control erosion, create wind-
breaks, and act as ornamentals, tamarisk was
acclaimed for its ability to withstand drought,
heat, and diverse soil conditions (Carleton 1914,
DiToinaso 1998). However. by the nid-1900s,
resource managers had witnessed tamarisk’s
remarkable ability to spread and modify eco-
systemn processes. As a result, the species have
had dramatic, and often negative. effects on
native flora. wildlife habitat, and hydrologic
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processes (Christensen 1962, Robinson 1963,
Harvis 1966). [t was estimated that tamarisk
accupied approximately 4000 ha in the 19205
and had grown to tnore than 500,000 ha by the
mid-1960s (Robiuson 1965). Initially, tamarisk
infestation was primarily confined to regions of
the southwestern United States (i.e., Colorado,
Arizona, New Mexico, Utah, and Tesas) but now
occurs throughout the northern and north-
western Great Plains (Lesica and Miles 2001,
Sexton et al. 2006, Kerns et al. 2009) and, to a
lesser extent, in several castern states {Baum
1967, Pearce and Smith 2007, USDA NRCS
2009). Although tamarisk nay be spreading at
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a slower rate than in recent decades, there is
no evidence that the invasion has reached its
polential extent. Qutside ol the United States,
tamarisk can now be found in Mexico (Scott
et al. 2009), Canada (Lindgren et al. 2010),
and South America (Natale et al. 2008), well
bevond the latitudinal limits of its native range
(Gaskin and Schaal 2002, Gaslkin and Shafroth
2005). Anthropogenic influences on natural
hyvdrological pracesses {Everitt 1980, 1998,
and the species” ability to hyvbridize and adapt
to new environments (Whiterall et al. 2007)
are concerning to resource managers: further
invasions are likely to continue.

There are a number of statistical and geo-
spatial models that have been developed re-
cently to predict species habitat and potential
distributions (Elith et al. 2006). These models
are increasingly used by landscape ecologists
and resource managers to map distributions and
forecast new invasions of nounative species
(Fith et al. 2006. Lvangelista et al. 2008). Most
models rely en known occurrence locations (i.e.,
presence poimts) to identify ecosystem char-
acteristics that define the species” habitat pa-
ramelers and predict potential distribution
across a landscape (Stockwell and Peters 1999,
Phillips et al. 2006). Predictive models are of
particular importance to resource managers
because they identify the potential extent of
infestations and highlight habitats that may be
vulnerable to new invasion {National Invasive
Species Council 2008). Model results can also
oller insight into ecosystem characteristics thal
are either conducive or prohibitive for a par-
ticular species, while providing critical infor-
oation on how an invader may respond to
new habitats (Evangelista et al. 2008).

In 2006. Morvisette et al. reported the first
detailed national-scale model of suitable habi-
tat for lamarisk in the United States. Since
then, a significant number of new tamarisk in-
{estations have been reported: some accurred
in regions that had not previously been infested
(Kerns et al. 2009}, while others were simply
absent from the original data set. New predic-
tor vaiables have also become available in geo-
spatial formats at national seales, including an
expanded suite of climate data that may also
lead to improvements in model] performance.
[n addition, new madeling technignes, such
as maximum entropy modeling (Maxent), are
better snited for predicting tamnarisk distribu-
tions with the bypes of data that are accessible
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(Evangelista et al. 2008). Maxent is a newer
technique applied to species distribution mod-
eling that is especially suited for invading
species because it compares presence loca-
tions to the available environment rather than
trying to distinguish betweeu presence and
absence locations. Absence locations can be
problematic when modeling invasive species
because ol the dyvnamic state of invading spe-
cies” distributions (e.g.. lag times).

Specilically, many uew modeling techniques
are designed to be [it with presence-only data
and provide built-in features that evaluate model
performanec and predietive contributions of
the tested variables. Morisette et al. (2006} used
logistic regression, which recpuires presence und
absence data for model development. Although
a proven statistical technique in ecological mod-
eling, logistic regression may nol accurately
represent absence data when the regression is
used for invasive specics. Obtaining true “ab-
sence” data at a scale conunonly used for na-
tional-level models (e.g.. 1 k) is not simple
for any species, much less for an invasive spe-
cies that is continuing to expand its range.
Models that can be fit with presence-only data
are not constrained by assuined absences and
thus may be better suited for predicting inva-
sive species where the species may not occupy
all suitable habitat (Hirzel et al. 2001, Brotons
et al. 2004, Kumar et al. 2009).

In this paper. we revisit our National Tama-
risk Map {(Morisette et al. 2006) using revised
data sets. new prediclor variables, and a new
modeling techinique. Qur objectives were to
(1) improve our predictions of habitat suita-
bility in light of new information for tamarisk
at a national scale and {2) compare the meth-
ods and results af the 2 modeling approaches.

METHODS
Data Acquisition

The tamarisk database used in this analysis
was founded on the same occurrence infor-
mation used in the National Tamarvisk Map
{Morisette et al. 2006), but it included addi-
tional data and data from a wider geographic
extent (Fig. 1). Following the publication of
Morisette et al. (2006), our tean: was contacted
by a number of resource managers informing
us of new infestations and Jarge-scale gaps in
the data used (e.g., North Dakota, South Da-
kota). Many of these contacts provided us with
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Fig 1. Pomt Jocations used in developing the habitat suitability model. widh dit used in the Morisette ot al. 2006) tamarisk
habitat suitability map in black and new data in gray. Projection: USA Albers Equal Arca Conic.

new occurrence information to update our data-
base. We also incorporated new tamarisk data

that were reported to the National Institule of

Invasive Species Science (NJISS) websites
(i.e., http://www.lamariskmap.org
www.niiss.org; Graham et al. 2007). YWe further
supplemented our data set by contacting state
weed coordinators and other researchers moni-
toring tamarisk distributions (e.g., http:/Aawvww
TamariskCoalition.org) and through literature
searches where actual oeccurrence coordinates
were reported or where GIS layvers were made
available. These data included presence loea-
tions for tamarisk, but other information. such
as abundance, was generally unavailable.

The GIS data we ceollected included paint,
line, and polygon formats. The point data did
not require any manipwation beyond modify-
ing geographic projection; however, the line
and polveon data required processing to gen-
erate x and y coordinates. Line data were con-
verted lo 1-km? grids comparable to ouwr pre-
dictor lavers. To extract presence points for
our analysis, we randomly selected 10% of the
grid cells that represented linear tamarisk fea-

and hiip:/7

tures. By selecting only 10% of the grid cells.
we were able to capture the presence of the
species in the related location but not artifi-
cially increase the sample size or create a highly
clustered group of presence poiuls. Palygon
data had a relatively small scale, compared to
the spatial resolution of predictor Javers. Pres-
ence points weve generated by ealculating the
centroid of each polygou feature and adding
the coordinates to our tamarisk database. In
total, we compiled 25 disparate data sets (in-
cluding those from 2006: Appendis), which
contained 23,563 records of tamarisk occur-
rence. All aecurrence data were converted to
a GIS raster [ormat with a pixel size of 1 m?2.
When more than one presence point fell
within a single pixel, that pixel represented a
single occurrence (or the purposes of our analy-
sis. This process reduced our data set to 11,601
occurrence points.

We assembled 29 climatic, topographic.
and geographic lavers to use as predictors in
the model (Table 1), Climatic data consisted of
19 bioclimatie variables describing the annual
and seasonal variation in temperalure and
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telative contributions to the model.

Pridictor variable

Average

¢ contribution (range) Source

Distince to water

Muan temperature of the warmest quarter
Procipitation of the wettest month

Size of preciprtation cvent

Geology

Temperatane seasonality

Preaipntation of the warmes! guarte
Mean temiperature of the wettest guacter
Precipitation scasonality

Temperature anmual range

Elevatiom

Rachalion

Humidity

Precipitation of the coldest quarter
Bange m EVI

Preciprtation of the drwest menth
Lsothurmality

Afean temperature of the coldest quarter
Frequeney of precipitation cvents

Mean temperature of the driest quarter
Slope (degrees)

Moan of EVI
Mean divenal range

Derived trom National Atlas
tivers and Streams

Derived from DAYMET

1Jerived from [JAYMET

DAYMET

USGS product (hitp:/pubs
nsgs govidds/dds 1)

442 {49,545 4)

214 (20 1-22.7)
73151-9.2)
11{3.1-5.4)
363141

34(27-3.9) Devived from DAYMET
30{1.33.6) Derved fionn IDAYMET
2.7{2.3-34) Devived from DAYMET
2141 5-3.0) Derived from DAYMET
214{L.7-27 Devived rom DAY MET
1.3{0.99-1.5) Nationad Elevation Datasct
(hirp.#medusgs.gov)

1.2108-1.5) DAYMET

0.78 (0.5-1.0} DAYMET

Derived from DAYMET
Dertived from MODIS
Derrvend Trom DAYMET
Derived from DAYMET
Devived from DAYMET
DAYMET
Derived from DAYMET
Nationial Elevation Dataset
hittpumed.usgs zov)
Dersed fromn MOIDIES
Devived from DAYMET

0.7{0.5-1.1)
040 2-1.09
04i02-1.3
0.3{0.2-0.5)
0340 1-0.3)
0.3{0.1-0.5)
0.2 (0.14.5)
0.2(0.1-0.4)

0.140.1-0.4)
01(0.1-0.2i

precipitation (Hijinans 2006), including 8
DAYMET variables (i.e., number of [rost and
growing degree davs, humidiky. radiation, mim-
mum and maximum teinperatuve, and precipi-
tation size, frequency, and annual average;
Thomton et al. 1997). Topographic data inclnded
elevation. slope, and aspect. We also used a 3-
vear aiean and range of the Enhanced Vegeta-
tion Index (EVI) that was devived rom the Mod-
erate Resolntion Spectroradiometer (MODIS),
geology (primarily parent material), and Euelid-
ean distance-to-water generated using toolsets
available in AreGIS software (ESR1 20086).
We examined all variables for cross-earrela-
tions in Systat 12 software (SYSTAT soft-
ware, San Jose. CA), and removed any highly
correlated variables (7 > +0.8 or + < =().8),
Jeaving 23 predictor variables for our model,
Although the modeling technique we de-
scribe below is nol sensitive to issues of inul-
ticollinearity related to variable correlations,
inclusion of highly correlated vartables can
affect variable contribution and interpretation
of results. We were interested in éxamining
these effeets.

To validate the model, we compiled 2 dif-
ferent data sets, We gathered the absence data
used in the 2006 paper as one validation data
sel and obtained an indepentdent data set esti-
mating acreage of tamarisk by quarter quad-
rangle (one quarter of a 7.5-minute USGS
quadrangle} in the western United States. These
data were compiled by the Western Weed Co-
ordinating Commiltee: eounty weed coordina-
tors reported an estimated acreage for each
quarter quadvangle in their jurisdiction [or 16
western states (i.e., our study area without
Texas). While these data are based on expert
knowledge (rather than actual field data) and
are likely to have data gaps. the information is
of value for testing needs.

Spatial Modeling and Statistical Aualysis

For our analysis, we used the Maxenl model
version 3.2.1 {(http://www.es. princeton.edn/
~schapire/maxent) (Phillips et al. 2006), which
is increasingly being used for predicting spe-
cies distributions and has performed well based
on evalnation metries such as those we de-
scribe below when applied to predicting and
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mapping tamarisk (Evangelista et al. 2008,
2009). Using the principle of maxtinumn en-
tropy. the Maxent model identifics velation-
ships between species occurrence and the pre-
dictor variables in order to develop « habitat
suitability map. Maxent requires presence-only
data and extracts random hackground points
from the training extent of the model {Phillips
et al. 2006). Because Maxent is sensitive to
sampling bias. background point selection was
limited to counties for which we bad samples,
and the resulting model was projected to the
eulire western United States.

We conducted 25 separate model ilerations,
withholding 3480 presence points {30% of our
presence points) randomly selected prior lo
each analysis. Onr analysis produeed 3 maps:
a habitat suitahility wap for the western United
States that averaged the 25 nodel iterations,
a map of standard devialion belween the 25
iterations. and an average clamping map across
the 25 iterations. The clamping map highlights
locations in the model projection (the entire
western U.S.) that lave environmental condi-
tions outside the range found within the train-
ing region (eounties with data points), so pre-
dictions at these locations may have higher
uncertainty associated with them.,

Our model results were validated using
several dilferent statistical tests. Tirst, Maxent
caleulates the area under the receiver oper-
ating charactevistic curve (AUC), which is a
measwre of how well the model diseriminates
between presence locations and background
locations (Fielding and Bell 1997). Maxent also
calenlates the 10 percentile training presence
threshold that can be used to develop a binary
map ol suitable and unsuitable habitat. Addi-
tionally, we calenlater the AUC. the correct
classificalion rate, sensitivity, specificity, and
kappa {Ficlding and Bell 1997) using R statisti-
cal software (v 2.8.1; bitpy//cran.r-project.org),
These tests were conducted using the absence
data from Morisette et al. (2006) and the quar-
ter quadraugle data set. For each quarter quad-
rangle, we took the maximum suitability value
{rom any pixel within the quarter quadrangle
Lo caleulale an AUC. Quadrangles with any
reported acreage were elassified as presence.
and all others were classified as absence.

Morisette et al. (2006} reported the area of

suitable habitat for tamarisk in each of the 4$
continental states and the District of Colum-
bia. We recalculated that data for only those
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western states included in this analysis and
also caleulated new values from the model
results of this study. As previously described,
we trained the model by limiting the extent to
locations where we had field data. When this
model was projected onto the entire United
States, almost all of the eastern United States
had verv high clamping values (data not shown).
Thus. we limited our analyses to the western
United States. This analvsis was conducted by
examining the continuum {romn unsuitable to
suitable habitat and selected areas in the 99th
quantile and the 90th guantile of suitability (re-
fevred 1o as high and inodevate suitability.
respectively) and totaling the number of 1-km?2
pixels in each of these categovies by state,

REAULTS

The Maxent models and validation tests
showed strong performances in predicling suit-
able habitat for tamarisk. The average AUC
value calenlated by Maxent for the 25 maodel
iterations was 0.930 for the training data and
0.926 lor the test data. The distance-lo-water
variable had the most predictive contribution
in all niodels, averaging 58.1% (Table 1). Ilabitat
suitability increased with decreasing distance
to water. Mean temperature of the warmest
quarter averaged 18.4%, and precipitation of
the wettest month averaged 3.8% of the pre-
dictive contribution to model vesults, The rela-
tionship with the warmest quarter is a logistic
curve where suitability is low at cooler tein-
peratures, increases quickly at intermediate
temperatures, and is greatest at high tempera-
tures. {abitat suitahility was greatest, with rel-
atively lower precipitation values in the wettest
months. All other variables contributed <3%
Lo the maodel.

Independent validation tests, using presence
data (30% of presence points combined with
quarter quadrangles data set) and absence data
(from our 2006 study) also demonstrated strong
model performances. The AUC using all pres-
ence Jocations and absenee data from the 2006
data set was 0,965, Other metries included sen-
sitivity (0.938), specificity (0.936), correct clas-
sification rate (0.937), and kappa (0.872). Using
the quarter ynadrangle data, metrics includecd
an AUC ol 0,735, sensitivity of 0.780, speci-
fieity ol 0.690, corvect elassification rate of
0.700, and kappa value of 0.635, These values
are lower, but the sensitivity value, which was
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Fig 2. Maxent model resulis across 25 medc] iterations
withholding a different vandom 30% ol the data m ewch
test rum: {a) average habitat suitabality, 1) standard devia-
tion among the model iterations. and (¢} average clamping
wegres of departwee from the envimoment captured by
the (raining locations) Projection. USA Albers Equal Avea
Conic
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Fig 3. Binary map of snitable and unsuitable Tabitat for
tamarisk usme the 10 percentile trmming presence threshicl
{0.52i. Projection: USA Albers Equal Arca Conic.

still relatively good. should be given more
weight due to the nature of the guarter quad-
rangle data set. We can be relatively cerlain
that quarter (uadrangles with reported acreage
are accurate as [ar ay presence is concerned.
but we cannot say the same lor absence loca-
tions, as it would be difficult to search every
quarter quadrangle exhaustively for a single
tamarisk seedling or plant.

Suitable habitat noticeably aligns with water
bodies (Fig. 2aj, as expected by the high con-
tribution of the distance~to-water variable.
Distivet patches occur in the soutbwestern
United States, particularly Utah and Arizona.
A high standard deviation among model runs
notably oecurs along the Pacific crest, spots of
Mountana and ldaho, and along the eastern
edge of our study area (Fig. 2b). Minimal
clamping occurred (Fig. 2¢) and was in loca-
tions primarily distinet from the aveas with
high suitable habitat, suggesting that predic-
tions are not lowered by uncertainty related to
instability (i.e., high standard deviation) or
extrapolation to novel environments {i.e.,
clamping). Classilving our suitahility map into
the binary categories of suitable and unsuit-
able habitat highlights associations bebween
tamarisk and the water bodies noted with Fig-
ure 2a (Fig. 3}



40000

Ulan

Arirona

WESTERN NORTH AMERICAN NATURALIST

[Volume 71

60000 100000 120000

Texas ¥

] 103324

Calilorm:a

Nevada F

New Mexico

Okiahoma |

Kansas |

Soulh Dakota
Washingloa
Montana
Idato 20
1126
11805
Nebraska
1018
8354
¥ ) 1703
7474
Qragon

5859
Narth Dakola
341

B 2009 moderate area {02006 moderate area

Fig da Predicted arca (km?) of snitable Labitat by state for onr current moded and for the Morvisette ot . (2006) model for
4 )

moderate habitat suitability.

Utah ranked highest by area and by percent
of area both lor moderately and highly suitable
habitats (Fig. 4. Appendix). Arizona and Colo-
rado exchanged the second and the third rank-
ings amnong the 4 categories. Kansas ranked
last for highly suitable habitat, and North Da-
kota and Oregon were ranked the least moder-
ately suitable habitat by area and percent of
area. respectively. Overall, patterns ol our
model vesults were similar to the distribution
of field data and patterns exhibited in Figures
2 and 3. These results difler {rom the 2006

mnodel, where California, Washington, Texas,
and Arizona each ranked highest in one of the
4 categorics.

DrscussioN

Existing models for tamarisk distribntions
in the United States are {ew and are generally
coustructed at small seales for loeal inanage-
menl of infestations. Evangelista et al. (2008}
modeled tanarisk distribution for the Grand
Stairease-Escalante National Monument in
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Utah, primarily using a suite of topographic
variables to test multiple modeling teclh-
niques. Most of the models they tested could
reasonably predicl where tamarisk would
oceur. with overland distance-to-water being
the most important predictor. While the spa-
tial extent of their study area was much
smaller (i.e.. approsiinately 2 million acres),

their study corroborates the importance of

water as a precictor of suitable tararisk habitat
at all scales.

Kerns et al. (2009) modeled tamarisk in the
northwestern United States. but at this scale.
distance-to-water was only marginally impor-
tant and was outweighed by climatic factors.
Maximum temperatnre was the most impov-
tant factor, and was correlated with our second
most important factor, inean temperature of the
warmest quarter, Friedman et al. {2005} found
a strong relationship between mean annual
minimwn temperature and tamarisk presence
in the western United States, They did not
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examine the relationship between tamarisk
presence and mean annual maximum tempera-
ture. bul maximuie tevaperature ol the warm-
est month and minimum temperature of the
coldest month were highly correlated {r =
0.79).

Maotisetle el al. (2006) used remote sensing
data and presence-abisence data to create a
National Tanarisk Map for the United States.
Sitiilar 1o our results, their study found that
the southwestern states had the highest con-
centeation of suitable habitat; however, our new
model shows taarisk having a much greater
potential distribution across the entive western
United States. We should note that despite the
lack of data for the northwestern states, the
2006 maodel was able to predict occurrences
in sore areas. However, the new model adds
new areas to the potential habilat and captures
more of the currently known distribution than
the 2006 model did. Additional agreement for
southwestern states having the most tamarisk
arises from a higher percentage of sampled
stream reaches in Arizona (39%) than in north-
ern states {<5%) (Ringold et al. 2008). Some
differences in the 2 models can be attributed
to difflerent methodologies. The 2006 paper was
focused on atilizing remote-sensing data and
did not include distance-lo~water as a preclic-
tor variable. Our model was ddven by this
variable. The models were also run for differ-
ent spatial extents. The 2006 model included
locations in lhe eastern United States, where
tamarisk is not considered invasive, hut the
updated model focused on regions of known
invasion. These dilfercuces, along with the ad-
ditional data points, contributed to the differ-
ences between the models. As this paper was
not meant to he a model comparison paper but
rather an update to the current knowledge on
the distribation of tamnarisk, we have left an
in-depth comparison bebveen the 2 studies [or
future work.

Caveats

There are several caveats associated with
our modeling that need recognition. First. the
field data used 1o fit our models were compiled
from disparate data sets of different collection
designs and methods, including opportunistie
sampling. As a result, the data are expected to
be biased to varying degrees. Like other species
distribution modeling technigues, Maxent is
sensitive lo these biases (Phillips et al. 2009,
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and they likely influenced our model results.
We believe that at least some of these prob-
lemns were alleviated by liniting the arca {from
which background points could be drawn to
the areas with field data samples (i.e., coun-
ties). but further investigation of the elfects
are warranted. Field data used for training and
testing were not independent (i.e., they were
drawn from the same data set) but were likely
spatially autocorrelated (i.e., the data covaried
geographically). which has been demonstrated
to inflate AUC values (Segurado et al. 2006),
Lastly, we suspect that the coarse resolution of
the points extracted from quarter guadrangle
data scts may cause inflated evaluation metrics
due to this misimatch in resolution of the pre-
dictor variables (1-kin2 cells). Finer-resolution
occurrence data prired with finer-resolution
predictor variables would improve the model.

Maxent is a corvelative model. We can use
the variable importance measuve to develop
hypotheses about what we think may he driv-
ing tamarisk distribution. but we cannot deter-
mine causality with these inethods.

This model describes potential snitable halyi-
tat for Tarnarisk, However, moving toward a
mnodel ol abundanee wauld be more useful.
Evangelista et al. (2007) created a model for
tamarisk biomass based on estimates of height
and cover in southwestern Colarado, but this
has not vet been extended to a greater geo-
graphieul area. Creating a model of presence
locations ol tanarisk can be somewhat mis-
leading in that all areas of suitable habitat may
not be locations where the tmnarisk has a high
impact. Obtaining these types of information
across large spatial extents may be difficult,
as the data are generally not available; how-
ever. the inforation would help managers
prioritize locations forr managemenl aclivities.
Additionally, this madel was developed for
the genus Turnarix rather than individual spe-
cies or hvbrids, because most available loca-
tion data is nat accurate to the species level.
Creating species-specific models may lend
greater insight into the factors associated with
tamarisk invasion.

Neither the 2006 model por the current
model completely captured the full extent of
tamarisk invasion in the United States. Models
are hypotheses that can be useful lor guiding
management aetivities, but they can never per-
{ectly represent truth. However, we helieve
the cwrrent model provides a more accurale
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representation of tamarisk extent because it
incorporales improved distribution data. a dif-
[erent suite of predictor variables, and a dilfer-
ent wodeling technique.

Conclusions

The differences between the 2006 model of
tamarisk habitat suitability and our current
model clearly Tighlight the utility of iterative
modcling for mapping invasive species distribu-
Houns. as suggested by Stohlgren and Schuase
{2006). Revisiting distribution models ol inva-
sive species is of particular importance o re-
soree managers who require updated, acourate
information to address 1vanagement concerns
and [ormulate strategic planning. With this ex-
ample, the initial map (Marisette et al. 2006)
inforined the wider conumunity of such model-
ing ellorls and led otliers to contribute new
accurrence inlormation to our database. Fu-
thermore, in the time between this study and
the 2006 study, there have been advancements
in modeling algorithms; and newly available
predictor layers, updaled occurrence data, and
improved modeling expertise huve become
available. We expect these trentls to continue.
We believe most habitat suitability maps could
be improved by these advances, which have
strenglhened our ability to predict suitable
habitat for tamarisk and forecast new inva-
sions. Finally, like the 2006 tamarisk model,
our new model [or the western United States
can also guide luture data eollection efforts (to
areas with high uncertainty or to high preba-
hility areas not vet searched), serve as an early
warning of tamarisk’s petential spread into
new areas, and provide an estimate of current
tamarisk infestation and its impacts to ecosys-
temn processes.

ACKNOWLEDGMIENTS

We thank entitics and persons with tama-
risk data sets who were willing to share their
data for this work (Appendix). We {hank
Amy Randell. Sunil Kumar, and Alyeia Crall
[or veviewing the manuscript. Logistic sup-
parl was provided by the USGS Tort Collins
Science Cenler and the Natural Resource
Ecology Laboratory at Colorado State Uni-
versity. Any use of trade, preduct, or firm
nawnes is for deseriptive purposes only and does
not imply endorsement by the United States
government,

IMPROVING INVASTON Mars

LITERATURE CITED

Bayr B R 1967, tntraducid and naturalized tamarisks
in the United States and Canada {Tamaricaceac].
Baileyu 15:19-25.

Bay, B.E, ano a A Sk ke 2008, Success of achive tevegae-
tation after Twneria semoval in viparian ecosysteny
of the saathwestern United States: a guantitative
assessment of past restoration projects  Restnration
Ecology 16:113-128.

Brenons, Lo, W Theees, MUB. AR o, anp A FL Hinen.
2004. Presence-absenve versus prosetce-only mod-
clling methods for predicting bird halsital suitalnlity
Eeographs 27137448

Carreton, M AL 1914, Adaptation of the tamarisk for dey
lands. Science 39:692-694.

CarsENSey, BVE 1962 The rate of natuvalization of finea-
rivin Ctah American Midland Raturalist 68:51-57.

Coronan DEPRIILNT OF Trasstar1aoN, 2002 Colo-
vado Departinent of Transportition Geograplne Data,
Colorado Department of "Iransportation.

Daves, T 2006 A peedictive model tamarisk habitat in
Calbifornia and Colorado Master's thens. Colorado
State University, Fort Colling. CO

DiTovaso, | M. 1995, lmpact, hiology, and ceology aof
salteedar (Tamarisk spp.) in the southwestern United
States. Weed Technology 12-326--336.

Eoren, |, CH Gasoss, RP ANDRasoN M Dok, §
Frruwier, A Guisan, B s, T Horrisiass,
JROLEATIMWICK. A LomiaNys. i1 al. 2006, Novcl
methods improve prediction of species” distrihutioos
from ocenmence data. Ecographs 29.129-151.

[ESRI} Exvimonvies rat Sysrens RESEaRCH INSTITUT
2006. AveMap 9.2. ESRI, Redlands, CA.

Evancerista P S Ruvak U] Sronieses, AN Carat g,
AR G NCwwaN 2007 Modeling aboseground bio-
masy of Tanewiy ramosissbna i the Arkansas Biner
basin of southeastem Colorada, CSA. Western North
American Naturalist 67:503-504).

EvancEists, PUS Kuvar, T Stomares C.S Jarse-
yvich. AV Crant, B Norvax 111 asn 1D Bag-
A 2008 Modelling invasion for a halital general-
ist and a specialist plant sprcies. Diversity amd Dis-
tributions 1-L808-517.

Evasarnisry, PHOTE Srtomcues, LT VOEISE M5, AN
S KuMag. 2000 Mapping invasive tamansk (ianarix).
a camparison of single-seene and time-series analy-
ses of remotedy sensed data. Remote Sensimg of Eai-
romuent 1:319-533.

Evinern, B, 1980, Ecology of saltcedar—a plea for
vesearch Environmental Geelogy {Berling 3:77 84

1998 Clwoenology of the spread of tamansk oy the
central Rio Grande. Wetlands 19-635-66%

Firtomine A H o [LF Bere 1997 A review of methods
tor the assessment of predhction ervors m comserva-
tion presenceiabsence models Environmental Con-
serviation 24-34-49.

Fristntan, AL, G AUvRLE. PR Stsruor, ML Scor,
AMF MeriGoana, MDD Precnane, sse E Ko Gris-
U 2005, Doentinunee of non-native riparisn trees
inwestem USA. Biologicd Invastons 7 747-751.

Gaskiy, LECann BA Sceman 2002 Hybrid Thvaaric
widespread in LS. invasion and undctected in pative
Asian range. Proceedings of the National Academy
ol Sviences ol the Uniled States ol America 99:
11256-11259.




174

Gaskin, | FLoaxn BB, Snakroro,
Twnerix ramosissime and T chinensis (salteedars)
with T aphylle {athel) (Tamaricaceae) in the sonth-
western USA determined [rom DNA sequence data.
Vadrono 32:1- 10

Grajran ], Go NEwstay, C JaNevcn, B Snom, an
T Sromcrin 2007, A global orgamsm detection
and monitoring svstem for ponenative specivs Eeo-
Ingical [nformatics 2:177-1%3.

Hakels, R 1966 Recept plant invasions in the arid ad
sesni-arid southwest of the United States
the Association of American Geographers 56:108—122.

Hipaans, B[ 2006, MEBCvars AML. Version 2.3, Avall-
able from: htip.worldelim.orgdiacling. htm

Huwrn, AL, Ve ER, AD FME e, 2001, Assessing
habitat-suitahilite modcls with a virtual specics. Eco-
logical Modelling 145.111-121.

Kinns, BUK. B Naveok, M, Buosorany, C.G. Pakks,
AND B Rocirs. 2009, Modeling tamansk {finnariy
spp.J habitat and climate change eftects in the nortl-
wostern United States. lovasive Plant Science wnd
Management 2.200-215.

Kuvar: S, SAL Seat e L) STomari, K HERMANY,
TSy, AN Lo Banes 2009, Potential habitat
distribution for the froshwater diatom Didymosphe-
nia geminate in the continental US  Frontiers m
Ecology and the Envaonment 7:415-120.

Lisica, B, axn S Mies. 2001 Tamansk growth at the
northern oargin of ity naturalized range in Montans,
USAL Wetkmds 21:240-246.

Linnchex, Co C. PEARCE, avp K. Aritson 2010, The
biology of invasive alicn plants in Canada, 11, Tiona-
vix reonosissima Ledeb.. 2 chinensis Lowr: and hvbrids,
Canadian Jowrnal of Plant Science 90.111-124

Morieere, 1. C.S. Jasaevicn, A Untan, WL Cal LA
Pr.ouiry, LE. GeNTre, T1 STouncunk, s fL.
Schaase. 2006, A tamarsk habitat surtability map
for the continental Umited Stales Lrontiers in Ecol-
ogy and the Environment £11-17

Na1aLE, E.S, | Gaskine S ML Zansa, M. CiHALLOS, AND
K E. Renoso. 2008, Tumarix spucics {Tanaricacoue)
invading natural and seminatural habitals in Argen-
tinz. Boletn de Ta Sociedad Argentina de Botanica
43:137-145

NATIONAL INvASh E SPRGike Cotneit. 2008, 20082012
Natwoow) Invasive Species Management Plan.

AATIONAL PARN SERVIGE 2003 Natural Resouree Informa-
tion Povtal lonline]. National Park Service. Avalable
from: hitps.imrinfonps.govireference.mverrelerence/

Pearcr, C.ML i DG. S, 2007, hivasive salleedar
(Tmarix). its spread from the Amencan Southwest
ta the northern Great Plains, Physical Geoyraphy
28:507-530.

Priviirs. S.). R P ANpErsos, axp B B S naping. 2006,
Maximmum entropy mndehng of species geographiv
distributions. Ecological Modclling 190:231-259

WESTERY NORTH AMERICAN NATURALIST

2005. Hybridization of

Annals of

[Volume 71

Prirrars, S.1, M. eow, ) Forn, CH Granan, A,
L1psiaxy, | LU ATHWICK, $Xn S, FLREIFR. 2009,
Sample sclection lias and prosence-ouly distribu-
tion models: impheations for background and pseudo-
absence data. Ecological Applications 19.151-197,

Rincotn, PL, TR Vacke, wn DY Piek. 2008 Tvehe
invasive planl taxa i US western niparian ccosys-
s, Journal of the North Amcrican Benthologioul
Suciety 27.949-006.

Rosnsoy, T, 1965 Introduchion, spread and aveal extent
ol saltcedar (Hanarin) in the swestern United States.
U5, Gealogical Swivey Professional Paper 491-A.

Scorn N L. PL NacLes, E.R Gueany, C. Vaoes-Casit-
1As. [A Braere E S RuoLps, BB, Saarsorn, L.
Gosez-Lavion, ann C.L. Jonrs 2009, Assessing the
extent and diversity of riparian ccosystems in Sonora,
Mexico, Bodiversity and Canservation 18.247-269,

SEGLRADG B VLB AraLJo, AxD WE, KUNIN, 2006 Con-
sequences ol spatial autnconvelation for niche-hased
wodels Joumal of Applied Ecology 13.4353=144.

Sexron L2, AL Savas AN Ko MUrkA. 2006 Ocourrence.
persistence, und expansion of salteedor (Tanaric
spp  populations in the Great Plams of Montana
Western North American Naturalist 66.1-17.

STOCKWELL, DY RUBL, ase 1D Prrkis. 1999, The GARP
modcling gy <tem problems and solutions to auto-
mated spatial predietion. International Jnurnal of
Geographic Infovinabion Suicnee 13:142-158

Sromanex, TJ, aND J.L. Sernasis 2006, Risk analysis
for bislogical hazards: what we need to Jmow alsout
mvaswve species Rish Analvsis 26.163-173.

Tromas, K avp B GUERTIN, 2007 Southwest Non-native
Invasive Plant Datahase (SWEMPO7). U.s. Geologi-
cal Survey, Southwest Buolngical Science Center
(USGS-SBSC).

THosNron, By 8§ Ruasivg, ano AL Winer, 1997, Gener-
ating sorlaces of daly meteorology variables aver
Jarge regions nl'u)mp]u termain. Joumal o) Hydrol-
ngy 190:21.1-251.

Coworn, AL D BINgey, axn E.C. Apar 2005, Plant
diveraty in ripaan Torests in northwest Colorado
offeets of time and river regulation. Forest Ecology
wii] Managenent 218-107-1114.

USDA NRCS. 2009. The FLANTS Database. National
Plant Data Center, Batou Rowge, La [eited 2, Apil
2008]. Available from. bttp:#plants.usda.con

WIETCRATT, CORL DAL Ta oy, LA Crooks, J. BanaNy,
AND ) Gasken, 2007, tovasion of tonarsk (Tumarix
spp i a southero Califeruia salt marsh. Brologicd
Tinvasions 9:875-879.

Received 14 July 2010
Accepted 2 March 2011

See Appendix on page 173,




2011] IMPROVING INvASTON MAPS

175

Arerain, Datasets gathered that inchade data for tamarisk, Data were downloaded froms wavs.niissorg om 2 July 2008.

Name Sample <ize N{1SS.org
Bay and Sher (2008) 79 points No
Bradshaw {Unpublished data 2006 2931 points Yoy
Colorade Department of Transportation (2002) 18 polvgons Yes
Colorado project fwwi. niiss.org) 33 points Yes
Colovade State Parks mapping data 15 points Yes
(Unpnblished data 20033 5 pohygons
Davern (2006) B3Y points Yes
Fingerprinting biedss ersity {CSU and USGS field duta, www.niiss.ory) 135 points You
Sexton ot al, (2006) 20 points No
Grand Staircase Escalante National Menument { Evangelista et al. 2008 L8581 points Yes /No
Hubbard Lake (wwwaniiss argh 10 polygons Yos
Liowolo ot al. 12005} 11 pouts Nn
National Fark Sevice (20033 GIS data 1291 points Yos/No
National Wildlife Refuge Project (Unpublished data) 2 poly gons Yes
Sengupta et al. Nesadi mapping data (Unpublished data 2003) 154 points Ve
NIISS Citizen Science Website Projects (wws citsci.org) 100 potnts Yes
North §uaketa Department of Agriculture (Unpublished data 2003) 2648 pants Yoo
Otero County, Coloracdo (Unpublished data 20033 1422 points No
Robinson (1965) 143 points Yes
LS Burcau ol Land Management. Roval Gorge weed data 19 points No
{Unpublished data 2003;
South Dakota Department of Agricniture (Unpubslished data 20065 16 polygons Yes
Southwest Esotic Plant Mappine Prograw {(Thoras and Guertin 2007} B99 oints Yes
Tamarisk Coalition (Unpullished data 2008) 2267 polvegons Yes
Celovado Natoral Heritage Program {Unpublished data 2008) 11 points No
1S, Bayeau ol Land Managenient, Utah oflice noxions weed data 217 points No
{Unpublished data 2006)
Kerns ot al (20091 1044 points No




