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Abstract-Initiated in 1984, the Committee Earth Observing 
Satellites' Working Group on Calibration and Validation (CEOS 
WGCV) pursues activities to coordinate, standardize and advance 
calibration and validation of civilian satellites and their data. One 
suhgroup of CEOS WGCV, Land Product Validation (LPV), was 
estahlished in 2000 to define standard validation guidelines and 
protocols and to foster data and information exchange relevant to 
the validation of land products. Since then, a number of leaf area 
index (LAI) products have become available to the science com-
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munity at both global and regional extents. Having multiple global 
LAI products and multiple, disparate validation activities related 
to these products presents the opportunity to realize efficiency 
through international collaboration. So the LPV subgroup estab
lished an international LAI intercomparison validation activity. 
This paper describes the main components of this international 
validation effort. The paper documents the current participants, 
their ground LAI measurements and scaling techniques, and the 
metadata and infrastructure established to share data. The paper 
concludes by describing plans for sharing both field data and 
high-resolution LAI products from each site. Many considerations 
of this global LAI intercomparison can apply to other products, 
and this paper presents a framework for such collaboration. 

Index Terms-Committee on Earth Observing Satellites 
(CEOS), leaf area index (LAI), validation. 

1. BACKGROUND 

A. Committee on Earth Observing Satellite's Land Product 
Validation Subg roup 

T HE Committee Earth Observing Satellites' Working Group 
on Calibration and Validation (CEOS WGCV) was initi

ated in 1984 to pursue activities to coordinate, standardize, and 
advance calibration and validation of civilian Earth-observing 
satellites and their data. Five subgroups comprise the implemen
tation arm of the WGCv. One subgroup, Land Product Validation 
(LPV) [I], was established in 2000 to define standard guidelines 
and protocols, and to foster data and information exchange rele
vant to the validation of land products. The subgroup's emphasis 
since its inception has been to provide a validation service for the 
Global Terrestrial Observation System (GTOS) [2]. This implies 
a focus on the terrestrial "Essential Climate Variables" of GTOS; 
which lists a number ofcritical products including leafarea index 
(LAI) [3]. Global LA! products provide key information on the 
exchange of energy, mass (e.g., water and CO2 ), and momentum 
flux between Earth's surface and the atmosphere. LA! is utilized 
in most ecosystem productivity models and global models of cli
mate, hydrology, and biogeochemistry [4]-[ 10]. LA! has been 
dcfincd as thc totallcaf arca (onc-sidcd) in rclation to thc ground 
[11], or more specifically, as the one-sided green leafarea per unit 
ground area, in broad leaf canopies, and as the projected needle 
leaf area in coniferous canopies [12]. More generally, this can 
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also be expressed as the total foliage surface area per unit of hor
izontally projected ground surface area [13]. However, for the 
CEOS LAI Intercomparison, needle leaf area is taken to be hal f 
of the total foliage surface area [14]. This definition has been 
adopted because it conforms to the reference "ground truth" LAI 
measured by optical instruments such as LAI-2000 and TRAC, 
which are the most common Iyused validation instruments. 

As various CEOS members each produce their own global 
LAI maps, characterization of each product's uncertainty-i.e., 
validation-becomes increasingly important for users to deter
mine the most appropriate product, or combination of prod
ucts, to use for their applications. CEOS defines validation as 
the process of assessing the quality of the data products de
rived from system outputs by independent means [IS]. The LPV 
subgroup addresses the validation of specific products through 
topical meetings focused on opportunities for international col
laboration to support the validation of those products. Much 
of LPV's initial guidance grew out of the experience gained 
through NASA' Earth Observing System (EOS) validation pro
gram [16], initiated in the 1990s; working to expand that effort 
internationally. To date, topical meetings have addressed albedo, 
land cover, LAI, and fire disturbance [1]. 

The motivation for organizing international validation 
collaboration is based on two premises. First, if different space 
agencies are producing similar satellite products, field valida
tion efforts for one agency's product can also be used to validate 
another's. Second, making the most use of field validation data 
sets requires both detailed documentation and open access to 
those data. The first premise provides the impetus for CEOS 
members to participate in the activity. The second premise 
presents a need that is being met by the efforts of LPY. This 
paper presents LPV's collaborative efforts on LAI validation. 
The framework for collaboration on LAI products presented 
here can also be applied to other global products. 

B. International LAllntercomparison Effort 

In the past five years, multiple LAI products have become 
available to the science community at both global and regional 
extents. The Moderate Resolution Imaging Spectroradiometer 
(MODIS) LAI product is produced every eight days globally at 
I-km spatial resolution [17]. The MODIS record began in early 
2000 and continues to present [18]. The MODIS approach was 
in part pioneered by the Advanced Very High Resolution Ra
diometer (AVHRR) LAI product developed by the same inves
tigators [19]. The 16 km-resolution monthly AVHRR product 
was derived from an improved Pathfinder normalized differ
ence vegeation index (NDVI) data set (1981 to 200 I) [20]-[23]. 
The French Space Agency (CESBIO/CNES) has produced an 
LAI product from the PoLarization and Directionality of the 
Earth's Reflectances (POLDER)-2 sensor [24], [25]. The Euro
pean Space Agency is supporting the GLOBCARBON project 
aimed at producing global fields of LAI (among other products) 
from the VEGETATION, Medium Resolution Image Spectrom
eter Instrument (MERIS), Advanced Along Track Scanning Ra
diometer (AATSR), and AVHRR sensors. Finally, the Carbon 
Cycle and Change in Land Observational Products from an En
semble of Satellites (CYCLOPES) [26] program from the Euro
pean Commission has developed preliminary biophysical prod

ucts [including LAI and fraction of absorbed photosynthetically 
active radiation (fAPAR)] using multiple sensors. In addition to 
the global initiatives, regional LAI products have also been de
veloped. For example, the Canada Centre for RemoLe Sensing 
(CCRS) has been producing standard LAI products over Canada 
since 1998 and is now performing a reanalysis back to 1985 
using the AVHRR sensors [27]-[29]. 

These global LAI products and multiple, disparate validation 
activities related to these products present the opportunity to re
alize efficiency through international collaboration. The LPV 
group convened workshops in 1998 and 200 I on LAI products 
[30], [3/]. These initial workshops established an international 
effort for global LAI product validation through an LAI inter
comparison activity. A third workshop in 2004 [32] further ad
vanced this effort and brought together the groups represented 
here. 

Each of the nine groups currently involved in this elTon has 
their own particular interest in quantifying the ,Iccuracy of LAI 
products. Some are explicitly funded to provide a validation 
service to an agency producing an LAI product. Others are more 
interested in using the global products for their needs or region. 
The LAI team at Boston University (BU) is responsible for the 
development of the NASA EOS LAI products [18]. They rely 
on validation activities to check the accuracy of their product 
and to guide refinement of their algorithms. The Validation of 
LAnd European Remote sensing Instruments (VALERI) [33] 
group, supported mainly by CNES and the Institut National de 
Recherche Agronomique (INRA), has focused on the devel
opment of an effective methodology to generate high spatial 
resolution maps of biophysical variables from satellites and the 
use ofthose maps for the validation ofmoderate-resolution global 
products. VALERI is closely integrated with the objectives of the 
CEOS LPV subgroup and is working to establish the uncertainty 
of global products for international initiatives such as the Inte
grated Global Observing System (IGOS) [34], GTOS [34], [35], 
and International Geosphere-Biosphere Program (lGBP) [36]. 
The BigFoot project [37] grew out of a prototype effort 10 char
acterize the Long Term Ecological Research (LTER) sites across 
the U.S., and expanded to help validate MODIS LAI, land cover 
and net primary productivity products at nine flux tower sites 
[38]. CCRS, in conjunction with the University of Toronto, has 
produced LAI maps ofCanada [27], [28]. An integral component 
in the production of these maps has been an assessment of their 
accuracy. CCRS has invested in validation through its dataset of 
over 250 consistently surveyed forest and shrub LAI plots [39] 
within ten study areas [27], [28] located to sample a variety of 
forest types across Canada. The ten study areas have provided 
CCRS with an understanding of how the global LAI products 
can be used in concert with their own regional product [40]. The 
University ofAlberta is conducting tropical forest studies aiming 
to relate remotely sensed data to ecological characteristics. Their 
LAI work is aimed at estimating field LAI and relating these to 
high-resolution (I-30m) satellite imagery for dry and moisttrop
ical forest sites [41 ]-[44). Scientists at the U.S. Environmental 
Protection Agency's (EPA) Office ofResearch and Development 
have initiated LAI validation activities to quantify the uncertainty 
ofthe MODIS LAI product as a dynamic, spatially explicit input 
to models for atmospheric deposition, biogenic emissions, and 
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TABLE I
 
GROUP SUMMARY OF VALIDATION COMPONENTS FOR THE GROUPS CURRENTLY PARTICIPATING IN THE CEOS LAI INTERCOMPARISON
 

Group Field Conversion Understory Site Sampling High Transfer Accuracy of Sensors used 
instruments of PAl to LAI correction extent scheme resoiution function high-

imagery resolution 
LAI map 

Boston 
Univer5ity 

LAI-2000 No Yes various: from 
5 x 5 km to 
10x10km 

Two-stage Landsat ETM+ 
(future: ASTER) 

Parametric 
regression 
[56,661 
fine-re5. MODIS 

derived from 
regression 
equations 

MODIS 

algorithm. 
56, g51 

VALERI LAI-2000 
DHP 

No Ye5 3x3 km Two-stage Land5at ETM+ 
SPOT HRVIR/HRG 
(future ASTER) 

Parametric 
regression 
Kriging 
[741 

cross validation 
and Kriged 
variance 

MODIS 
VEGETATION 
MERIS 
POLDER 
AVHRR 

BigFoot LAI-2000 No No 5 x 5 km Two-stage Landsat ETM+ reduced major axis cross validation MODIS 
Allometry (future: ASTER) regressIon [75J 
destructive meas. 38] 

CCRS LAI-2000 
TRAC 
DHP 

5pecies-based 
conversion 
factors 

No lOx 10km 
150x150km 

Two-stage Landsat TM/ETM+ Parametric 
regression 
[27,40,76) 

derived from 
regression 
equations. 

VEGETATION 
MODIS 
POLDER 

Univer5ity of 
Alberta 

LAI-2000 
DHP 
lillertraps 

using DHP from 
dry season and 
calibration from 
leaf Iiller and 
5pecific leaf area 
data 

No 10x10 km Two-slage Landsat ETM+, 
Hyperion 
IKONOS/Quickbird 

Parametric & 
Non-parametric 
regression, 
Baye5ian Network 
and neural network 
[42,43J 

Calibration for 
dry forest 
[411 

MODIS 

US EPA DHP 
TRAC 

No Ye5 on 2 
sites 

1x1 to 2x2 km Two-stage Land5at ETM+, 
IKONOS 

Parametric 
regre5sion 

NA MODIS 

Italy LAI-2000 
DHP 
destructive meas. 

No Yes from 250x250m 
to 1x1 km 

Two-slage Landsat ETM+ 
Hyperspectral 
Airborne 

Model inversion 
Parametric 
regression 
[96] 

derived from 
regression 
equations 

MODIS 

Finland LAI-2000 No No 1km x1km 
(2 sites) 
3km x 3km 
2 sites) 

One-stage 
Two-stage 

Landsat ETM+ 
SPOTHRVIR 

Parametric 
regression 
[46] 

derived from 
regression 
equations 

MODIS 

Penn State LAI-2000 No No 1.6 x 1.6 km One-stage ASTER work in progress NA MODIS 
ACCUPAR , , ,! 

air quality forecasting. The EPA has focused efforts in the south
eastern U.S. where they have measured LAI at six forested sites 
in the Albemarle-Pamlico Basin of North Carolina and Virginia 
during each growing season between May 2001 and October 
2004. The University of Milano-Bicocca, Italy, is involved in 
part of the long-term Kyoto Experiment, a Joint Research Center 
Institute for Environment and Sustainability (IRC-IES) research 
project included in the framework of the CARBOEUROPE [45] 
cluster of projects aimed to understand and quantify the carbon 
balance at the European level. The University ofMilano-Bicocca 
group is collecting LAI and fAPAR field measurements, in the 
context of CARBOEUROPE, in order to develop local relation
ships between canopy properties and carbon exchanges and to 
validate moderate-resolution remote sensing products at a total 
of 13 sites (two short-rotation poplar forests and 11 traditional 
poplar plantation sites, characterized by LAIs ranging between 
0.3t04.0). The University of Helsinki effort is working to develop 
more accurate LAI estimation methodologies for boreal regions, 
focusing on the clumped structure of these conifer-dominated 
forests [46], [47]. The Finnish sites are dominated by Scots pine 
(Pinus sylvestris L.) at Ruokolahti, Hirsikangas, and Rovaniemi, 
and by Norway spruce (Picea abies (L.) Karst.) at Suonenjoki 
[48]-[50], Penn State's Office for Remote Sensing of Earth 
Resources is integrating MODIS LAI and albedo products into 
the EPIC crop model [51] for estimating corn and rice yields and 
to test the sensitivity of the modeling to the MODIS land, soils, 
and weather inputs. The validation component of this research 

will span three growing seasons, 2005-2007, within corn and 
soybean fields in the central U.S. and rice fields in China. A 
summary of the characteristics of each group's work is given 
in Table 1. The list of sites represented in this paper are listed at 
[52] and shown in Fig. I. 

C. Gelleral Frameworkfor Collaboration 011 the Validation of 
Global Products 

The four main components of international validation efforts 
are as follows: 

1) an organizational entity; 
2) the willingness of participants to improve the consistency 

between methods and results; 
3) a mechanism for sharing the data along with a description 

of the procedure used; 
4) the synthesis of data and results into global accuracy 

statements, 

For the CEOS LAI intercomparison activity, LPV is serving 
as the organizing enti ty. Through the LPV's topical meetings 
on LAI [30]-[32], a general validation procedure has emerged 
[38], [53]. The main objective of this paper is to document the 
methods currently used by the LAI intercomparison activity par
ticipants, including ground LAI measurements and scaling tech
niques, and the metadata and infrastructure established to share 
data. The paper concludes by describing the plans for sharing 
both field data and high-resolution LAI products from each site. 
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Fig. I. Map of sites covered by the groups represented in this paper (given on a global map of dominant surface types in each lOx 10 cell (bare soil, water bodies, 
deciduous broad leaf forest, evergreen needleleaf forest, evergreen broad leaf forest, crops, grass) [87 J. 

II. BOTfOM-UP ApPROACH FOR GLOBAL VALIDATION
 

FROM FIELD MEASUREMENTS
 

We present the LAI intercomparison acttvlty as a 
"bottom-up" approach (i.e., from local field-level measurement 
to global comparison with satellite-derived LAI products). The 
following are the main considerations: 

1) methods and instruments used to collect the field-refer
ence LAI data; 

2) measurement extent and sampling scheme at each site; 
3) integration of field data with high-resolution imagery; 
4) methods to compare high-resolution product with mod

erate-resolution product; 
5) network of sites available for field validation. 

Fig. 2 shows the relationship between these steps. Here we 
present more detail on the first three steps. As this paper focuses 
on establishing the intercomparison framework, it is important 
to document the fixed components. However, using the field 
data that have been collected, future efforts will address syn
thesis studies which can both provide details on, and explore 
different methods related to, the last two steps. 

A. Field Reference LAl Measurements 

LAI can be measured directly by destructive methods, or indi
rectly via allometric relationships. However, these are both quite 
time consuming, and cannot be applied routinely to multiple lo
cations. For this reason, the nine groups mainly used noncon
tact indirect methods to estimate LAI from gap faction mea
surements. The following four optical instruments are currently 

20-100 
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e mm 
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Fig. 2. General global land product validation procedure applied to LA!. 

used by the groups in this intercomparison activity (the order 
here does not imply any preference or degree of accuracy): 

•	 LAI-2000 Plant Canopy Analyzer (Li-Cor Inc., Lincoln, 
NE) [54]; 

•	 cameras equipped for digital hemispherical photography 
(DHP) [55]; 

•	 AccuPAR Linear Par Ceptometer (Decagon, Inc., Pullman, 
WA); 

•	 Tracing Radiation and Architecture of Canopies (TRAC) 
instrument (3rd Wave Engineering, ON, Canada) 
[56J, [57]. 
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Some groups are using a single type of instrument, while 
others are combining instruments, Within the VALERI group, 
field measurements are generally performed using gap fraction 
measurements either based on the LAI-2000 instrument or 
DHP, depending mainly upon vegetation type [55], BigFoot's 
LAI was derived from LAI-2000 along with allometry and 
direct harvest Their methodology varied by date and vegeta
tion type [58]-[60]. For the University of Alberta sites, LAI 
was estimated using the LAI-2000 combined with DHP, In 
this study litter traps were also used at one of the dry forest 
sites [41], Measurements with the LAI-2000 in Finland were 
complemented with relascope sampling [61] at the center 
of each plot. The CCRS and the EPA [62] groups used a 
combined LAI-2000/TRAC or DHP/TRAC method for in situ 
LAI measurements, At the Italian forest plantation sites, field 
measurements included the LAI-2000, DHP, and destructive 
sampling [63], 

The use of gap fraction and gap size distribution to estimate 
LAI depends upon light measurements within the canopy 
that are influenced by site, species, and leaf characteristics, 
The many issues associated with the use of different optical 
methods to determine LAI, such as illumination and clumping 
are covered in detail in [64], Sampling and footprint issues are 
well covered in [55], where the innuences are site homogeneity, 
canopy and sampling device used, Weiss et al. [55] also dis
cusses the issue of nongreen elements, which are particular 
issues in forested sites, where the woody contribution using op
tical methods can be significant CCRS used conversion factors 
to correct for this, and have documented these factors, as well 
as the instruments and processing applied, in the CCRS LAI 
database [39], For the University of Alberta's three dry-forest 
sites, dry season hemispherical photographs were used to esti
mate the contribution of the wood area index, The combination 
of wood area index and litter traps [41] allowed for a cali
bration of the LAI values from the LAI-2000 measurements, 
The Italian group apprised the magnitude of stem and branch 
contributions by using gap fraction measurements collected 
during leaf-off conditions, Understory LAI can significantly 
impact vegetation indexes (VI) commonly used to generate 
fine-resolution LAI maps, Several studies proposed to explicitly 
include measurement of the understory component The BU 
team utilized the reduced simple ratio (RSR) [65] to reduce 
the impact of understory on the correlation between vegetation 
indexes and overstory LAI [66]. Understory LAI was quantified 
in Italy and Finland (Hirsikangas site) through measurements 
of the total LAI (positioning the sensor at ground level) and 
the overstory LAI (positioned just above the understory veg
etation) [63]. A similar approach was applied in the forest 
sites sampled by the VALERI group using upward-looking 
and downward-looking DHP to characterize the overstory and 
understory LAI, respectively. At the EPA's Appomattox and 
Hertford sites, complete understory removal was performed on 
each 100 x lOO m quadrant [67]. A comparison of pre- and 
post-removal IKONOS imagery at Hertford showed a 3.5% 
decrease in NDVI (1) < 0,05) after understory removaL 

Validation of LAI from gap fraction measurements was per
formed using direct measurements, destructive sampling or allo
metric relationships. Kalacska [41] found a strong linear corre

lation between LAI-2000 measurements and litter traps in a dry 
tropical forest. The Italian group has found LAI derived from 
destructive sampling was always greater than the LAI computed 
from LAI-2000 [63]. This difference is suspected to be due to 
the observed clumping at crown leveL The LAI-2000 and de
structive LAI estimates have a strong linear relationship, with an 
RMSEofO.32 m2 1m2 , Within the VALERI group, LAI derived 
from allometric relationships were compared to those derived 
from LAI-2000: over the Jarvselja Estonia site in 2000 [68], a 
relatively good agreement is found, except in relatively inhomo
geneous situations; conversely, over the Nezer site in France, the 
LAI-2000 was providing biased estimates of LAI, while DHP 
was providing better and unbiased estimates [69]. 

There have also been comparisons between results from mul
tiple optical instruments. CCRS has found that DHP-based LAI 
estimates are well correlated with LAI-2000 and TRAC-based 
estimates although there is an offset likely related to a combi
nation of multiple-scattering effects [70] and the resolution of 
the DHP instruments [71]. The DHP processing approach de
veloped at CCRS was compared to the CAN_EYE software [72] 
that the VALERI group developed using images acquired for the 
VALERI Larose Forest site in Ottawa, Canada. Effective LAI 
values differed by less than 5%, though clumping estimates dif
fered by up to 20% for some plots. This suggests that intercom
parison of clumping corrections for optically based in situ LAI 
estimates should be investigated further as Jonckheere et al. [64] 
also concluded that clumping was the greatest error influence in 
the indirect estimation of LAI. 

B, Site Extent and Sampling Schemes 

The smallest site extent is defined as the minimum area com
patible with the resolution of the satellite product to be vali
dated. Given the current moderate-resolution LAI products, a 
minimum size is approximately 1 km2 

, although this size is per
haps too small, considering the point spread function and geolo
cation uncertainties of these sensors, However, if a site is located 
in a relatively homogeneous area, these problems are certainly 
minimized, The largest extent investigated was 150 x 150 km 
(CCRS, Table I), allowing for an investigation of the variability 
of LAI within the sites. 

The sampling scheme is mainly driven by the footprint asso
ciated with the field measurements as well as by the up-scaling 
process and imagery that will be used. Some groups are using 
geostatistical methods to scale up local measurements, which 
are generally performed over a relatively small site extent Most 
groups are using high spatial resolution images, sometimes in 
combination with geostatistical methods, to scale up the local 
field measurements. The objective pursued by the sampling 
strategy will be to use elementary sampling units (ESU) to 
capture the variability across the site extent, and repeat mea
surements within the ESU to capture the variability within the 
high spatial resolution imagery (~ 30 m). Consensus among 
the participating groups is toward a two-stage nested sampling 
approach, as proposed by [73] (Fig. 3). 

Validation studies must define the sampling scheme within 
the ESU (also called primary sampling units in [73]), Sampling 
within the ESU should consider the footprint of the field mea
surement and pixel size of the high-resolution image used in the 
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Fig. 3. Diagram representing two-stage sampling designs. Sampling design 
specification will depend on land cover class and measurement device. Design 
A correspond to low eanopies of crops and grassland. Design B utilizes a transeet 
required by the TRAC insirumelll. and design C is for forest canopies. 

up-scaling process. For devices such as LAI-2000, DHP or Ac
cuPAR, the extent of the ESU represents a small cluster of pixels 
[38], [42], [43], [74]. Atthe maximum, the ESU corresponds to a 
patch of a vegetation class [53], [66] or a plot of managed forest 
or crop (Italian group). For the TRAC instrument, the extent of 
the ESU is defined by the pattern of transects used (EPA and 
CCRS groups) [28]. The sampling scheme within each ESU is 
quite variable, generally based on a fixed pattern for the smallest 
extents (Fig. 3, class A), or on transects with TRAC (Fig. 3, class 
B), and a more or less random sampling for the largest extents, 
corresponding to patches of vegetation (Fig. 3, class C). The 
number of individual measurements largely depends on the ex
tent of the ESU, and the height of the canopy. The minimum 
number is 5 (Bigfoot) and a maximum of 100 (University of Al
berta), for small canopies. 

Validation studies also need to define the distribution of the 
ESUs over the whole site. The ESUs are either based on the 
availability of a land cover map [18], on the use of a recent high 
spatial resolution image [38], or using an adaptative approach 
[74]. ESU placement is a compromise between spacing as close 
as possible for efficiency and yet far enough apart to avoid spa
tial autocorrelation or neighbor heterogeneity [38], [74]. The 
number depends on the extent of the site, its variability and the 
extent of the ESUs themselves. 

C. Deriving LA! Maps From Field Data and 
High-Resolution Imagery 

Once the field data have been collected and converted to green 
LAI values, the next step is to associate the measurements with 
the spectral values from high-resolution imagery. Establishing 
the relationship between the field-based LAI estimates and im
agery is known as up-scaling. Methodology for up-scaling has 
evolved over the last five years and is now starting to stabi
lize. The up-scaling process is mainly based on the calibration 
of empirical transfer functions that establish a relationship be
tween the average LAI values from each ESU and the multi
spectral values from a satellite or airborne image. Selection of 
the optimal transfer function is site-specific [75]. A summary 
of the groups' transfer functions and references are listed in 

on linear regressions with vegetation indexes [28], or multiple 
linear regression with top-of-the-atmosphere or top-oC-canopy 
reflectances when available [74]. Recent work on regression 
error models for transfer functions [76], [77J may help quantify 
the uncertainty in the LAI maps derived this way and the impli
cations of comparing the high-resolution and moderate-resolu
tion LAI surfaces. 
. Because of the empirical nature of the transfer functions used, 

atmospheric correclions are not mandatory if it is safe to assume 
the atmosphere characteristics are constant over the sile. Atmo

spheric correction could be applied [78] if aerosol properties 
are available (such as those collected through AERONET; [79]). 
Where not available, atmospheric correction can still be accom
plished based on empirical methods [80], [811. Atmospheric 
correction allows intersite comparison of radiance or reflectance 
values and thus, intersite comparison of the transfer functions. 

The most common high-resolution satellite sensors used here 
are the Enhanced Thematic Mapper plus (ETM+) on Landsat-7 
[82], Thematic Mapper (TM) on Landsat-5 [83], SPOT High 
Resolution Visible InfraRed (HRVIR) on SPOT 4, and SPOT 
High Resolution Geometric (HRG) on SPOT 5 [84]. All groups 
used data from one of these sensors. Penn State plans to uti
lize the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) sensor [85], [86]. BU, VALERI, and Big
Foot also expect to utilize ASTER in future analyses. The high
resolution LAI maps derived from these sensors range from 15
to 30-m resolution, which is relatively consistent with the extent 
of the ESUs. The University of Alberta and EPA groups are uti
lizing ETM+ data as well as higher resolution (~ 1 m) imagery 
available from the IKONOS (Space Imaging, Thornton, CO) or 
Quickbird (DigitaIGlobe, Longmont, CO) sensors. 

D. Aggregation of High-Resolution LA! Maps to Match 
Moderate-Resolution Product 

The comparison between the ground-based LAI maps with 
moderate-resolution products requires a consistent statistical 
support area. This apparently simple problem is quite complex 
if all the uncertainties and effects associated with the satellite 
products are accounted for. The following processing steps 
must be addressed prior to any comparisons. 

Step I) Project the satellite product and the LAI high-resolution map in 
the same coordinate system. It is preferable to maintain the projection 

system of the satellite product being validated as the reference projec

tion. Spatial errors due to resampling imagery are relative to the image 

pixel size. Errors are reduced by reprojecting the high spatial resolution 

imagery to match the moderate-resolution product. 

Step 2) Coregister the high spatial resolution LAI map to the mod

erate-resolution satellite product to reduce possible geometric errors. 

This can be achieved through correlation techniques. However, this 

generally requires images larger than the site extent to be able to ex
ploit particular heterogeneities in the image as ground control points, 

Step 3) Aggregation of the LAI map according to the apparent point 

spread function (PSF) of the satellite product. Satellite images are pro
duced through of a series of processing steps, including resampling and 

temporal compositing. Each additional step makes it more difficult to 
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track how the sensor PSF relates to the ultimate product "effective" 

PSF. 

Steps I) and 2) are fairly straightforward; however Step 3) is 
currently poorly addressed and is one of the reasons why it is 
generally difficult to validate moderate-resolution satellite prod
ucts at their original resolution. This step would require a de
tailed knowledge of the sensor geometric characteristics as well 
as careful tracking of the processing to fully understand the 
spatially weighted ground area influencing a given pixel in the 
moderate-resolution imagery. More research in this area seems 
warranted. 

E. Global Validation From the Network ofSites Available 

Global validation is the final stage of this exercise and corre
sponds to the comparison between the aggregated high-resolu
tion LAI map and the corresponding satellite product, achieved 
over an area as large as possible containing an ensemble of sites. 
The sites should represent the variability and range of LAI and 
canopy types as observed over the Earth's surface. The sites cov
ered by the groups represented in the paper are listed in [52] and 
shown in Fig. 1. These sites were selected based on individual 
group motivation rather than a global statistical sampling de
sign. However, [87] describes methods for evaluating the dis
tribution of LAI validation sites with respect to the global dis
tribution of biomes and indicates that the current set of CEOS 
LAI intercomparison sites need to be more proportionally rep
resentative of global land cover. A synthesis of field-observed 
LAI values, going back to 1981, are given in [88], which high
lights the fact that many more field LAI measurements are avail
able. More abundant data sources and groups could be incorpo
rated in future efforts if they have the resources required to scale 
up measurements for comparison with the moderate-resolution 
products. 

Now we present results of comparisons of high-resolution 
LAI maps with the global or regional moderate-resolution LAI 
products provided by some of the teams. The global moderate
resolution products being validated by the various groups are 
summarized in Table I 

The BigFoot project compared their high-resolution LAI 
maps to the MODIS LAI product and considered both algo
rithm pathways [19] as well as the mean value 'across algorithm 
pathways. BigFoot found the LAI Collection 4 product to agree 
better with their high-resolution LAI maps than the earlier 
Collection 3 product. However, quality varied by algorithm 
pathway and cover/biome type. For low LAI, the estimates 
agreed fairly well, but higher MODIS and field-derived values 
were only weakly correlated. Seasonality in evergreen needle
leaf forests appears exaggerated in the MODIS product and 
there are significant differences in LAI depending upon the 
algorithm pathway utilized. BigFoot found a large percentage 
of the MODIS LAI estimates were not from the main radiative 
transfer (RT) pathway [38] but were instead from the vegeta
tion-index-based backup algorithm, 

Boston University has validated the MODIS LAI product 
over six vegetation types, or biomes, and results have been 
reported in eight peer-reviewed publications [53]. MODIS 
LAl validation activities helped to identify anomalies in the 

Collection 3 product. Analysis of the Collection 3 MODIS 
LAI showed that the anomalies were due to three factors: I) a 
mismatch between simulated and MODIS surface reflectances; 
2) misclassification within the MODIS land cover product, 
which is an input to the LAI algorithm; and 3) limited precision 
of input MODIS surface reflectances [53]. Optimization of 
woody vegetation retrievals is an ongoing activity and will be 
implemented for Collection 5 processing which is to begin 
in 2006. Prototypes of Collection 5 LAI products in North 
America show an increase of about 20% to 30% in main RT 
algorithm retrieval rate and better agreement with field mea
surements over broadleaf forests [89]. Surface reflectances are 
highly contaminated by clouds and snow during the wintertime, 
which significantly limits the retrieval rate of the main RT 
algorithm and causes anomalous seasonality over needleleaf 
forests (similar effects are also seen in other MODIS land prod
ucts; for example, NDVI and the enhanced vegetation index), 
Results from BU suggest that users should select LAI derived 
via the main RT algorithm and not the backup algorithm for 
application studies including validation. 

CCRS [28] compared their Canada-wide LAI products de
rived from SPOT-VEGETATION (VGT) to Landsat-based LAI 
maps over eight scenes where in situ data were acquired, It was 
found that, in general, LAI estimates at 3 km-resolution agreed 
within one LAI unit (or 25% for LAI over 4), although some 
large outliers were found in areas with complex terrain and 
wetlands. Complex terrain corresponds to regions where both 
fine- and coarse-resolution reflectance estimates are difficult to 
correct for terrain-related bidirectional reftectance distribution 
function (BRDF). Wetland regions can induce differences in the 
infrared simple ratio (defined as the ratio of shortwave infrared 
to near-infrared bands [28]) between the dates of the fine- and 
coarse-resolution measurements. CCRS also recently compared 
the global POLDER (from June 1997) and MODIS Version 4 
products with the CCRS regional SPOT VGT LAI maps over 
four forest sites [40]. They found that only the CCRS maps 
were typically within 25% of the up-scaled in situ maps. The 
MODIS LAI maps, in contrast, overestimated broadleaf and 
mixed-wood LAI by over 100% and were very weakly corre
lated with up-scaled reference LAI maps (correlation coeffi
cients less than 0.25 for all sites evaluated). 

The VALERI group has validated the products developed for 
MERIS and MODIS over the six sites sampled in 2000 (Fig. 4). 
Additionally, the climatological LAI values proposed by the 
ECOCLIMAP physiographic database [90] are also displayed. 
The comparison is achieved over a 3 x 3 km support area. The 
six sites show a range of ground-measured LAI values between 
almost 0.0 (Turco) up to 3.1 (Concepcion). We note that there 
is a large scattering of values between products and with re
gard to the ground-derived LAI values for two evergreen needle
leaf forest sites with the largest LAI values: Hirsikangas and 
Concepcion. 

Initial work at the University of Alberta focused on multitem
poral MODIS LAI for the area defined by the Chamela/Cuix
mala Biological Reserve, where a total of 29 field plots 
(60 x 60 m) are currently monitored (Fig. 5). Immediately 
apparent were wide fluctuations in LAI values, even between 
consecutive dates within the same season. Because these wide 
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Concepcion (Co), and Hirsikangas (Hi).
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Fig. 5. Three-year time series for MODIS-LAI data derived for Chame/a, 
Mexico. Inconsistencies observed in the wet periods can be attributed to cloud 
contamination and two algorithm pathways [19] of the MODIS LAI product. 

fluctuations are unlikely, the observed drops in LAI values 
were attributed to changes in atmospheric conditions, The main 
algorithm likely failed in these cases due to cloud cover, thus 
triggering the VI-based backup algorithm. The same cloud 
cover that caused the main algorithm to fail would lead to 
low VI values; consequently, relatively low LAI values are 
output for these dates. Recent validation tests have reported a 
tendency for the main algorithm to fail more often in tropical 
locations due to relatively higher cloud cover over these areas, 
similar results were found in [12]. Future work by University 
of Alberta will compare MODIS time series for specific dates 
for which there are field-based LAI reference maps. Also, since 
tropical dry forests have been prone to misclassification in the 
past due to spectral similarities with pasture during the dry 

season [91], future work will investigate the accuracy of the 
MODIS biome map used as input into the LAI algorithm [53]. 
Currently, results from Finland are limited to the Ruokolahti 
and Hirsikangas sites', where the analysis was performed in 
cooperation with the BU team [6M and the VALERI group, 
respectively. 

To synthesize these separate validation exercises, a 
data-sharing policy is required and organization of such a 
global data exchange was proposed at the CEOS LPV work
shop [32]. The Oak Ridge National Laboratory's (ORNL) 
Distributed Active Archive Center for Biogeochemical Dy
namics (DAAC) [92] will be utilized for data sharing, The 
ORNL DAAC will archive data, assist in the creation of mela
data, and provide users with search tools to access registered 
data [93]. The groups agreed to share field measured LAI values 
as well as the resulting high-resolution LAI maps and details 
of the methods for their derivation. At the time of writing, field 
data and high-resolution maps from the BigFoot, BU, CCRS, 
VALERI, Finland, and Italy work had been submitted to ORNL 
DAAC, and other groups were in the process of making their 
data available, e.g., [94]. Table II provides a listing of the con
sensus metadata required for the LAI global validation activity. 

III. CONCLUSION 

The success of this global LAI validation effort is highly de
pendent upon the consistency the methods used to derive the 
high spatial resolution LAI maps. This paper synthesizes the ap
proaches used by nine groups and sets the stage for future work 
on the synthesis of results and accuracy statements for global 
LAI products. 

The descriptions of field validation procedures presented 
here, together with the data-sharing arrangements agreed to 
by the participants, provides the foundation for the global 
validation of medium-resolution satellite LAI products that will 
be addressed through future work organized under the CEOS 
LAI intercomparison activity. 
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TABLE II
 
METADATA REQUIREMENTS FOR LA! INTERCOMPARISON ACTIVITY
 

Required metadatafor optical LA/jield measurements: 
-Latitude and Longitude of measurmenl 
-Height of instrument during measurements 
-lnstrument(s) used (make, model) 
-Instrument configuration (masks, rings, etc.) 
-S ign ificanec of tcrmin/s lopc and if thcrc has bcen any accou nting for such 
-Description of understory (including moss) component and if/how it been included in the LAI calculation 
-Species (Ieaf~types, broadlcaf or needle-leaf) 
-Phenological state of vegetation 
-Sky conditions 
-Stem area considerations (i.e. note any adjustments for LAI vs PAl) 
-Time of day (specify whether local or GMT time reported) 
-Sampling strategy 
-Post-processing of data 
-Software used 
-Operator ID (in case there are consistent hiases hy operator) 

Required metadatafol' tlte high-resolution LA/ suiface maps: 
-Full description of the high-resolution data used as input for the map (including sensor, acquisition time, 
solar and viewing geometry, and pre-processing step) 
-Full description of geo-referencing information for the LA! surface 
-Full description of, or reference for, any of the ground measurements used 
-Significance of terrain/slope and if there has been any accounting for such 
-Species (leaf-types) 
-Description of understory (including moss) component and if/how it been included in the LA! calculation 
-Description of transfer function connecting the map to the field data 

Metadata requiredfor destructive LA! measurements: 
Due to the diverse approaches for destructive/allometric LAI estimation, there are no specific metadata 
requirements, but we request that the data providers thoroughly detail their sampling and measurement 
techniques so to allow full rerlication/understanding of the methods. 
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