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Abstract Understanding the potential spread of 
invasive species is essential for land managers to 
prevent their establishment and restore impacted 
habitat. Habitat suitability modeling provides a tool 
for researchers and managers to understand the 
potential extent of invasive species spread. Our goal 
was to use habitat suitability modeling to map 
potential habitat of the riparian plant invader, Russian 
olive (Elaeagnus angustijolia). Russian olive has 
invaded riparian habitat across North America and is 
continuing to expand its range. We compiled 11 
disparate datasets for Russian olive presence loca­
tions (n = 1,051 points and 139 polygons) in the 
western US and used Maximum entropy (Maxent) 
modeling to develop two habitat suitability maps for 
Russian olive in the western United States: one with 
coarse-scale water data and one with fine-scale water 
data. Our models were able to accurately predict 
current suitable Russian olive habitat (Coarse model: 
training AUC = 0.938, test AUC = 0.907; Fine 
model: training AUC = 0.923, test AUC = 0.885). 
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Distance to water was the most important predictor 
for Russian olive presence in our coarse-scale water 
model, but it was only the fifth most important 
variable in the fine-scale model, suggesting that when 
water bodies are considered on a fine scale, Russian 
olive does not necessarily rely on water. Our model 
predicted that Russian olive has suitable habitat 
further west from its current distribution, expanding 
into the west coast and central North America. Our 
methodology proves useful for identifying potential 
future areas of invasion. Model results may be 
influenced by locations of cultivated individuals and 
sampling bias. Further study is needed to examine the 
potential for Russian olive to invade beyond its 
current range. Habitat suitability modeling provides 
an essential tool for enhancing our understanding of 
invasive species spread. 
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Introduction 

Riparian ecosystems are critical to human health, 
water quality, and to regional biodiversity (Naiman 
et al. 1993; Sabo et al. 20(5). However, riparian 
ecosystems have been invaded by exotic species 
disproportionately more than other habitat types 

~ Springer 



154 C. S. Jamevich, L. V. Reynolds 

(Stohlgren et al. 1998; Stohlgren et al. 1(99). 
Invasive species in riparian areas can decrease habitat 
quality for native fauna, out-compete native plants 
and threaten the biotic and hydrologic integrity of 
these river systems (Hood and Naiman 2000; Rich­
ardson et ai. 2(07). The importance of riparian 
ecosystems on a global scale has motivated research­
ers and land managers to study processes of riparian 
plant invasion and develop corresponding manage­
ment strategies (HR2720 2006; Shafroth et al. 20(8). 

One of the most dominant woody plant invaders 
along rivers in western North America is Russian 
olive (Elaeagnus angustifolia L.; Friedman et al. 
ZOOS). Russian olive is native to southern Europe and 
Asia and was introduced to North America around 
1900 as an ornamental plant and for windbreaks 
(Katz and Shafroth 2(03). It can tolerate greater soil 
drought than native riparian species and has the 
advantage of being a nitrogen-fixing plant (DeCant 
Z008; Katz and Shafroth 20(3). Russian olive 
produces large seeds that are animal dispersed and 
viable for up to 3 years (Katz and Shafroth 20(3). In 
contrast, the common native woody riparian plants 
cottonwood (Populus species) and willow (Salix 
species), produce airborne seeds which are only 
viable for four to six weeks during the summer 
growing season (Cooper et al. 1(99). Cottonwood 
and willow require flooded, high-light habitat for 
seed germination whereas Russian olive can germi­
nate in shadier and drier environments than native 
woody riparian plants (Reynolds and Cooper 20t 0; 
Shafroth et al. 1995). Although Russian olive occurs 
frequently along western rivers, it has not yet invaded 
all potentially suitable habitat (Friedman et al. 200S; 
Reynolds and Cooper 2010). In addition, a compre­
hensive inventory of its distribution does not cur­
rently exist. Understanding the potential spread of 
any invasive species such as Russian olive is essential 
for land managers to prevent its establishment, 
control its spread and restore impacted riparian 
habitat. 

Habitat suitability models provide a tool for 
researchers and managers to understand the potential 
extent of invasive species spread. Habitat suitability 
models can fill data gaps in survey records and can 
highlight priority locations for future surveying 
and monitoring (Jamevich et ai. 20(6). Maximum 
entropy modeling (Maxent) is one of a suite of habi­
tat suitability modeling techniques requiring only 
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presence locations (Phillips et al. 2006). Maxent is a 
machine leaming method that compares presence 
locations to environmental variables at those loca­
tions and then across the study area using principles 
of maximum entropy to generate predictions of 
suitable habitat in un-sampled regions. It is user­
friendly, produces robust metrics to evaluate model 
fit and has proven effective in predicting habitat­
specific species such as saltcedar (Tamarix sp.) at 
small spatial extents (Evangelista et ai. 2(08). Pres­
ence only methods such as Maxent are appropriate 
for modeling species with unstable distributions 
such as invasive species because true absence data 
can be difficult to obtain. If a species is absent at a 
location, it could either be because it has not yet 
invaded or because the location is unsuitable, and 
these two options are often indistinguishable for 
invasive species. 

We compiled data sets of Russian olive presence 
locations across the western US from land managers, 
government agencies and researchers to map poten­
tial habitat of Russian olive in the western US. We 
used Maxent to develop estimates of potential 
Russian olive habitat as rapid assessment of range 
expansion for invading species is critical to stopping 
their spread. Because Russian olive has been shown 
to tolerate drier conditions than native riparian 
species, we built two models: one with a fine-scale 
resolution water body variable and one with a coarse­
scale resolution water body variable, to test the 
importance of water bodies for this riparian species. 
Our goals were to inform management of Russian 
olive invasion, provide a methodology to predict the 
spread of other slow-spreading exotic species inva­
sions, and to highlight important issues in develop­
ing models for invasive species that are used 
ornamentally. 

Methods 

We compiled 11 disparate datasets for Russian olive 
presence locations in the western US. The majority of 
datasets were from data holders who shared their 
datasets on the National Institute of Invasive Spe­
cies Science (NIISS) website (http://www.niiss.org. 
Table 1). To augment these data, we contacted state 
weed coordinators and other land managers to obtain 
weed mapping data, and searched the internet to 
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Table 1 Datasets gathered 
with Russian olive presence 
locations 

Data from www.niiss.org 
were downloaded July 2, 
2008 

Source organization Sample size On 
NIISS.org 

Colorado (CO)Dept. of Transportation 55 polygons Yes 

CO State Parks mapping data (Billerbeck 20(3) 124 points, 

84 polygons Yes 

Fingerprinting biodiversity (CSU and USGS field data) 69 points Yes 

Friedman et al. (2005) data 144 points Yes 

Grand Staircase Escalante National Monument 52 points Yes 
(Evangelista et al. 20(8) 

National Park Service GIS data (NPS 20(3) 3 points Yes 

National Wildlife Refuge Project 4 points Yes 

NIISS Citizen Science Website Projects 16 points Yes 

UC Davis plot data (Quinn and Thome 2(07) II points No 

Royal Gorge (Vieira 20(3) 14 points No 

Southwest Exotic Plant Mapping Program (Thomas and 366 points Yes 
Guertin 20(7) 

Utah BLM office (2006) 248 points No 

Total number of presence locations 1,051 points and 139 
polygons 

locate Geographic Information System (GIS) map­
ping layers. Most data are currently available at 
http://www.niiss.org. including all freely available 
data, or where permission was granted from the data 
providers. 

We generated Maximum Entropy (Maxent; v 
3.2.19; available from http://www.cs.princeton.edu/ 
'-schapire/maxentl) models of habitat suitability for 
Russian olive using the available presence location 
data from all point and polygon datasets (Phillips 
et al. 2006). Because polygons of Russian olive 
stands were relatively small compared to the spatial 
resolution of GIS predictor layers (Le., l_km2

), we 
used the centroid of the polygons, making sure they 
fell within.the polygon boundaries. This manipulation 
resulted in 4,698 points, some of which occurred in 
the same pixel. We reduced this number to 961 
unique l_km2 cells with Russian olive present. We 
ran 25 iterations of each model, withholding a dif­
ferent 30% of the data points each time for model 
cross-validation. 

We obtained 37 climatic, topographic, and geo­
logic variables for predictors in modeling. These 
included 19 bioclimatic variables that capture annual 
and seasonal trends in local climate derived from 
monthly temperature and precipitation from DAY­
MET using an ArcGIS script available from WorldC­
lim (DAYMET 2006; Hijmans 20(6). Topographic 

variables were elevation, slope and aspect. We also 
used a geology layer detailing bedrock geology. We 
reduced these predictors by removing any highly 
correlated variables (r > +0.8 or r < -0.8), resulting 
in 22 climate, topography, and geology predictor 
variables. To address the question of how sensitive 
Russian olive distribution is to water bodies, we used 
two different measures of "distance to water." First, 
we built a model with all 22 climate, topography and 
geology variables and a distance to water variable of 
coarse-scale resolution derived from the National 
Atlas of the United States Streams and Waterbodies 
layer (l :2,000,000 scale, hereafter "coarse-scale 
water model"). Second, we built a model with all 
22 climate, topography and geology variables and a 
distance to water variable of fine-scale resolution 
derived from the National Hydrography Dataset 
Plus (l: 100,000 scale, hereafter "fine-scale water 
model"). Maxent is a statistical technique and there­
fore we cannot infer causal relationships between 
the predictor variables and habitat suitability, but 
we chose variables that relate to the physiology of 
Russian olive (Table 2). 

Maxent is sensitive to sampling biases such as 
those in the clustered, disparate data set we compiled 
(Phillips 20(8). To alleviate this problem we limited 
the spatial extent from which Maxent could select 
background points to counties where we had Russian 
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I~ Table 2 Predictor variables (N = 23) included in the two Russian olive Maxent habitat suitability models: coarse and tine-scale distance to water models. Predictors are listed 
en	 I~ 

"0 with mean percent contribution (±Standard Error) calculated across 25 model iterations. Predictors are listed from most important to least important mean percent contribution to 
::I. 
::I the habitat suitability model 

OQ 

... "' Coarse-scale distance to water model	 Fine-scale distance to water model 

Predictor variable	 Mean Source Predictor variable Mean percent Source
 
percent contribution
 
contribution (±Standard Error)
 
(±Standard
 
Error)
 

Distance to water 33.13 ± 0.29 Derived from National Atlas of the Mean temperature of 19.1 ±0.27 Bioclim derived from DAYMET 
United States Streams and wettest quarter 
Waterbodies layer 

Mean temperature of 15.5 ± 0.25 Bioclim derived from DAYMET Precipitation seasonality 17.2 ± 0.23 Derived from DAYMET
 
wettest quarter (coefficient of variation) climate data
 

Precipitation seasonality 13.56 ± 0.18 Derived from DAYMET climate data Mean temperature of 16.0 ± 0.27 Bioc1im derived from DAYMET 
(coefficient of variation) warmest quarter 

Mean temperature of 11.92 ± 0.22 Bioclim derived from DAYMET Geology 7.97 ± 0.19 USGS product 
warmest quarter (hnp:l/pllbs.llsgS.gov/dds/dds II) 

Geology 5.03 ± 0.14 USGS product	 Distance to water 6.17 ± 0.14 Derived from the National 
(htlp:!/pubs.usg~.gov/dds/ddsII)	 Hydrography Dataset Plus 

(hltp:llwww.110Iizon-systerns.com! 
nhdpluslindcK.php) 

Range in enhanced 3.47 ± 0.13 Derived from MODerate resolution Temperature seasonality 5.33 ± 0.29 Bioclim derived from DAYMET 
vegetation index imaging spectralradiometer (standard deviation * 100) 
(greenness) (MODIS) data 

Temperature annual range 3.13 ± 0.11 DAYMET (hnp:!lwww.daymct,org/) Range in enhanced 5.31 ± 0.18 Derived from MODIS data 
vegetation index 
(greenness) 

Frequency of precipitation 2.68 ± 0.1 DAYMET (http://www.daymct,org/) Temperature annual range 3.89 ± 0.13 DAYMET (htl)J:l/www.daymet.orgl) 

Temperature seasonality 2.65 ± 0.24 Bioclim derived from DAYMET Slope degree 3.54 ± 0.23 Derived from elevation 
(standard deviation * 100) 0 

en 
Mean of enhanced 2.17 ± 0.09 Derived from MODIS data Frequency of precipitation 3.20 ± 0.11 DAYMET (http://www.daYlllet,org/) .... 

vegetation index ~ 

3 
(greenness) (> 

-<n' 
Precipitation of driest 1.26 ± 0.07 Bioclim derived from DAYMET Mean of enhanced 3.05 ± 0.13 Derived from MODIS data .?" 

month vegetation index r' 
(greenness) :< 

:;.:;Mean temperature of driest 1.1 ± 0.09 Bioclim derived from DAYMET Precipitation of driest 1.74 ± 0.09 Bioc1im derived from DAYMET (> 

quarter month '<
::I 
9­
Q..

'" 



Table 2 continued 

Coarse-scale distance to water model 

Predictor variable Mean 
percent 
contribution 
(±Standard 
Error) 

Mean diurnal range (mean 0.82 ± 0.08 
montWy: max temp--min 
temp) 

Elevation	 0.59 ± 0.08 

Humidity 0.57 ± 0.04 

Precipitation event size 0.39 ± 0.04 

Slope degree 0.38 ± 0.04 

Precipitation of warmest 0.38 ± 0.04 
quarter 

Precipitation of coldest 0.37 ± 0.02 
quarter 

Eastness (Abs(aspect-90» 0.33 ± 0.03 

Mean temperature of 0.25 ± 0.06 
coldest quarter 

Northness (Abs 0.25 ± 0.02 
(aspect-I 80» 

Precipitation of wettest 0.08 ± 0.03 
month 

Source 

Bioclim derived from DAYMET 

National Elevation Dataset 
(http://ned.usgs.govl) 

DAYMET (hup://www.ck.ymel.org/) 

DAYMET (htlp://www.daymcl.orgl) 

Derived from elevation 

Bioc1im derived from DAYMET 

Bioc1im derived from DAYMET 

Derived from elevation 

Bioclim derived from DAYMET 

Derived from elevation 

Bioc1im derived from DAYMET 

Fine-scale distance to water model 

Predictor variable	 Mean percent 
contribution 
(±Standard Error) 

Mean diurnal range (mean 1.67 ± 0.11 
monthly: max temp--min 
temp) 

Mean temperature of driest 1.27 ± 0.12 
quarter 

Precipitation event size 0.94 ± 0.14 

Elevation 0.89 ± 0.06 

Humidity 0.64 ± 0.04 

Precipitation of warmest 0.56 ± 0.06 
quarter 

Eastness (Abs(aspect-90)) 0.38 ± 0.02 

Precipitation of coldest 0.31 ± 0.03 
quarter 

Mean temperature of 0.31 ± 0.07 
coldest quarter 

Northness (Abs(aspect- 0.30 ± 0.03 
180)) 

Precipitation of wettest 0.15 ± 0.04 
month 

:z: 
~ 
~. 

'" c:: 
Source	 ~. 

g; 
~. 

8'.., 
'" ::l 

5'
Bioclim derived from DAYMET	 < 

'"'":;:;. 
" 
" 
~ Bioclim derived from DAYMET 

DAYMET (htlp:!/www.daymet.orgl) 

National Elevation Dataset 
(htlp:J!ncd.lIsgs.g,.vl) 

DAYMET (http://www.daymct.org!) 

Bioc1im derived from DAYMET 

Derived from elevation 

Bioclim derived from DAYMET 

Bioc1im derived from DAYMET 

Derived from elevation 

Bioclim derived from DAYMET 

I~ 
en 

"0 
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olive locations. We then projected this model to the 
entire Western US. For each of the two different 
water models (coarse and fine-scale water models), 
we produced three maps for the western US averaged 
across 25 model runs: a map of predicted suitable 
habitat, a map of standard deviation between predic­
tions from the 25 runs, and a map showing average 
clamping across the 25 runs. Clamping indicates 
where a model is projected to new areas and those 
new areas have environmental conditions outside the 
range of the locations used in training the model. 

For both coarse and fine-scale water models we 
also generated a binary map of predicted suitable and 
unsuitable habitat using a 10 percentile training 
presence threshold calculated by Maxent. This suit­
ability threshold selects the value above which 90% 
of the training locations are correctly classified. It 
provides a more conservative model than the mini­
mum training presence threshold which correctly 
predicts every training location and may lead to over­
prediction. Choice of a threshold can have a great 
effect on maps (Freeman and Moisen 2(08), and we 
choose a subjective threshold based on a desired 
accuracy rather than using more complex methods 
requiring both presence and absence data (for exam­
ple, see Jimenez-Valverde and Lobo 2007; Uu et al. 
20(5). This method matches the Freeman and Moisen 
(2008) required specificity threshold criteria. We 
placed more weight on not missing habitat; if an 
alternative management objective is required, a 
different classification should be used. 

Maxent calculates an area under the receiver 
operating characteristic (ROC) curve (AUC) to 
evaluate model performance. The AUC is a thresh­
old-independent measure of model performance that 
determines how well a model discriminates between 
presence locations and, with Maxent, other locations 
in the area of interest. AUC values can range between 
0.5 and 1.0, with 0.5 indicating no discrimination 
ability; values below 0.7 are low, values between 0.7 
and 0.9 are useful in some cases, and values >0.9 
indicate high discrimination (Sw~ts 1988). We calcu­
lated an AUC for the training dataset and an AUC for 
the test data we withheld for both models. We also 
calculated the predicted to expected (PIE) ratio for 
both models where a graph of predicted versus 
expected for a good model should show a monoton­
ically increasing curve (Bradley et al. 2009; Hirzel 
et al. 20(6). We did not calculate other common 
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metrics such as kappa and specificity as we did not 
have the required absence location data set to use. 

Results 

A regional database for the southwest, Southwest 
Exotic Mapping Program (SWEMP), provided the 
most presence location data, with emphasis in 
Arizona and New Mexico (2007). Likewise, the state 
of Utah had previously compiled weed mapping data 
(2006). The state of Colorado had already been 
heavily targeted by past research projects and 
included hundreds of presence locations (Crosier 
20(4). Data for Montana, Wyoming, West Coast 
states, and the central plains states were generally 
sparser than for the other states (Fig. 1). 

For each model iteration, we had 603 training 
locations to develop the model and a different 258 
test locations for cross-validation. For the coarse­
scale water model, the average training AUC and test 
AUC across the 25 iterations were 0.938 (SD = 
0.002) and 0.907 (SD = 0.009), respectively. The pie 
ratio was better than random as values were always 
greater than the 1: 1 line for the predicted versus 
expected graph. A graph of the ratio versus habitat 

• Russian olive locations 

1,000 Km 
I 

500o 
I 

Fig. 1 Recorded locations of Russian olive from compiled 
datasets listed in Table I (North America Albers Equal Area 
Conic projection) 
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suitability increased with increasing suitability. The 
value at our threshold of 0.9 was 4.44. Distance to 
water was the most important predictor, with an 
average relative contribution to the model of 33.1 % 
(Table 2). Increased distance from water resulted in 
an exponential decrease in habitat suitability. Three 
other variables had greater than 10% importance in 
the model: mean temperature of the wettest quarter 
of the year (15.5% contribution), precipitation sea­
sonality (13.6% contribution), and mean temperature 
of the warmest quarter (11.9% contribution). Suit­
ability was high with extreme temperatures (both low 
and high) during the wettest quarter and with 
extreme (low and high) levels of precipitation 
seasonality. Suitability was lowest with intermedi­
ate-temperatures during the wettest quarter and 
intermediate-levels of precipitation seasonality. Suit­
ability had a positive relationship with mean tem­
perature of the warmest quarter, increasing with 
increasing temperatures. 

For the fine-scale water model, the average train­
ing AUC and test AUC across the 25 iterations were 
0.923 (SD = 0.003) and 0.885 (SD = 0.01), respec­
tively. The pie ratio was again better than random, 
and a graph of the ratio versus habitat suitability 
increased with increasing suitability. The value at our 
threshold of 0.9 was 3.78. Mean temperature of the 
wettest quarter of the year was the most important 
predictor for this model (19.1% contribution), fol­
lowed by precipitation seasonality (17.2% contribu­
tion), and mean temperature' of the warmest quarter 
(16.0% contribution~ Table 2).' The relationships 
between Russian olive habitat suitability and vari­
ables with greater than 10% contribution were the 
same as for the coarse-scale water model, refer to the 
preceding paragraph for relationships between habitat 
suitability and the variables mean temperature during 
the wettest quarter, precipitation seasonality, and 
mean temperature during the warmest quarter. Dis­
tance to water ranked fifth in importance, with an 
average relative contribution to' the model of 6.2% 
(Table 2). Increased distance from water resulted in 
an exponential decrease in habitat suitability. 

Suitable Russian olive habitat in the western US 
closely follows the paths of water bodies for the 
coarse-scale water model and follows a similar 
distribution with a wider buffer around dense water 
body areas for the fine-scale water model (Fig. 2a, d). 
Areas of concentrated suitable habitat include the 

Colorado Plateau region, the front range of the Rocky 
Mountains, the central valley region of California, 
and the fine-scale water model also included high 
densities in northern Texas, Oklahoma and eastern 
Kansas. Of those concentrated locations, those in 
California, northern Texas, Oklahoma and eastern 
Kansas also have high standard deviation between the 
model runs (Fig. 2b, e) and a high degree of clamping 
(Fig. 2c, f). Predictions in these areas have a high 
degree of uncertainty. Habitat suitability patterns 
become clearer when habitat suitability is defined 
according to the 90% suitability threshold (Fig. 3). 

Discussion 

Our models of Russian olive habitat suitability 
predicted existing presence points well, with the 
coarse-scale water model performing slightly better 
than the fine-scale water model (Coarse model: 
training AUC = 0.938, test AUC = 0.907; Fine 
model: training AUC = 0.923, test AUC = 0.885). 
Our habitat suitability models shows that some 
riparian areas along the western coast of North 
America are threatened by Russian olive, although it 
has not yet invaded these areas-at least not accord­
ing to the presence data we were able to gather. 
However, these locations also had high clamping and 
standard deviation in model runs, indicating some 
uncertainty in the predictions. Targeted sampling in 
these locations may improve further model iterations. 
Similarly, the models show that the central part of 
North America is vulnerable to Russian olive inva­
sion, although there is currently little data for Russian 
olive presence in this region. 

Surprisingly, our models show no southern limit to 
Russian olive invasion in the western US except in 
extreme southern Texas and the southern California 
and Arizona border. Other research has shown that 
Russian olive occurrence is limited by temperature 
in southern California, Arizona and New Mexico 
(Friedman et al. 2005). Coarse-scale distribution 
maps, such as those available from the USDA plants 
database, include state and county level Russian olive 
presence in Midwestern states and the southern US 
(USDA 20(9). Our field data used to create the model 
do show a clear Southern boundary, but we cannot be 
certain if this is a sampling artifact or an environ­
mental limitation to Russian olive distribution. 

~ Springer 
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Fig. 2 Model results for 
Russian olive coarse­
resolution water data model 
(a--c) and the fine-scale 
water model (d-O including 
a, d habitat suitability using 
all data points, b. e standard 
deviation between the 25 
model iterations using 
different subsets of point 
data indicating sensitivity of 
model to presence locations, 
and c, r locations where 
clamping occurred 
highlighting locations with 
environmental conditions 
outside the range of the 
locations used to generate 
the model (North America 
Albers Equal Area Conic 
projection) 

(c) 

Distance to water was the most important 
predictor for Russian olive habitat suitability in 
our coarse-scale water model, however, it was only 
the fifth most important variable in the fine-scale 
model. This difference is surprising for a species 
that is considered to be riparian. We expected 
Russian olive to closely follow water bodies in both 
models. These results indicate that when water 
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(e) 

(f) 

1°·392 
yy?fyO . 

I 0.862:; ° 

bodies are considered on a fine scale, including 
small water bodies, Russian olive is more sensitive 
to other environmental conditions than distance to 
water. This finding supports other research that has 
found Russian olive to be less dependent on shallow 
riparian water tables than other obligate riparian 
species (Katz et al. 2005; Lesica and Miles 1999; 
Reynolds and Cooper 2010). Moreover, the fact that 
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Fig. 3 Map of suitable and unsuitable habitat for Russian olive 
using the 90 percentile training presence threshold of0.363 for a 
coarse-resolution water data model and b fine-resolution water 
data model (North America Albers Equal Area Conic projection) 

the coarse-scale model is a better fit according 
to AUC and pIe measures suggests that a good 
framework for understanding potential Russian olive 

distribution should consider a wide buffer around 
major water bodies. 

For both coarse and fine-scale water models, 
results for important (greater than 10% importance) 
variables indicate suitable Russian olive habitat 
includes the hottest, driest regions and regions with 
the most variable precipitation regimes in western 
North America. Habitat suitability had a positive 
relationship with mean temperature of the warmest 
quarter, increasing with increasing temperatures. 
Russian olive habitat suitability was also positively 
related to extreme temperatures during the wettest 
quarter. These results correspond to the climate of the 
western US at high elevations and northern latitudes 
where the wettest quarter occurs during winter 
months with extremely low temperatures and at low 
elevations and southern latitudes where the wettest 
quarter is during the summer monsoon season with 
extremely high temperatures (Gochis et al. 2(06). 
Russian olive is well-suited for the arid regions of 
North America because of its original adaptation to 
temperate, arid regions of Eurasia. It may do well in 
these locations because of its broad tolerances to 
winter temperatures, extreme summer temperatures 
and drought (Katz and Shafroth 20(3). 

More research is needed into how models perform 
with biased datasets like those generally available for 
invasive species across large spatial extents. Most of 
our data were compiled from disparate efforts, each 
with unique sampling goals and strategies. We cannot 
differentiate between poorly sampled areas, areas that 
could be invaded but have not been yet, and true 
absence areas. Sampling incompleteness and uncer­
tainty exacerbate the issues related to assessing 
sampling bias. Phillips et al. (2009) recently exam­
ined the issues of sample selection bias with Maxent, 
but our data set was not amenable to their solution of 
using other species' locations collected in the same 
dataset as background locations. We attempted to 
alleviate bias by limiting background locations to 
counties where we had sample points. 

Also, some presence locations for Russian olive 
may be places where it has been planted but is not 
necessarily naturalized. Russian olive was originally 
planted in the US for wind breaks and as an 
ornamental plant. Although considered a noxious 
weed in most western states, it can still be purchased 
at nurseries in some states: an internet search 
revealed that Russian olive can be purchased in 
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places where it could also be invasive, such as 
Nebraska. In fact, horticulture is the number one 
pathway of introduction for woody invasive species 
in the US (Richard and White 2(01). Ornamental 
plants that become naturalized and invasive are a 
challenging issue for scientists and land managers. 
There is a lag time between recognition of the plant 
as a problematic weed and when people stop planting 
it. This makes it hard for scientists to determine 
potential habitat in its introduced range because 
planted areas may not reflect suitable habitat (Strayer 
et al. 2006; Wilson et al. 2(07). 

Our model was only based on climatic and other 
abiotic data. There may be other factors limiting the 
extent of Russian olive including biotic interactions 
such as competition for resources, geographic barri­
ers to dispersal, and other environmental parameters 
such as soil composition for which we did not have 
data available. Including these factors may improve 
the fit of distribution models (Araujo and Luoto 200?; 
Heikkinen et al. 2(06). 

As with all models, there are associated caveats; 
however, it is a useful tool for identifying potential 
Russian olive invasion areas. Species distribution 
models can be used to inform field-based studies 
testing the importance of abiotic variables and to 
inform field site selection on the landscape. Further 
study is needed to examine the potential for Russian 
olive to invade beyond its current range in North 
America, especially in the context of global climate 
change. We used current climate conditions to build 
our model, but it is increasingly imperative to 
understand how species will respond under potential 
future climate conditions (Bradley et al. 20 lO). 
Russian olive could be experimentally planted at 
the edges of its range to understand its distribution 
limits and possible shifts under climate change 
scenarios. It takes several years for Russian olive 
trees to develop from the seedling stage to reproduc­
tive maturity, so it would be possible to sow Russian 
olive seeds and then remove the trees before they 
reproduce (Katz and Shafroth 2(03). This would be a 
useful way to test habitat suitability without spread­
ing the invasive plant. If scientists can determine the 
boundaries of Russian olive invasion in the western 
US and how those boundaries may change over time, 
managers can direct their efforts accordingly. 

To respond effectively to the threats of inva­
sive species on natural ecosystems, scientists and 
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managers need tools with which to predict invasive 
species spread. Predicting the spread of a slow 
invader before it has filled potential habitat types in 
its introduced range is difficult. To combat these 
challenges, we must use all available tools to predict 
invasive species potential spread: detailed knowledge 
of the species' biology and ecology, key environ­
mental predictors in its historic ranges, and habitat 
suitability models. Models must be used carefully 
and in concert with other information to be most 
effective. 
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