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Abstract-Ecological and climate models require high-quality 
consistent biophysical parameters as inputs and validation 
sources. NASA's Moderate Resolution Imaging Spectroradiometer 
(MODIS) biophysical products provide such data and have been 
used to improve our understanding of climate and ecosystem 
changes, However, the MODIS time series contains occasional 
lower quality data, gaps from persistent clouds, cloud contami
nation, and other gaps. Many modeling efforts, such as those used 
in the North American Carbon Program, that use MODIS data 
as inputs require gap-free data. This letter presents the algorithm 
used within the MODIS production facility to produce tempo
rally smoothed and spatially continuous biophysical data for such 
modeling applications. We demonstrate the algorithm with an 
example from the MODIS-Ieaf-area-index (LAI) product. Results 
show that the smoothed LAI agrees with high-quality MODIS 
LAI very well. Higher R-squares and better linear relationships 
have been observed when high-quality retrieval in each individual 
tile reaches 40% or more. These smoothed products show similar 
data quality to MODIS high-quality data and, therefore, can be 
substituted for low-quality retrievals or data gaps. 

Index Terms-Biophysical parameters, gap filling, Moderate 
Resolution Imaging Spectroradiometer (MODIS) land products, 
remote sensing, time-series data analysis. 

1. INTRODUCTION 

T HE MODERATE Resolution Imaging Spectroradiometer 
(MODIS) is a key instrument aboard NASA's Terra and 

Aqua satellites, Terra MODIS and Aqua MODIS image the 
entire Earth's surface everyone to two days and provide vital 
information for global-change research, MODIS land products, 
such as leaf area index (LAI) and fraction of photosynthetically 
active radiation, are critical inputs to parameterize or validate 
climate and ecosystem process models [1], 

The MODIS-LAI product has been validated with indepen
dcnt ficld mcasurements [2] but, generally, under clcar-sky con
ditions (see the MODIS-land-validation Web site http://landval. 
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gsfc,nasa,gov). However, cloud contamination, persistent 
clouds, and other suboptimal atmospheric or illumination con
ditions can reduce data quality and cause missing data in 
MODIS mulliday land products, Although the MODIS-LAJ 
product will produce results even under cloudy or suboptimal 
condition, care is taken to use the MODIS quality-assessment 
(QA) data layers to nag these values as lower or poor quality 
[1], However, this is not acceptable for those ecosystem or 
climate models requiring realistic, high-quality, temporally, and 
spatially continuous measurements, such as the models being 
used in the North American Carbon Program (NACP), 

This letter describes a procedure [or producing temporally 
smoothed and spatially complete MODIS data sets, The pro
cedure contains two algorithm stages, one for smoothing and 
one for gap filling, which attempt to maximize the use of high
quality data to replace missing or poor-quality observations, 
The algorithm uses an augmented version of the TIMESAT 
software [3], [4] for interpolation. 

We start by describing the algorithm and then by presenting 
the results for the MODIS-LAI product, followed by the sum
mary conclusions and a brief discussion of future plans, 

II, ALGORITHM DEVELOPMENT 

The TIMESAT program was developed by Jonsson and 
Eklundh [3], [4] for analyzing time-series satellite-sensor data. 
This program provides the following three different smoothing 
functions to fit the time-serics data: asymmetric Gaussian (AG); 
double logistic (DL); and adaptive Savitzky-Golay (SG) filter
ing, The adaptive SG-filtering approach uses local polynomial 
functions in fitting, It can capture subtle and rapid changes in 
the time series but is also sensitive to noise, Both AG and DL 
approaches use semi local methods. They are less sensitive to 
the noise and can give a better description on the beginnings 
and endings of the seasons [4], TIMESAT has been used suc
cessfully to analyze the vegetation index (VI) from time-series 
Advanced Very High Resolution Radiometer (AVHRR) data 
[4]. Zhang et at. [5] developed a fitting approach independently 
using a similar DL function and applied it to the MODIS time
series data successfully. Beck et at. [6] examined both the DL
and AG-function approaches and found that the use of either a 
DL function or an AG function is appropriate for describing 
vegetation dynamics at high latitudes, They also found that 
the DL functions describe the normalized difference vegetation 
index (NDVI) data better than both the Fourier series and the 
AG functions, as quantified by the root-mean-square errors [6], 
We tested both the AG and DL approaches in the TIMESAT 
program and found that they produced similar results, with 
the exception that the AG approach is less sensitive to the 

1545-598X/$25.00 © 2007 IEEE 

mailto:fgao@ltpmail.gsfc


61 GAO rr nl.: ALGORITHM TO PRODUCE TEMPORALLY AND SPATIALLY CONTINUOUS MODIS-LAI TIME SERIES 

IIMESAT SMOOTI-IING requires that there is no missing time period longer than 0.2 
Savo Original years and that there are less than 25% missing values over the ,~C:>~~_La"d.~?_'!.~':~ J /' (case 2) 
High Quality en tire ti me series (three years). "'{oata 9.LJall~!'.I'" ~~~~ TIM~~~~ /Succeed? No~ DatA for Gap
Filling Process Case l-Succe.\'.~ful TlMESAT Fit: After applying the:T~~e.[ri,:~p~".,~8_J=_ __ Yes cAse 1) TIMESAT filling with thc initial wcights, wc adjusllhc weights 

_ " __ Calculate dlstonce 
belween ftl Hnd orIginal ---- 
date;-~~D~s-: -;~:'l--i~~:i::~-::;:~;:(,~":~-:I- -: [~cond TI~~!--"Bi 

J 
: (MOD12~1n) ovorJ'- ~~~~ed~~~'r~~t~ Tlle··t··-········· II 

I I 

i:~,~~~~:~~~=~~~~:~~~~::] -~: ~g-r:S:i:n-~--:1 
from typical curve for the '
 

: ~;urv,o given land cover and tile. t~~1 gaps__._ I
 
./ aVAilable No I
 ~ 
I "-. from adjacent ' - - - - - :::.:..-:.::.:...:...
 
: ixel Regress'high quality data : MODIS Smoothed
 
I against higtl quality data I and
 

I '. Yes • from adjacenl pixel : ,.9.~..:.!'.~Prod~.".!.I (,AP FILLING. _ 

Fig, I. Flow diagram of the llMESAT tCI1l(loral-Jiliing and gap-filling 
(dashed box) procedure. 

Case 1 
typical situation: 
enough 11igll quality 
data to adequately til 
curve to IIle retrievals 

Case 2 
degenerate situation: 
not enougil higil 
quality pixels to 
adequateiy fit curve to 
tile retrievals 

time 

(n) 

Fig. 2. Examples of the original time-series (crosses) and high-quality values 
(circled crosses) and the temporal-curve fitting (line). 

incomplete time-series data with many data gaps in our 
experiments. We used the AG approach in this letter. 

The flow diagram for the augmented TIMESAT procedure 
is given in Fig. 1. We start with a given continuous MODIS 
land-product time series and its associated QA-information 
time series. TIMESAT provides a weighting mechanism such 
that some values in the time series can be more influential 
than others. The initial work with the TIMESAT calculated 
the weights for AVHRR-NDVI values by considering cloud 
screening [4] using the thresholds of the AVHRR reflectance 
and thermal channels [7]. For our algorithm, the initial weights 
are based entirely on the MODIS QA layers associated with 
a given MODIS product. We assign high weights for higher 
quality retrievals and low weights for lower quality retrievals. 

After the initial fit from TIMESAT, the algorithm takes one 
of the two branches based on the quality of the fit (represented 
by the "Succeed?" diamond in Fig. 1). The majority of the 
pixels follow the first branch [Fig. 2(a)] where there are enough 
high-quality observations to allow TIMESAT to fit a curve 
to the time series. The second branch is followed if there are 
too many gaps or low-quality data [Fig. 2(b)]. In this case, 
TIMES AT fails to fit a curve to the time series; therefore, we 
apply a gap-filling strategy. A successful run of TIMESAT 

based on the filled results from the first itcration for a second 
pass through the TIMES AT filling. The reviscd data weights 
for the second run through the TIMES AT are based on the 
scaled dilTcrcnce between the original data and the filled value. 
Specifically, the ncw weights are 

if dy S 0 (MODIS value is below TIMESAT curve) (I) 

w' = 111 (1 + ~) ,
Sa 

if dy > 0 (MODIS value is above TIMESAT curve) (2) 

where dy is the difference between the original MODIS value 
'lnd the TIMESAT-filted values, a is the standard deviation of 
{dyd (standard deviation of residuals from the first filling, 
where i represents all high-quality data), and S is a constant 
parameter for the weight adjustment. 

This process is similar to the upper envelope weighting 
scheme in the TIMESAT software [3], which forces the curve 
to fit upper values more closely. Thc uppcr envelope option has 
been tested for VI and is very effective because high parameter 
values normally represent clear-sky conditions or better view
ing or illumination geometry [3]. Similar to VI, higher LAI 
values normally represent retrievals under clear-sky conditions 
since cloud contamination tends to reduce re(]eetance in near
infrared band and to increase in red band and thus leads to lower 
LAI retrievals. Because cloud contamination tends to reduce the 
value of vegetation-related parameters, the weight is decreased 
if a TIMESAT-fitted value is larger than the retrieved parameter 
and vice versa. This enables the TIMESAT fit to more closely 
follow the upper envelope of the retrieved parameter values. 
Note that only the weights for the MODIS high-quality data 
are adjusted in our processing. The weights for the low-quality 
data remain the same. We did not use the existing upper enve
lope option in the TIMESAT software since we need a better 
control on the initial weights passed from the MODIS data
quality flags. 

Case 2-TIMESAT Failure to Fit and Gap-Filling Algorithm: 
The TIMESAT program can only produce fitted values if there 
are enough high-quality data in the time series. No result will 
be produced if there are too many missing values because the 
fitting function becomes unreliable if it is forced to do so. In 
addition, some fits may be unrealistic (e.g., out of the data 
range) due to noise or limitations of the fitting function. In these 
cases, instead of trying to fit a curve to the smaller number of 
high-quality data points, we use a separate gap-filling process. 

Our gap-filling algorithm is represented within the dashed 
line in Fig. 1. The algorithm uses two major steps. First, it 
searches an appropriate seasonal-variation curve for the gap. 
Second, it adjusts the seasonal-variation curve to the sparsely 
available high-quality observations of the gap. 

For the first step, we developed two strategies for establishing 
an appropriate seasonal-variation curve. In the first strategy, 
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the algorithm searches for the pixels with the same land-cover 
type (from MOD 12Q) within a small window around the pixel. 
Within these nearby pixels, the algorithm checks if there are any 
"case I," the successful TIMESAT temporal curves. If more 
than one "case I" pixel is found, we choose the one with the 
highest quality from all candidates. We start with a small search 
window (II x 11 MODIS l-km pixels). If such a pixel is not 
available either due to too many gaps or to no matching land
cover type, the program automatically increases the search
window size. We set the number of pixels on the next new 
search to be equal to the number of pixels on the previous test. If 
a seasonal-variation curve cannot be located within the defined 
maximum search distance (] 20 x 120 MODIS l-km pixels 
or about] 0), then the second strategy is used for this pixel. 
In the second strategy, the algorithm averages all high-quality 
seasonal-variation curves for each land-cover type within a tile 
and builds a tile-level seasonal-variation pattern for each land
cover type. The tile-level seasonal variation of the same land
cover type is then used for this pixel. This process ensures that 
an appropriate TIMESAT seasonal curve can always be located, 
whether it is from a nearby pixel or from the tile-level seasonal 
curve. We refer to this chosen seasonal curve as the "ancillary 
seasonal curve." 

Once the ancillary seasonal curve fn(t, c) is found, a re
gression transform function r(x) is computed such that the 
temporal-variation curve of the gap pixel can be computed 
using rUn (t, c)). The parameters of this transform function are 
determined strictly by the high-quality data pairs between the 
case-2 pixel with gaps and the ancillary seasonal curves using 
least square approach with cost function 

(3) 

where subscript n represents the neighbor pixel, subscript 9 
represents the current gap pixel, t; represents the ith production 
date, c represents the land-cover type, E is the error between 
the gap and curve values, Mq(t;, c) represents all the available 
high-quality MODIS data of the gap pixel, and fn(t i , c) is 
the TIMESAT seasonal-variation curve from the neighbor pixel 
(strategy 1) or tile-level average (strategy 2). We use the second
order polynomial function for the computation, i.e., r(x) = 
ax2 + bx + c. The seasonal-variation curve fg(t, c) of the gap 
pixel is computed using 

(4) 

The algorithm allows Ilexibility in the time window used 
to compute the transfer function. In the extreme, the function 
can bc fit with all thc high-quality data pairs from thc cntirc 
time series being considered. Alternatively, the algorithm can 
use a local window of high-quality data pairs within a subset 
period, centered on the date of the gap being filled. There is a 
tradeoff between having enough observations to fit the transfer 
function versus a small enough window to capture interannual 
data variations. In this letter, we used a one-year period as the 
local moving time window in a way that a gap pixel at each 
production date is computed from the two half-year periods 
before and after. 

III. IN1TIAL RESULTS 

The algorithm is now discussed with an example using 
collection 4 (C4) MODIS-eight-day-LAI products from 2001 to 
2005 as inputs to produce smoothed and gap-filled MODIS-LA! 
data for North America from 2001 to 2005. The final output 
includes three LAI layers and three QA layers. The three LAI 
layers include the original MODIS LAI, the smoothed and gap
fillcd LAI, and thc composcd LA!. The composed LAI uses 
high-quality LAI from the original MODIS product but replaces 
low-quality retrievals with smoothed and gap-filled LAI. Each 
layer has a corresponding QA layer. 

The approach that we discussed previously is applicable to 
most tiles in North America. However, some high-latitude tiles 
need special attention because of too many missing values 
caused by extreme solar geometries during winter. For these 
tiles, we use the minimum snow-free LAI from all production 
periods to replace the missing or snow-covered values with 
initial weights the same as low-quality retrievals (0.25). Issues 
with snow cover warrant similar considerations for other appli
cations or MODIS products. 

Each LA! value is first weighted according to the quality 
flags embedded in the MODIS product. A summary of qual
ity analysis and validation activities of the collection 3 (C3) 
MODIS-LAI product by Yang et al. [8] indicates an overestima
tion of LAI for all six biomes by about 12% (RMSE = 0.66). 
MODIS LAI retrieved from the radiative-transfer model (main 
algorithm) with the best quality can reach an accuracy of 0.3 
LAI for cropland [8], [9] and 0.5 LAI for needleleaf forest [8], 
[10]. This overestimation of LAI has been addressed in C4 and 
was further refined in collection 5 (C5) processing [11 J, [12]. 
Generally, the quality-control flags embedded in the MODIS
LAI product reflect the retrieval quality rcasonably well. 

For MODIS-eight-day-LAI product (MOD15A2), the initial 
weights are assigned as follows. 

1) w = 1.0 for LAI retrievals from the radiative-transfer 
model (high quality) or for LAI retrieval that reaches 
saturation. 

2) w = 0.25 for retrievals from an empirical model. 
3) w = 0.0 for all invalid and fill values. 

Saturated LAI values are assigned high weights since those 
values are normally retrieved under elear-sky condition and 
reach the limits of optical remote sensing. They represent high
quality values in our current approach. 

Recall that, in our second iteration with the TIMESAT, only 
weights for high-quality data are adjusted in our processing. 
Weights for low-quality data remain the same. We use S = 2.0 
as our weighting-adjustment constant value. This means that, 
for the weights listed here, according to (l), there should be 
at least six standard-deviation differences between the original 
and the fittcd values for a high-quality LAI retricval (w = 
1.0) reduced to the same weight as a low-quality retrieval 
(w = 0.25). We constrain the adjusted weight in the range of 
0.25-4.0, which ensures that the MODIS high-quality retrievals 
still get higher weights than the low-quality retrievals even if 
they are below the TIMESAT curve from the first itcration. 

Fig. 3 shows an example of the fi ttings from the DL-function 
and SG-filtering approaches and the two iterations of fitting 
LAI time-series data using the AG functions. We used all the 
available LAI data from 2001 to 2005. This site (86.7102" W, 
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35.1625° N) shows a very good seasonal cycle of a typical 
dcciduous broadlcaf forcst. In the figure, the short-dashed Iinc 
and the long-dashed line represent results from the DL-function 
and SG-filtering approaches, respectively. The SG-filtering ap
proach is sensitive to the noisy data in the summer season. The 
thin solid line represents the results from the first TIMESAT 
AG lit using weights based on the LAI quality flags. In this 
iteration, the high LAI values are underestimated even though 
the total fitting error is minimized particularly in the summer 
of 2002 and 2003 (same for the DL approach). The weights on 
the high-quality data are then adjusted based on the difference 
between the first fit and the original values. After the second 
iteration (AG-AG) using the revised weights, the fit results 
(thick solid line) capture high LAI values better. It also shows a 
more consistent five-year seasonal variation. The weights of the 
noisy data in the summer of 2002 and 2003 have been reduced 
and bring the fitted curve closer to the upper values, 

As discussed in the MODIS-LAI-validation references [8]
[13], it is preferred that MODIS-LAI validation be performed 
at the patch scale. The same land-cover type within a patch 
size shows similar patterns of seasonal variation. Therefore, as 
discussed in Section II, it is reasonable to use the seasonal
variation pattern from a neighboring pixel with same MODIS 
biome type as an a priori information for a case-2 gap pixel. 
With this extra a priori information available, we scale the 
seasonal-variation curve to match the sparsely available high
quality LAI values. Moody et al. [14] used a similar approach to 
fill MODIS-albedo missing values from historical high-quality 
albedo data and temporal curves from neighbor pixels and 
produced a value-added MODIS-albedo data set successfully. 

Fig. 4 shows a particularly challenging time series that was 
well characterized by our algorithm. The seasonal curve (solid 
line) is from a case-2 pixel (88.8395° W, 46.1125° N) fit using 
the seasonal-variation curve of a neighbor pixel with the same 
land-cover type (deciduous broadleaf forest, short-dashed line) 
and selected high-quality MODIS-LAI data (solid circles). In 
this example, our gap-filling approach captured the seasonal 
trend and fit to both high-quality (circled crosses) and low
quality (crosses only) MODIS retrievals well even though we 
only selected five high-quality data in the test. 

Since MODIS high-quality LAI retrievals have been assessed 
and validated (as validated stage 1) via field measurements, 
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Fig. 5. Linear relationships of high-quality MODIS retrievals and smoothed 
LA! show a good agreement in the scatter plots (a) of slope and intercept anc! 
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based on one tile from one-year data. Note that the inlercept is in LAI units. 

we can validate the smoothed LAI data indirectly by compar
ing smoothed LAI to the high-quality MODIS-LAI product. 
Fig. 5(a) shows the scatter plOl of the intercepts and slopes 
of the smoothed LAI and the MODIS high-quality LAI based 
on each tile. In the figure, each point represents the result of a 
tile from the high-quality MODIS retrievals and the smoothed 
LAI based on one year of LAI data. The point (intercept = 0, 
slope = 1.0) means a perfect match. This figure shows, gener
ally, a good agreement between the MODIS high-quality LAI 
data and the smoothed LAI data, particularly for those tiles with 
higher R2 (> 0.9, filled circles in figure). The R 2 plot based on 
the percentage of high-quality retrievals [Fig. 5(b)] reveals that 
a better agreement can be achieved if a high percentage of high
quality retrievals is available. The R-squares are all above 0.8 
and reach as high as 0.9 when high-quality retrievals are 40% or 
more temporally and spatially within a tile in the fitting and gap
filling production period. There are about 50% tiles in the North 
America, which have 40% or more high-quality measurement. 

Fig. 6(a) shows a scatter plot of the smoothed LAI versus 
all the high-quality MODIS LAI for North America tiles from 
the beginning of the four seasons (eight-day production periods 
starting from January I, 2004, April 6, 2004, July II, 2004, 
and October 15, 2004). The smoothed LAI has a very high 
correlation with the high-quality MODIS-LAI data with R2 = 
0.826, and the points fall close tathe l-to-lline (slope = 0.998, 
intercept = -0.206). We also did a cross comparison by taking 
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out 10% of the MODIS high-quality values randomly from 
TIMESAT processing and then by comparing the smoothed 
results to the excluded high-quality data. Fig. 6(b) shows a 
scatter plot of the smoothed LAI versus the excluded high
quality data from the different seasons. The smoothed LAI 
shows slightly reduced but still a very high correlation with 
these excluded high-quality data (slope = 0.966, intercept = 
0.230, R 2 = 0.787). Since high-quality MODIS-LAI data in 
C4 have been validated and show good agreement with field 
measurements, Figs. 5 and 6 show that, in most cases, the 
smoothed and gap-filled LAIs have an accuracy similar to 
the original high-quality retrievals from the radiative-transfer 
approach. This also means that it is reasonable for the smoothed 
LAI to be substituted for low-quality retrievals or data gaps. 

IV. CONCLUSION AND DISCUSSION 

MODIS land products provide high-quality-data sources for 
climate, weather forecast, and ecological models. However, 
these products need to be further processed to remove data gaps 
and low-quality data caused by cloud contamination or algo
rithm limitations before they can be used in models directly. 
To archive this goal for the NACP, we developed an algorithm 
using the TIMESAT software to smooth and to gap-fill MODIS
LAI time-series data. For our example, comparisons between 
the MODIS high-quality LAI data and the smooth LAI data 
agree very well with an overall R 2 = 0.921 for North America. 
The agreement of individual tiles (regions) depends on the num
ber of high-quality retrievals within that tile. High R-squares 
and better linear relationships are observed when high-quality 
retrievals reach 40% or more. As the smoothed LAI product 
shows similar data quality to the MODIS high-quality LAI, it is 
therefore reasonable to substitute low-quality retrievals or gaps 
in the original MODIS data with the smoothed product. 

Although the smoothed LAI product has a good agreement 
with MODIS high-quality data, they may not, however, agree 
with ground measurements particularly when there were large 
gaps in the time series during critical plant-growing stages 
(such as the short-peak summertime at high-latitude areas). Our 
current smoothing algorithm cannot capture seasonal variations 
if the MODIS data lack enough information. A future possible 
remedy would be to introduce historical data into the smoothing 
algorithm based on the assumption that temporal curves are 
similar year to year. 

Results demonstrated in this letter are based on the MODIS 
C4 processing. As MODIS CS products become available, 

we will reprocess our products using the CS data. Since our 
algorithm places an emphasis on MODIS high-quality data, 
improvements in CS products should improve our smoothed 
products as well. Preliminary CS processing for LAI indicates 
that there will be more high-quality retrievals even at higher 
latitudes. This is encouraging, given the results in Fig. 6, as 
more high-quality retrievals imply that our smoothed values are 
closer to a one-to-one agreement with the high-quality data. 

In this letter, we successfully demonstrated temporal fitting 
and gap filling based on three- and five-year MODIS-LA! data 
over North America. In future production, we will use a three
year moving-window approach to produce a smoothed produCl 
for each of the middle years. We will continue our tests by 
including different ecosystem regions such as tropical and high
latitude regions for global applications and expand the applica
tion of the algorithm to other continuous MODIS land products, 
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