
Risk Analysis, Vol. 30, No.2, 2010	 DOl: 10.1111/j."l539·6924.2009.01343.x 

Ensemble Habitat Mapping of Invasive Plant Species 
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Ensemble species distribution models combine the strengths of several species environmental 
matching models, while minimizing the weakness of anyone model. Ensemble models may 
be panicularly useful in risk analysis of recently arrived, harmful invasive species because 
species may not yet have spread to all suitable habitats, leaving species-environment rela­
tionships difficult to determine. We tested five individual models (logistic regression, boosted 
regression trees, random forest, multivariate adaptive regression splines (MARS), and maxi­
mum entropy model or Maxent) and ensemble modeling for selected nonnative plant species 
in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon Na­
tional Parks, California, and areas of interior Alaska. The models are based on field data 
provided by the park staffs, combined with topographic, climatic, and vegetation predictors 
derived from satellite data. For the four invasive plant species tested, ensemble models were 
the only models chat ranked in the top three models for both field validation and test data. 
Ensemble models may be more robust than individual species-environment matching models 
for risk analysis. 
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1.	 INTRODUCTION tive species.(2) In response to lllcreasing invasions, 
spatial modeling and species-environment match­Harmful nonnative species continue to spread 

globally(l) and into natural areas including na­
tional parks and wildlife refuges, where natural re­
source policies demand containment to protect na­
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ing models are becoming commonplace for natural 
resources managers, agencies, and nongovernment 
organizations who need accurate maps of species 
distributions and abundance for risk analysis.(3) Se­
lection of modeling approaches may be based on spe­
cific study objectives; species autecology and syncol­
ogy; species occurrence data (i.e., presence-absence 
versus presence-only or abundance); and the avail­
ability and resolution of predictor variables such as 
climatic, topographic, edaphic, or vegetation com­
munity information observed with remotely sensed 
data, which can be related to species distributions 
and abundance. However, the selection among dif­
ferent modeling approaches is sometimes based on 
cost or convenience (e.g., software availability, pre­
vious training). Problems with model interpretation 
arise when individual models behave differently with 

224 0272-4332/1010100·0224$22.00/1 C 2010 SOOieLy for Risk Analysis 



225 Ensemble Habitat Mapping of Invasive Plant Species 

the same set of field observations and predictor 
layers. Discrepancies among the results from differ­
ent modeling approaches may be due to differences 
in model assumptions and algorithms, or different 
specific data requirements (e.g., some models use 
presence-only data(4) whereas others use presence­
absence or abundance data(5»). These common sit­
uations led Araujo and New(5) to suggest using en­
sembles of models for species distribution modeling, 
rather than relying on model outputs from a single 
model to guide eradication efforts. 

We compared five individual models: logistic 
regression, boosted regression trees (BRT), ran­
dom forest, multivariate adaptive regression splines 
(MARS), and maximum entropy modeling (Max­
ent), and an ensemble model for selected nonnative 
plant species in Yellowstone and Grand Teton Na­
tional Parks, Wyoming; Sequoia and Kings Canyon 
National Parks, California, and areas of interior 
Alaska. Ensemble modeling (sometimes called con­
sensus modeling(6»), in its simplest terms, involves 
combining model outputs from different models (in 
this case, binary maps of suitable and unsuitable 
habitat) into a single map. In this way, areas of high 
model agreement can be differentiated from areas of 
low model agreement. From a scientific standpoint, 
it is instructive to learn whether individual models or 
ensemble models perform better for a broad array of 
species. From a practical standpoint, resource man­
agers need to know which model or groups of models 
provide the most accurate predictions in space and 
time. This is the essence of risk analysis for biotic 
invaders. (7,8) 

The use of ensemble models for mapping harm­
ful invasive species is not yet widespread. Crossman 
and Bass(9) used ensemble modeling to map Olea w­
ropaea L. (European olive) in southern Australia, re­
porting that the ensemble model outperformed in­
dividual models. Marmion e( al,C6} created ensemble 
models for 28 threatened plants in one study area 
in northeastern Finland. Roura-Pascual et at. (10) used 
consensual predictions for identifying areas of uncer­
tainty regarding the Argentine ants' invasive poten­
tial in the Iberian Peninsula. However, we found no 
studies that compared models of multiple species in 
multiple biomes to support the notion that ensemble 
models consistently outperform individual models. 
Our objectives were to: (1) test five individual model­
ing approaches and an ensemble model for four inva­
sive plant species (one species in each of four study 
areas); and (2) provide resource managers of natu­
ral areas with recommendations on the benefits and 

drawbacks of an ensemble approach for risk assess­
ments of mapping harmful invasive species. 

2. METHODS 

2.1. Study Sites and Field Data 

This study was conducted at four different sites 
across the United States. Two of these sites, Yel­
lowstone (44c 07'44"N to 4Y06'17"N; 109°50'28"W 
to 111c09'12"W; area: 1,112,652 ha) and Grand 
Teton (43°32'15"N to 44°08'48"N; 1100 25'28''W to 
1100 56'50"W; area: 281,812 ha) National Parks (N.P.) 
are located in northwest Wyoming, USA. Data 
sets on Linaria dalmatica (Dalmation toadflax) in 
Yellowstone N.P. and Carduus nutans (musk this­
tle) in Grand Teton N.P. were collected for more 
than a 20-year period. Sequoia and Kings Canyon 
National Parks (SEKI; 36°15'49"N to 37°14'21"N; 
118°07'35"W to 118°59'51"W; area: 829,463 ha) are 
located in the 'southern Sierra Nevada of Califor­
nia, USA. Locations of Bromus tectorum (cheat­
grass) have been collected in a variety of surveys 
and monitoring projects in the parks. The interior 
Alaska area (62C 39'26"N to 67°08'41"N; 143°30'22"W 
to 153°58'0.26"W; area: 18,603,882 ha) included lands 
around Fairbanks and east of Denali National Park 
and had over 10 years of data collection from var­
ious surveys recording Melilotus officianalis (white 
sweet clover) and other invasive species. All species 
Occurrence data were collected using global position­
ing systems by park personnel. 

The four study sites selected incorporate large 
geographic ranges, which cross ecological zones, po­
litical boundaries, and are current working extents 
of existing noxious plant coordinating committees 
that include local, state, and national land managers. 
While the extents of each study site are represented 
by political boundaries in the graphics, models used 
to generate these outputs considered the entire ex­
tent of the study site, which corresponds to the coor­
dinates listed above. 

2.2. Environmeutal Data 

Environmental data layers that present biophys­
ical characteristics play an important role in our abil­
ity to shed light on underlying species-environment 
processes and relationships.(ll) For these reasons, 
it is common practice that climate layers derived 
from historic records are temporally cultivated and 
coupled with topographic and remotely sensed 
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parameters to derive species distribution models. 
However, one of the main challenges in model con­
struct is the fundamental representation of the phys­
ical environment with the appropriate scale of digi­
tal proxies, that is, geospatial data layers. As Guisan 
and Thuiller(3) describe, the resolution and extent of 
a study site are important in understanding the limi­
tation of results. Furthermore, the inconsistencies in 
resolution across sources of biophysical parameters 
are common and in a perfect scenario all environ­
mental layers would be generated at the same na­
tive spatial and temporal resolution. Nevertheless, 
accounting for coherence limitations we chose to re­

2sample all environmental predictor layers to a 250 m
spatial resolution. This scale was chosen because iL 
provided the highest native spatial resolution of the 
remotely sensed MODIS phenology data product, 
while additionally supplying an appropriate resolu­
tion map for park service personnel to execute gen­
eral treatments and accuracy assessment analysis. 

In our study, we examined similar climate lay­
ers in conjunction with a recently developed re­
motely sensed, seasonal interannual vegetation mea­
sure called the MODIS phenology product. NASA's 
MODIS land surface phenology product defines sea­
sonal patterns of variation in vegetated land surfaces 
from satellite observations.(12-14) The product de­
rives 14 temporally smoothed and spatially gap filled 
annual phenological parameters from common vege­
tation indices (NDVIfEVI) at a spatial resolution of 
250 m2, a close proximity in spatial resolution to the 
1 km2 climatic layers. 

In addition to the remotely sensed MODIS veg­
etation phenological parameter layers, a spatial data 
set consisting of over 70 candidate habitat predic­
tor layers was assembled for each study site from 
a variety of sources. Environmental variables in­
cluded 19 bioclimatic layers(15) derived from monthly 
temperature and precipitation data (Daymet climate 
data set; www.daymet.org/; l-km2 spatial resolution; 
1980-1997) and multiple types of land surface data 
sets such as elevation, percent tree cover, and incom­
ing solar radiation. The Appendix further describes 
the entire list of habitat predictor layers considered 
in our analysis. 

All predictors were compared in a pairwise fash­
ion to evaluate their correlation for each species at 
each site. For any highly correlated (r > 0.8) pairs, 
we removed one of the variables from considera­
tion as habitat predictors to reduce problems asso­
ciated with multicollinearity. Our choice of which 
variable to remove was somewhat subjective. We 
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kept the variables we felt were more directly inter­
pretable by the modeling tearn and the National Park 
Service personnel. For example, if the two phenol­
ogy metrics: "length of growing season" and "rate of 
greenup"(12) were highly correlated we would keep 
"length of growing season" assuming that metric 
was fairly well understood. Since the variables were 
highly correlated, they were essentially providing the 
same information. So, for the purpose of this study, 
our main objective was to reduce numerical problems 
with multicollinearity and our somewhat subjective 
selection of which variable to remove does not im­
pact the model intercomparison as the same variables 
were available for the different model techniques. 

2.3. Statistical Modeling Methods 

Based on the findings of recent model compari­
son studies(16-20) and the applications in several eco­
logical studies, we selected five of the top perform­
ing species distribution models: boosted regression 
trees or BRT,(20-24) logistic regression,(25.26) Max­
ent,(27-29) multivariate adaptive regression splines or 
MARS,(16.30,3I) and random forest,(32.33) BRT and 
random forest are ensemble techniques within them­
selves, producing a final model that is a combi­
nation of many different trees. MARS is a non­
parametric technique that models nonlinearities and 
interactions by combining regression and recursive 
partitioning methods.(16) Maxent is a presence-only 
technique while the others req uire both presence and 
absence data.(27) 

For each species in each location, we randomly 
divided species location data into two groups, with 
50% of our available presence-absence data (i.e., 
split sample approach)(34) for use in model testing 
(the "test" data) and the other subset (50%) reserved 
for model fitting or training. Thus, both the test and 
training subsets had a prevalence of 0.5 (i.e., the pro­
portion of presence points to absence points in the 
data set). 

In the predictive phase of modeling, each of 
the five modeling methods produced an output map 
of continuous values between zero and one corre­
sponding to the probability that a pixel is suitable 
habitat for the species. To convert these continuous 
maps into binary (habitat versus nonhabitat) maps, 
we needed to select a threshold such that probabil­
ity values above that threshold were designated as 
habitat, while values at or below that threshold were 
designated as nonhabitat. Using the "test" data set, 
we selected a threshold at which the specificity was 
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equal to the sensitivity.(35,36) That is, we selected a 
threshold at which there were as many false positives 
as there were false negatives. Once a threshold was 
selected, the model output for each individual model 
was converted to a binary map. 

Ensemble maps were produced by combining 
the binary habitat maps from the five individual 
models. The resulting ensemble map displayed in­
teger values from zero to five, with the value of 
each pixel corresponding to the number of individ­
ual models that predict that pixel to be habitat (afre­
quency histogram ensemble approach).(5) This output 
can be considered a "vote" from the five modeling 
techniques. A score of zero indicates that none of 
the modeling techniques assigned that area as suit­
able habitat, while a value of five indicates that all 
modeling techniques assigned that area as suitable 
habitat. 

We compared model accuracy of individual and 
ensemble models using two validation data sets. First, 
we used the reserved test data set to validate the 
model. Second, our National Park Service partners 
conducted new field surveys in the summer of 2008 
(the "field validation" data), with sampling locations 
selected by stratifying across the six (zero through 
five) classes in the ensemble map. Thirty points were 
sampled in each stratum for each study area. 

We used the area under the receiver-operating 
characteristic (ROC) cUrve (AUC)(37) to assess 
model accuracy with each validation data set. AVC, 
a measure of model fit, has been widely used in sev­
eral model comparison studies. (16-19,38) A model per­
forms well when the AUC is large. Usually, AUC 
values of >0.9 indicate high accuracy, values of 0.7­
0.9 indicate good accuracy, and values 0.5 (random) 
to 0.7 indicate low accuracy.(39) We minimized the 
potential problems associated with the reliance on 
AUC values (see Lobo et at. (40)) by: (1) predicting 
the habitat suitability for only one species at a time 
over the same extent for all models; (2) selecting only 
models that performed weII in previous model com­
parison studies;(18,19.41) (3) eliminating highly cross­
correlated predictor variables prior to testing; and 
(4) and restricting the spatial distributions of all the 
models to similar environments (e.g., the Greater 
Yellowstone Ecosystem). 

3. RESULTS 

[n this section, we cover the performance of indi­
vidual models, the performance of ensemble models, 
and finally, the effectiveness of the ensemble mod­

els to guide field validation efforts. The performance 
of individual models varied by park and by species, 
and varied for field validation and test data sets 
(Table I). For example, for the field validation data 
for Carduus nutans in Grand Tetons N.P., AVC 
scores were highest for the MARS model, followed 
by Maxent and the ensemble model. For the test data 
for the same species and park, AVC scores were 
highest for the random forest model, followed by 
boosted regression trees, and the ensemble model. 
The random forest model tended to be the best per­
forming individual model for most species, but it per­
formed poorly for Carduus nutans in Grand Tetons 
N.P. Ensemble models were the only models to rank 
among the top three mOdels for field validation and 
test data in all study areas (Table I). 

Habitat suitability maps varied by species and by 
models used. For example, all the models of Linaria 
dalmatica in the Yellowstone area predicted suitable 
habitat in the north-central part of the park (Fig. 1), 
overlapping the majority of reported presence loca­
tions. The random forest model accentuated habi­
tat suitability in the west-central part of the park, 
relative to the other models. The boosted regres­
sion trees model accentuated the road corridors. The 
MARS model accentuated habitat suitability in the 
park's interior (Fig. 1). 

The ensemble model for Linaria dalmatica in the 
Yellowstone N.P. and adjacent areas (Fig. 2) showed 
high agreement among models in the north-central, 
west-central, and along many of the major roads. 
The greatest habitat suitability corresponds to de­
velopment zones in the park, including the north 
entrance to Yellowstone (and Mammoth area), the 
West Yellowstone entrance, and the road corridor at 
the east entrance to the park. An additional "poten­
tial hotspot" for Linaria dalmatica can be seen about 
30 km east of the west entrance, near a large pic­
nic area along the Gibbon River, where no presence 
points are reported. 

Field validation data confirmed the modeling re­
sults. In Yellowstone National Park, 2008 validation 
data collection focused on the northern half of Yel­
lowstone Park, enabling staff to survey over 300 km 
of off-trail backcountry routes that had not been pre­
viously surveyed, covering about 240 ha. In Grand 
Teton National Park, the 2008 validation data set 
consisted of 65 stratified random plots. In Sequoia 
and Kings Canyon National Parks, the 2008 valida­
tion data set included sampling between June and 
September, including an additional 200 plots (0.06-ha 
circular plots) while traversing over 360 km of trails. 
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Table L The Area Under the Curve (AUC) Values for the Different MOdels and Parks, Calculated Using the ROC·AUC Program(S3) 

Carduus Bromus Tee/orum Linaria Melitolus 
Nuransin in Sequoia and Dalmaliea in Officianalis in 

Model Grand Tetons Kings Canyon Yellowstone Alaska 

Field Validation Data 
Ensemble 0.714 0.474 0.940 0.657 
Logistic reg. 0.615 0.406 0.746 0.613 
Random forest 0.615 0.453 0.902 0.654 
Boosted regression trees 0.516 0.425 0.830 0.646 
Maxent 0.802 0.442 0.822 0.444 
MARS 0.859 0.345 0.587 0660 
No. observations (pres. V5. abs.) 21096 8 to 191 3 to 93 11310212 

Test Data 
EnsembLe 0.894 0.969 0.981 0.938 
Logistic reg. 0.796 0.896 0.932 0.906 
Random forest 0.975 1.000 1.000 1.000 
Boosted regression trees 0.931 0.969 0.996 1.000 
Maxent 0.742 0.499 0.938 0.313 
MARS 0.821 0.948 0.755 0.875 
No. observations (pres. vs. abs.) 52610526 55 to 55 22810229 8 to 8 

Field teams recorded coordinates of not-yet-reported 
locations (n = 8) of Bromus teetomm (cheatgrass), 
suggesting that field validation based on model re­
sults was effective. 

4. DISCUSSION 

4.1. The Value of Ensemble Modeling 

Individual models varied in their performance 
(Table I). This is true for all model comparison 
papers published to date (e.g., Elith et al. (16) Ku­
mar et al. (19)). Geographic differences (Table I) or 
the species-specific traits of habitat generalists or 
habitat specialists(18) may take precedence in local 
model selection. However, the ensemble map ap­
proach adds substantial robustness and consistency 
of performance across the four parks and species 
considered (Table I; Fig. 2). Testing multiple mod­
els and combining their predictions to produce en­
semble models may help avoid the pitfall of trusting 
anyone convenient model. For example, the MARS 
model performed reasonably well for Carduus nutans 
in Grand Tetons N.P. and for Melilotus offieianalis in 
Alaska, but then it performed poorly for Bromus tee­
torum in Sequoia and Kings Canyon N.P. and Linaria 
dalmatiea in Yellowstone N.P. 

Many individual model comparison studies rec­
ommend the best-performing individual model with­
out testing ensemble models. We showed, as did 
Marmion el al.,(6) that ensemble models do not neces­

sarily always improve the predictive accuracy of the 
single models, primarily because ensemble model ac­
curacy is always dependent on the accuracy of indi­
vidual models.(5) However, our results indicate that 
ensemble modeling should not be ignored. Ensem­
ble techniques may be particularly helpful in an au­
tomated habitat mapping system where robustness 
can be the most important model selection criteria. 
Ensemble models may also be particularly useful in 
modeling recently arrived, harmful invasive species 
because species may not yet have spread to all suit­
able habitats, leaving species-environment relation­
ships difficult to determine. 

4.2. Caveats 

There are several caveats for these types of in­
vestigations related to data completeness and model 
selection and performance. In three of the four parks, 
there were very few presence points relative to the 
number of absence points in the field validation data 
sets. While these surveys were guided by the ensem­
ble models, the lack of presence locations may not be 
because the locations are unsuitable but rather be­
cause the species have not yet spread to those lo­
cations. The low field validation AUC values may 
be suspect due to the high bias in prevalence to­
ward negative locations and lack of knowledge about 
"true" absence locations, and the high test data 
AUC values (e.g., 1.0 for three of the four random 
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Fig. 1. Point distribution of Linaria 
dalmatica (Dalmatian toadflax) in 
Yellowstone National Park, Wyoming, 
and modeled disr.ribution from five 
common species distribution models: 
Maxent, random forest (R. Forest). 
multivariate adaptive regression splines 
(MARS), logistic regression (Logistic), 
and boosted regression trees (BR. Trees), 

forest models) is also suspect. Spatial autocorrela­
tion between training and test data can lead to in­
flated AVe values.(42) Spalial models are affected by 
sample size and the contagion of samples relative to 
environmental gradients across the study extent.(29) 
In addition, all the species tested here occur outside 
our area of interest, and restricting the models to a 
portion of the overall species ranges may bias the 

models.(4J) It was not our objective Lo produce larger 
regional-scale models. We realize that models per­
formed for different "areas of interest" will produce 
different results, not just due to the environmental 
layers used for prediction, or the additional occur­
rence points at the larger extents. Our objective was 
to capture the local extent of selected plant species 
and genotypes specific to the particular ecosystems. 
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Fig, 2, Ensemble model of Linaria do/matica (Dalmation toadflax) in Yellowstone National Park, Wyoming, and adjacenllands, 
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Regional models often combine different genotypes 
in a wide variety of habitats unavailable in our area of 
interest. 

Model selection and performance affects results. 
Although we tested models that were highly suc­
cessful in previous model comparison studies,06,44) 
model performance in those studies may have been 
affected by data completeness, the extent to which 
true absence location could be verified, the ex­
tent of the study area, and the strength of species­
environment relationships. Furthermore, we did not 
calculate the confidence intervals for our predic­
tions of habitat,(45) Uncertainties exist in all statistical 
models;(27,29) however, some models (e.g., GARP) 
have consistently underperformed in several model 
comparison studies,(19,41) and inclusion of weak mod­
els in a model ensemble would likely weaken over­
all results. It was not our intent to compare individ­
ual projections with each other following Thuiller,l46) 
although we recognize this may be of considerable 
value when deciding which models to retain or elim­
inate in the ensemble process. 

Pearson et at. (35) argued that suitability of habi­
tats cannot be appropriately distinguished from bio­
climatic layers alone, and that remotely sensed land 
cover data significantly improved exclusively climate­
driven predictions, In their work, the improvement 
of model results is based on a hierarchical approach 
that downsizes and compartmentalizes climate lay­
ers to help account for differences in spatial reso­
lution with land cover data sources. However, their 
research also suggests that the nonhierarchical ap­
proach performed similarly well, with small statisti­
cal differences in the results. In related studies, im­
proved results from contributions of remotely sensed 
land cover data have been mixed.(43) On a coarse 
scale, Thuiller et al.(43) explain that the inclusion of 
land cover data improved explanatory power, while 
having no effect on the predictive power of the mod­
els. Their discussion also suggested that at a smaller 
spatial extent and finer resolution data may produce 
superior results. Zimmennan et at. (47) explain that 
when 30 m remotely sensed Landsat predictors de­
picting vegetation structure, biomass, and productiv­
ity were included with 1 km climate variables at a 
finer spatial scale (90 m), climate data continued to 
outperform the remotely sensed predictors. Zimmer­
man et at. (47) also emphasized the need for continu­
ous gradient remotely sensed predictors as apposed 
to filtered classifications and discussed the growing 
research interest and importance in the subtle char­
acteristics and differences of phenological events. 

Like Zimmerman et at.,(47) recent research has fo­
cused on the use of vegetation indices with climatic 
layers in species distribution models to help exploit 
the spectral response from vegetation and link re­
mote sensing to underlying ecological relationships 
of species. 

4.3. Alternative Approaches to Ensemble Modeling 

The ensemble approach used here is a simple 
way to compare various species distribution models. 
The way in which model results are combined also af­
fects results. Marmion et at. (6) reported that weighted 
average techniques and mean values from repeated 
individual model runs consistently outperformed in­
dividual models for 28 threatened species. Several 
other approaches to ensemble modeling (or consen­
sus methods) are reviewed by Marmion et al.(6) It is 
possible that there would have been some differences 
in our results had we used weighted averages rather 
than simple summation of binary results. However, 
we believe the general trend in the numbers would 
have been similar and the ensemble technique we 
used here is the most straightforward to explain and 
interpret. 

4.4. Iterative Mapping and Modeling 
of Invasive Species 

Environmental conditions will change with re­
spect to climate and land-use change, and many other 
factors. Thus, mapping and modeling of invasive 
species must be considered an iterative process.(M8) 
Invasive species will spread naturally by wind, ani­
mals, and other means of dispersal. The leading edge 
of a population distribution may behave differently 
than the. initial infestations.(49) Containment efforts 
affect current and future populations. Resource man­
agers may be in a constant '-)lcle of collecting new 
field information, new remote sensing information, 
and performing new model runs to track invasive 
species and to alter strategies for containment or 
gathering new information. Ensemble models pro­
vide a simple technique to provide robust estimates 
of suitable habitat for a given invasive species at a 
given time. 

4.5. Relevance to Risk Assessment 

Ensemble models and maps are an essential tool 
in risk analysis of invasive species.(7.5o,51) However, 
new field data to validate and improve the models 
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are also essential. Especially with a rapidly invading 
species, the associated risks change equally quickly. 
Species adapt, climates and environments change, 
and new techniques are developed. Adding economic 
costs of effects and control strategies are equally 
important. (52) 
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APPENDIX 

Environmental predictor variables considered in 
the five predictive models including their native spa­
tial resolution and the sources of data. 

Predictor Variable Native Spatial Resolution Data Source 

Climatic variables 
Annual mean temperature (bioI) I km Dayrnet l 

Mean diurnal range in temperature (bio2) 1 km Dayme(1 
Isothermality (bio3) lkm Davmel] 
Temperature seasonality (SO x 100) (bio4) 1 km Daymet l 

Maximum temperature of warmest month (bio5) 1 km Daymet l 

Minimum temperature of eoldest month (bio6) Ikm Daymet1 

Temperature annual range (bio?) lkm Daymet1 

Mean temperature of wettest quarter (bioS) 1 km Daymet1 

Mean temperature of driest quarter (bio9) Ikm Daymet l 

Mean temperature of warmest quarter (biolO) 1 km Daymet1 

Mean temperature of coldest quarter (bioll) lkm Daymet l 

Mean annual precipitarion (biol2) 1 km Daymet l 

Precipitation of wettest month (bio13) lkm Daymet1 

Precipitation of driest month (bio14) Ikm Dayrnet1 

Precipitation seasonality (CV) (bio15) lkm Daymet l 

Precipitation of wettest quarter (bioI6) 1 km Daymet1 

Precipitation of driest quarter (bioI?) Ikm Daymet1 

Precipitation of wannest quarter (biol8) lkm DaymetJ 

Preclpitation of coldest quarter (bioI9) lkm Daymet l 

Remolely sensed variables 
Enhanced Vegetation Index (EVI) green up 250m MODIS2 

EVI brown down 250m MODIS2 
EVI season length 250m MODIS2 

Evr base level 250m MODIS2 
E VI peak date 250m MODIS2 

EVI maximum peak date 250 m MODIS2 
EVI amplitude 250m MODIS2 

EVI green up rate 250m MODIS2 

(Continued) 
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Predictor Variable Native Spatial Resolution Data Source 

EVI brown down rate 250m MODIS2 

EVI large integrals-season stan to end 250 m MODIS2 
EVI small integrals-season to base level 250m MODIS2 

EV! annual maximum value 250 m MODIS2 
EVI annual minimum value 250 m MODIS2 

EVI annual mean value 250 m MODIS2 

EVI quality control 
EVlland cover 

250 m 
250 m 

MODIS2 

MOorS2 

Nonnalized Differenee Vegetation Index (NDVI) green up 250m MODIS2 

NDV! brown down 250m MODlS2 
NDVI season length 250m MODIS2 

NDVI base level 250m MOOlS2 
NDVI peak date 250 m MODIS2 

NOVI maximum peak date 250 m MODIS2 
NDVI amplitude 250m MODIS2 
NOVI green up rate 250m MODIS2 
NOVI brown down rate 250m MODIS2 

NDVI large integrals-season Slart to end 250m MODIS2 

NDVI small integrals-season to base level 250m MODIS2 
NDVI annual maximum value 250m MODIS2 

NOVI annual minimum value 250 m MODlS2 

NDV[ annual mean value 250m MODIS2 
NOVl quality control 250m MODIS2 
NDVI land cover 250 m MODIS2 
Percent impervious surface 30m MLRCJ 

Percent tree cover 30m MLRCJ 
Vegetation Continuous Field (VCF): percent tree cover 500 In GLCf4 
VCF: percent bare ground cover 500 m GLCf4 
VCF: percent herbaceous cover 500 m GLCf4 

Topographic and other environmental yariables 
Elevation 30 m SRTMS 

Elevation standard deviation 30m SRTM·1 

Slope 30m SRTM·1 

Relative slope 30m SRTMs 
Incident solar radiation 30m SRTMs 
Fire frequency 250 m Internal6 

Most recent burn 250 m Inlernal6 

Year since last burn 250 m Intemalh 

Forest damage 250 m NPS7 

Data sources:
 
I Daymel: http://www.daymet.orgl.
 
2MODerate resolution Imaging Spectroradiometer (MODIS) Vegetation Indices: http://edcdaac.usgs.gov/modisldataproducts.asp#mod13. 
3Multiresolution Land Characteristics Consortium (MLRC): http://www.mrlc.gov/. 
4Global Land Cover Facility (GLCF): hHp:llwww.Jandcover.orglindex.shtml. 
sSurface Radar Topography Mission (SRTM): htlp:llsrtm.csi.cgiar.orgl. 
hInternaJ: NASA GSFC/ USGS Science Center. 
7NPS: National Park Service. 
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