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Summary 

Severe droughts have been associated with regional-scale forest mortality worldwide. 
Climate change is expected to exacerbate regional mortality events; however, pre
diction remains difficult because the physiological mechanisms underlying drought 
survival and mortality are poorly understood. We developed a hydraulically based 
theory considering carbon balance and insect resistance that allowed development 
and examination of hypotheses regarding survival and mortality. Multiple mechanisms 
may cause mortality during drought. Acommon mechanism for plants with isohydric 
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regulation of water status results from avoidance of drought-induced hydraulic 
failure via stomatal closure, resulting in carbon starvation and a cascade of down
stream effects such as reduced resistance to biotic agents. Mortality by hydraulic 
failure per se may occur for isohydric seedlings or trees near their maximum height. 
Although anisohydric plants are relatively drought-tolerant, they are predisposed 
to hydraulic failure because they operate with narrower hydraulic safety margins 
during drought. Elevated temperatures should exacerbate carbon starvation and 

hydraulic failure. Biotic agents may amplify and be amplified by drought-induced 
plant stress. Wet multidecadal climate oscillations may increase plant susceptibility 
to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively 

predisposing plants to water stress. Climate warming and increased frequency of 
extreme events will probably cause increased regional mortality episodes. Isohydric 
and anisohydric water potential regulation may partition species between survival 
and mortality, and, as such, incorporating this hydraulic framework may be effective 
for modeling plant survival and mortality under future climate conditions. 
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I. Introduction 

Rapid and large-scale shifts in ecosystem suucture and function
 
can result from mortality of forest and woodland plants in
 
response to exueme climate events (see Fig. 1; Condi t et al.,
 
1995; Allen & Breshears, 1998; Hanson & Weltzin, 2000;
 
Breshears et al., 2005; Shaw et al., 2005; Berg et aI., 2006;
 
Gitlin et aI., 2006). Such widespread monality events can
 
have long-term impacts on community dynamics and species
 
interactions, and may feed back upon atmospheric CO2 and
 
climate. Although many of the consequences of tree mortality
 
are readily apparent, our current understanding of the causes
 
of tree mortality is surprisingly limited, even though a rich
 
literature exists on plant responses to stress. Essentially, we
 
cannot address questions such as: how severe must a drought
 
be to kill a tree; and during drought, which trees will die and
 

National Monument, New Mexico, USA. (Photograph courtesy ofwhich will survive? Consequently, our current ability to predict 
Craig Allen.) 

when regional-scale plant stress will exceed a threshold that 
results in widespread mortality is lacking, yet is fundamentally 
needed to assess potential climate-change impacts, including 
changes in vegetation and associated ecosystems and their Breshears, 1998; Hanson & Weltzin, 2000; Berg et aI., 2006). 
feedbacks to the climate system (Keane etal., 2001; Burkett Numerous hypotheses to explain mechanisms of survival and 
et aI., 2005; Scholze et al., 2006; IPCC, 2007). mortality have been generated via theoretical, modeling, and 

Here we explore the seemingly simple questions of when experimental analyses. However, a broader framework that 
and why some plants die during drought while others survive. encompasses these different hypotheses is lacking, and most 
This is a long-standing question (Bossel, 1986; Franklin et al., hypotheses remain untested. Here we address these issues 
1987; Waring, 1987; Manion, 1991) relevant to both low by providing an overview of the key hypotheses of drought
rates ofmortality that happen continuously and regional scale related plant mortality; developing and employing a predictive 
'die-off' evenrs that occur less freq uendy. Scientific focus on this hydraulic framework to make testable predictions of the 
question has increased in recent decades as evidence mounts mechanisms ofplant mortality; and discussing the implications 
that climate extremes such as severe drought have rapid, of the framework in the context ofglobal climate change. This 
widespread and long-lasting impacts on the vegetation framework is consistent with prior theories (Bossel, 1986; 
composition of landscapes (Condit et aI., 1995; Allen & Waring, 1987; Manion, 1991; Martinez-Vilalta etal., 2002), 
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Fig. 1 Dead ponderosa pine (Pinus ponderosa) trees in Bandelier 



New 
Phytologist 

100 

RO 

~ 
60 

~
 
~
 
t:: 
0 40~ 

20 

0 

1990 1992 2000 2002 2004 2006 2008 
Year 

Fig. 2 Percentage mortality of pinon (open circles) and juniper 
(closed circles) trees at a 1.5 ha site, Mesita del Buey, near Los 
Alamos, New Mexico. For pinon, 16 of 484 trees survived (97% 
mortality), whereas for juniper, 559 out of 561 trees survived 
« 1% mortality). 

bue provides an integrated perspective that recognizes the 
processes and mechanisms ofsUlvival and mortality as mutually 
inclusive. 

We focus on the pinon-juniper woodlands (Pinus eduli~ 

Juniperus monosperma) of southwestern USA as a model 
system, and examine additional evidence from a broader 
literature review. The pifion-juniper case study is useful because 
these species experienced different rates ofmortality across the 
southwestern USA during the 2000-2002 drought (up to 95 
and 25% mortality for pifton and juniper, respectively; 
Breshears et aI., 2005; Shaw et aI., 2005); pifton and juniper 
represent opposite ends of the spectrum in their hydraulic 
response to drought (Linton et aI., 1998); and sufficient phys
iological data exist for these two species to allow detailed 
examination of the hydraulic framework (Barnes, 1986; 
Lajtha & Barnes, 1991; Cobb et aI., 1997; Linton et aI., 1998; 
Pockman & Sperry, 2000; Williams & Ehleringer, 2000; West 
et al., 2007a,b), including previously unpublished results from 
one particularly intensively studied site - Mesita del Buey in 
northern New Mexico (Barnes, 1986; Lajtha & Barnes, 1991; 
Breshears et aI., 2005; Breshears, 2008). At Mesita del Buey 
approx. 97% of the pifton trees died between 2000 and 2007, 
whereas only 0.4% of the junipers died during this period 
(Fig. 2). Although the pinon-juniper example represents an 
abrupt monality event, the hypotheses we develop here 
should also apply, in theory, to the lower and more continuous 
mortality that occurs in the absence of drought. 

II. Consequences of vegetation mortality 

Drought-induced vegetation monality has implications 
for ecosystem function, land-atmosphere interactions, and 
ecosystem services to humans (Dale et aI., 2000; NRC, 2007). 

Timsley review Review 721 

Overstory mortality reduces photosynthetic uptake, potentially 
causing ecosystems to become a source of CO2 to the 
atmosphere for some time period (KutZ & Apps, 1999; Law 
et al., 2001; Breshears & Allen, 2002; Clark, 2004; Dore et al., 

in press). Understory vegetation may respond with increased 
growth (Stone & Wolfe, 1996; Rich et al., 2008), potentially 
altering successional pathways with feedbacks to surface 
hydrology and productivity. Reductions in total leaf area 
impact solar radiation input to the soil surface and subsequent 
soil processes such as nutrient cycling (Classen et al., 2005; 

Hughes et aI., 2006), mycorrhizal activity (Swaty et al., 2004), 

and erosion (Davenport et aI., 1998; Wilcox et aI., 2003). 

Transpiration (Bosch & Hewlerr, 1982; Simonin et aI., 2007) 

and soil evaporation rates (Breshears et al., 1998) are both 
altered, although the consequences of these changes on 
subsurface hydrology remain untested (Newman et al., 2006). 

Vegetation monality changes albedo and land-atmosphere 
exchanges of energy and latent heat at regional scales, and is 
thus likely to feedback on regional climate (Narisma et aI., 

2003; Dirmeyer et aI., 2006). Widespread tree mortality 
can dramatically alter the availabiliry of products of value 
to wildlife and humans, such as commodity production, 
biodiversity, aesthetics, and real estate values. Although 
climate change may cause migration of species on a decadal 
ro millennial timescale, widespread monality events have 
the capacity to radically transform regional scale landscapes 
on a subdecadal timescale with significant implications for 
ecosystem structure and function. 

III. Global patterns of mortality 

Climate-related vegetation mortality has been observed on all 
six vegetated continents and all biomes and plant functional 
types (Auclair, 1993; Allen & Breshears, 2007). In the south 
Pacific, drought has been associated with mortality in Ausrralian 
Eucalyptus (Fensham & Holman, 1999; Rice et al., 2004; 

Jurskis, 2005) and Nothofagus in New Zealand (Wardle & 
Allen, 1983). The EI-Nino Southern Oscillation has been 
associated with drought-associated mortality from the tropical 
moist forests of Borneo (Van Nieewstadt & Sheil, 2005), 
Central America (Clark, 2004) and the Amazon (Williamson 
et aI., 2000; Cox et aI., 2004), ro temperate Nothofagus and 
Austrocedrus forests in Patagonia (Villalba & Veblen, 1998; 
Suarez et aI., 2004) and Terminalia forests in Venezuela 
(Dezzeo et aI., 1997). In the northern hemisphere, drought
associated mortality has been observed from subboreal China 
(Picea meyeri, Liang et aI., 2003) ro tropical regions ofAfrica 
(Sahel species, and Ugandan Uvairopsis: Gonzalez, 2001 and 
Lwanga, 2003, respectively). In the temperate zone ofEurope, 
drought reduced net primary productivity (Ciais et aI., 2005; 

Breda et aI., 2006) and increased forest mortality (Manfnez
Vilalta et al., 2002; Lloret et aI., 2004; Bigler et al., 2006). 

Likewise, regional-scale droughts in North America have 
recently been correlated with insect outbreaks and associated 
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Fig. 3 Theoretical relationship, based on the hydraulic framework, 
between the temporal length of drought (duration), the relative 
decrease in water availability (intensity), and the three hypothesized 
mechanisms underlying mortality. Carbon starvation is hypothesized 
to occur when drought duration is long enough to curtail 
photosynthesis longer than the equivalent storage of carbon reserves 
for maintenance of metabolism. Hydraulic failure is hypothesized to 
occur if drought intensity is sufficient to push a plant past its threshold 
for irreversible desiccation before carbon starvation occurs. Biotic 
agents, such as insects and pathogens, can amplify or be amplified by 
both carbon starvation and hydraulic failure. 

mortality of both deciduous and conifer species (Swetnam & 
Betancourt, 1998; Logan et aI., 2003; Breshears et al., 2005; 
Frey et al., 2004; Mueller et al., 2005; Shaw et al., 2005; 
Allen, 2007, C. Allen & N. Cobb, unpublished). 

Examination of the global literature on vegetation mortality 
frequently points to water limitation being an important 
driver. Species adapted to dry environments tend CO survive 
and grow better during drought than mesic-adapted species 
when grown together in common-garden experiments or 
in natural ecotones (vanSplunder et aI., 1996; Allen & 
Breshears, 1998; volaire et aI., 1998; Sack, 2004; Adams & 
Kolb, 2005; Engelbrecht et aI., 2005). This indicates a role of 
genetic inheritance ofdrought survival traits. At the landscape 
scale, intraspecific mortality is typically highest in more arid 
locations, such as aspects facing the sun, well drained soils, or 
ridgetops (vanSplunder et aI., 1996; Allen & Breshears, 1998; 
Ogle etal., 2000; Caspersen & Kobe, 2001; Slik, 2004; Git
lin et al., 2006). Tree ring and long-term studies commonly 
report that mortality occurs only after exposure to prior 
droughts that initiate a growth decline (Pedersen, 1998; 
Demchik & Sharpe, 2000; Lloret et aI., 2004), or in response 
to a prolonged drought (Swetnam & Betancourt, 1998; 
Breshears et aI., 2005; Guarin & Taylor, 2005; Berg et aI., 
2006; Bigler et aI., 2006). Likewise, most tree ring studies 
have observed that trees predisposed to die have lower mean 
growth rates or greater growth sensitivity to climate in the 

years proceeding mortality (Kolb & McCormick, 1993; 
Pedersen, 1998; Demchik & Sharpe, 2000; Ogle et aI., 
2000; Wyckoff & Clark, 2002; Suarez et aI., 2004, but see 
Jenkins & Pallardy, 1995). Drought-associated tree mortal
ity also appears to be more likely for plants at either end of 
size gradients - seedlings on one side and tall trees on the 
other (Condit et aI., 1995; Jenkins & Pallardy, 1995; Ogle 
etal., 2000; Hanson etal., 2001; Harrison, 2001; Clark, 
2004; Lloret et al., 2004; Rice et aI., 2004; Slik, 2004; 
Mueller et aI., 2005; Nepstad et al., 2007). The tendency 
for conifers to maintain larger margins of safety from 
hydraulic failure than angiosperms may facilitate their survival 
during drought (Piecermann et al., 2006). Below we show 
that many parterns discussed above are consistent with a 
hydraulic basis for mortality. 

IV. Hypotheses on mechanisms of 
drought-related mortality 

Hypotheses regarding the causes ofplant death were formulated 
through theoretical effortS of Manion (1991) and Bossel 
(1986). Briefly, Manion (1991) suggested the slow-decline 
hypothesis in which plants experience a three-stage decline 
over many years, driven initially by long-term stress, for 
example poor edaphic location, followed by a severe short-term 
stress, for example drought., and finally death occurring via a 
contributing factor, for example pathogen. Manion labeled 
these three factors the predisposing factors, inciting factors, 
and contributing factors, respectively. Bossel (1986) and 
Mueller-Dumbois (1987) hypothesized that longer-term 
stresses alone could result in rapid mortality, particularly 
through an imbalance between carbon uptake and loss that 
results in a negative carbon balance. Other efforts regarding 
mortality have built off these initial formulations, often with 
an emphasis towards the carbon balance hypothesis (Waring, 
1987; Martinez-Vi [alta et al., 2002; Breda et aI., 2006; 
GUneralp & Germer, 2007). Here we draw on these perspectives 
to pose a more general framework in which we focus on 
three hypothetical mechanisms of mortality: biotic agent 
demographics, hydraulic failure, and carbon starvation (we 
use new terms for these hypotheses to avoid misconceptions 
or misunderstandings that may occur from use ofolder terms 
and because these terms most simply represent the current 
hypotheses). Within our framework, we hypothesize that 
the relevance of these different mechanisms relates to the 
intensity and duration of water stress (Fig. 3). The biotic 
agent demographics hypothesis suggests that drought drives 
changes in demographics of mortality agents (e.g. insects and 
pathogens) that subsequently drive forest mortality. Potential 
demographic changes include increased number of pathogen 
generations per year as a result of longer growing seasons, 
or decreased over-winter mortality because of warmer 
winter minimum temperatures. Biotic agents may amplify, 
or be amplified by, plant physiological stress (Fig. 3). The 
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hydraulic-failure hypothesis predicts that reduced soil water 
supply coupled with high evaporative demand causes xylem 
conduits and the rhiwsphere ro cavitate (become air-filled), 
stopping the flow of water and desiccating plant tissues. The 
hydraulic-failure hypothesis is based on the tenet that 
complete desiccation leads ro cellular death. Hydraulic failure 
may be particularly likely if drought is sufficiently intense that 
plants run out ofwater before they run out ofcarbon (Fig. 3). 
The carbon-starvation hypothesis predicts that sromatal 
closure ro prevent hydraulic failure causes photosynthetic 
uptake of carbon to diminish and the plant starves as a 
result ofcontinued metabolic demand for carbohydrates. This 
process may be exacerbated by photoinhibition or increased 
respiratory demands associated with elevated temperatures 
during drought. Therefore, carbon starvation is hydraulically 
driven but nonhydraulic mechanisms may also contribute. 
Carbon starvation may be particularly likely if drought is not 
intense enough to cause hydraulic failure, but lasts longer than 
the equivalent amount of plant carbon reserves (Fig. 3). 
Biotic agents can amplify either hydraulic failure, such as 
when beetles inoculate sapwood with xylem-occluding fungi 
that halts water transport (Larsson et aI., 1983; Waring & 
Pitman, 1985; Wullschleger et al., 2004), or carbon starvation, 
such as by increasing carbon loss ro resin production (Wallin 
et al., 2003). Likewise, hydraulic failure or carbon Stary-ation 
can amplify biotic attacks, for example, as a result of low 
production of carbon-based defensive compounds such as 
resin, ino'eased emissions ofvolatiles such as ethanol tbat attract 
insects, and alteration of food quality for insects. Thus all 
three mechanisms may operate either inclusively or exclusively. 

1. A note on genetics 

Genetic differences could pOtentially play an important role 
in all of these mechanisms (Gutschick & BassiriRad, 2003; 
Tuberosa et aI., 2003; Hamrick, 2004). However, genetic 
variation does not represent a mechanism of mortality or 
survival per se. Interspecific inheritance of phenotypic traits 
that facilitate drought resistance clearly occurs as shown in 
common-garden and ecotone experiments (VanSplunder 
et al., 1996; Volaire et aI., 1998; Sack, 2004; Adams & Kolb, 
2005; Engelbrecht et aI., 2005), although the evidence is less 
clear for intraspecific inheritance. Numerous common-garden 
studies on woody plants show intraspecific genetic variation 
in characteristics associated with drought resistance, such as 
vulnerability of xylem to cavitation (Kavanagh et al., 1999), 
hydraulic conductance (Comstock, 2000) and water-use 
efficiency (Zhang et aI., 1995), sroma size and density (Mitron 
et al., 1998), and insect attack (Christensen et al., 1995). 
Long-lived trees, especially wind-pollinated species, have the 
highest degrees of genetic variation and thus could be 
expected ro be the most resilient species ro future droughts if 
genetic factors are important ro survival (Mitton, 1995; 
Hamrick, 2004). Although genetic inheritance of drought 

survival mechanisms is clearly important, the mechanisms 
under selection are not yet clear. 

V. Evidence for hypothesized mechanisms 

Substantial evidence exists for the three mutually inclusive 
mechanisms of mortality: biotic agent demographics, hydraulic 
failure, and carbon starvation. As we explain below, a hydraulic 
framework is directly relevant to the latter two mechanisms 
and can be related ro biotic agent demographics. 

1. Biotic agent demographics 

This hypothesis suggests that drought drives changes in 
demographics of mortality agents such as insects and pathogens, 
which subsequently drive forest mortality independently or in 
conjunction with drought-induced changes in host plant 
physiological condition. This hypothesis derives from the 
frequent observation that a temporal correlation exists between 
drought and outbreaks of insects (White, 1984; Mattson & 
Haack, 1987; Waring & Cobb, 1992; Clancy et aI., 1995; 
Shaw et aI., 2005; Fettig et al., 2007) and pathogens (Houston, 
1987; Manion, 1991). Predictions suggest population 
demographics such as growth rates and reproduction of biotic 
mortality agents will be exacerbated by climate change largely 
as a result of increased temperatures (Ayres & Lombardero, 
2000; Logan et aI., 2003; Gan, 2004; Tran et aI., 2007). 
Empirical evidence and models suggest that drought associated 
with unusually warm weather will have an impact on many 
characteristics of insect population dynamics, including 
intrinsic population growth rate, the number of generations 
produced per year, synchrony of key developmental phases, 
winter mortality, and geographic range (Ungerer et aI., 1999; 
Logan & Bentz, 1999; Ayres & Lombardero, 2000; Simberloff, 
2000; Logan & Powell, 2001; Logan et aI., 2003; Hicke et aI., 

2006). Droughts may also affect insect and pathogen 
populations by inAuencing the abundance of key predarors 
and mutualists (Ayres & Lombardero, 2000); the direction 
and magnitude of such effects are largely unknown. It is 
unlikely that drought will be beneficial to all insects that kill 
trees, or in all locations. For example, outbreaks ofwestern 
spruce budworm in the southwestern USA are positively 
related ro wet spring weather, negatively related to dry spring 
weather, and unrelated to temperature (Swetnam & Lynch, 
1993). Likewise, the synchrony of insect emergence with 
temperature may have negative consequences for insect 
population growth at low elevations but positive impacts on 
population growth at higher elevations (Hicke et aI., 2006). 
Overall, warm droughts may increase the intensity ofoutbreaks 
of biotic mortality agents independent of concomitant 
changes in cree physiological condition related to drought, 
although the specific dynamics may vary by agent. 

Drought-related mortality does not always include an 
obvious biotic mortality agent (L1oret et aI., 2004) and thus 
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FIg. 4 The percentage loss of conductivity of excised root (connected 
circles) and stem (unconnected circles) segments of pinon (open 
circles) and juniper (closed circles) as a function of xylem pressure. 
These 'vulnerability curves' were obtained by the air-injection method 
(Linton et al., 1998). 

the biotic agents demographics hypothesis can explain, at 
most, only a portion of observed mortality. However, plants 
treated with insecticides often survive outbreaks of insects 
(Hastings et aL., 2001; Grosman & Upton, 2006; Romme 
et al., 2006), indicating that biotic agents playa significant 
role in monality. A prediction consistent with observations is 
that changes in demographics of biotic mortality agents must 
overlay changes in host plant physiological conditions to cause 
Widespread mortality events (Berryman, 1976; Christiansen 
et al., 1987). 

2. Plant water relations 

A review ofplant regulation ofwater use is needed to consider 
the mechanisms of hydraulic failure and carbon starvation. 
In particular, it is crirical to understand the structural and 
physiological mechanisms by which plants prevent evapo
transpiration (E) from exceeding critical rates (Ecrit) that result 
in xylem water potentials associated with hydraulic and 
symplastic failure ('I'eri')' Furthermore, the impacts ofEcri' 

avoidance on photosynthesis and subsequent dependency 
on stored carbohydrate reserves are critical to understanding 
carbon starvation (Cowan & Farquhar, 1977; Katul et aI., 
2003). In this section we review plant water relations in the 
context of avoidance of Ecri' and 'I'crit' introduce a modeling 
framework for investigation of such regulation, and then 
investigate hypotheses regarding hydraulic failure and carbon 
starvation using the model and existing evidence from our 
pinon-juniper case study and the broader literature. 

10 maintain tissue hydration and photOsynthesis, plants 
must replace water lost through E. As described by the 
cohesion tension theory, E generates tension that pulls water 
from the soil through the plant to the crown, where it diffuses 
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to the atmosphere. Thus, E can be explicitly described via the 
steady-state formulation of the soil-plant-atmosphere hydraulic 
continuum (modified from Whitehead & Jarvis, 1981; 
Whitehead, 1998): 

Eqn 1 

In this corollary to Darcy's law, ~ is leaf-specific hydraulic 
conductance of the soil-plant continuum, 'I's and 'I'I are 
soil and leaf water potentials, respectively, and hpwg is the 
gravitational pull on a water column of height h and density 
Pw' The tension difference across the plant ('I's - 'I'I) increases 
in proportion to E as long as ~ remains constant, for example 
no cavitation occurs. This mechanism is efficient because 
metabolic energy is not used to lift water to the crown. 
However, E has an upper limit (Ecri ) because increasing 
tension causes decreased ~ as a result of air entry through pit 
pores into conduits, thereby initiating cavitation (nucleation 
of vaporization) and producing an embolized, or air-filled 
conduit (Fig. 4). In other words, hydraulic failure occurs 
when E exceeds the critical 'I', ~ approaches zero, and the 
plant can no longer move water. The 'I'crit value causing 100% 
cavitation varies widely among species (Pockman et al., 1995; 
Packman & Sperry, 2000; Maherali et al., 2004) and is 
thought to be a function of interconduit pit structure 
(Pittermann et aL., 2005). An example of vulnerability to 
cavitation in stems and roots ofpinon and juniper is presented 
in Fig. 4 (Linton et aL., 1998). Roots tend to be more 
vulnerable than stems, which may serve the advantage of 
protecting the more energetically costly stem tissues from 
cavitation (Sperry & Ikeda, 1997; Sperry et aL., 2002). 

Hydraulic failure also occurs within soils and is functionally 
similar to xylem cavitation. The hydraulic conductance of 
soils is a function of texture, water content, hydraulic conduc
tivity, and water table depth. Greater tension is required to 

pull water through fine-textured soils because of their small 
pore sizes, and thus fine-textured soils have lower conduct
ance than sandy soils when water is abundant. However, 
fine-textured soils retain hydraulic conductance longer and at 
more negative water potentials than coarse-textured soils 
because the low conductance of fine soils results in slower 
water loss to transpiration and drainage (Sperry et aL., 1998). 
Therefore, during drought we expect greater hydraulic failure 
in coarse-textured soil. Depth to water table also has an 
impact on plant hydraulics by limiting or allowing plants to 
obtain water during periods of drought (Dawson, 1996; 
Franks et al., 2007). To compensate for coarse-textured 
soils or inaccessible water tables, plants may increase their 
soil-to-root, or rhizosphere conductance via adjusting fine 
roOt density (Ewers et aL., 2000; Hacke et aL., 2000), fine root 
hydraulic conductance (McElrone et aL., 2007) rooting depth, 
and other root characteristics (Stirzaker & Passioura, 1996). 

Plant avoidance of hydraulic failure can be conceptualized 
using models of the soil-plant-atmosphere continuum. 
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Fig. 5 Modeled transpiration per unit leaf area as a function of leaf 
water potential for a plant with relatively abundant soil moisture 
(solid line) and the same plant with reduced soil moisture availability 
(dashed line). Letters are referenced within the text. 

Such models can then be used as the basis for predictions 
of mortality related to water stress. The relationship between 

E and 'III can be modeled based on the hydraulic properties of 
soil and xylem, root distribution, and root-shoot allocation 
(Sperry et aI., 1998,2002; Fig. 5). When E is zero, 'III equili
brates with bulk soil water potential (Fig. 5a). As E increases, 

'III drops (Fig. 5, solid line a-c). For every unit increase in E, 
the drop in water potential becomes progressively greater 
because cavitation and rhizosphere drying reduce K.. of the 
flow path. If E increases past Ecrit, and hence 'II exceeds \l'crit' 

then hydraulic failure will occur (e.g. when the soil-plant K.. 
falls to zero, Fig. 5c). As drought decreases soil water potential 
within the rooting zone, hydraulic failure occurs at progres
sively lower values of E (Fig. 5, compare dashed drought 
trajectory b-d with a-c). If hydraulic failure is caused by 
xylem cavitation within stems, 'Pcril corresponds to the pressure 

where 100% cavitation occurs (e.g. -6.9 MPa in pinon stems; 
Fig. 4). Drying of the rhiwsphere may drive hydraulic failure 

at more positive '¥erit because roots and soils are typically more 
vulnerable than stems (Fig. 4). This does not mean that roots 
or soils will always be the location ofhydraulic failure, however, 
because stems can reach much more negative water potentials 
as a result of their longer hydraulic path length (McDowell 
et al., 2002a; Sperry et aI., 2002); hence trees that have 
reached their maximum height may be particularly vulnerable. 

Using this hydraulic framework we can predict hydraulic 

failure during drought by plotting the decline in Eeril as a 
function of soil water potential (Fig. 6). When the soil water 

potential reaches 'Pcrit' Eerit is zero and no further water can be 
extracted (Fig. 6, 'extraction limit'). The actual water use 
must fall within this envelope (Fig. 6, 'reali7.ed transpiration'); 

if the transpiration threshold is exceeded, hydraulic failure 
results. Plants maintain E below Ecri! over long time periods 
(e.g. years to centuries) via adjustment of structural features 
that allow maximum water uptake relative ro demand by the 
plant crown, and over short time periods (e.g. diurnal cycles) 

Margin between E and E,,;, 

\ 
Realized E 

Bulk soil 'P 
Extraction limit 

Fig. 6 Modeled transpiration per unit leaf area as a function of soil 
water potential. The solid line represents the transpiration threshold 
beyond which hydraulic failure occurs, and the dashed line represents 
realized transpiration, with the difference between the two lines 
representative of a hydraulic margin of safety. 

via crown-level stomatal conductance (G,) (Tyree & Sperry, 

1988; Sperry et aI., 1998). 
The long-term structural adjustments that maintain home

ostasis between water supply, water demand, and plant 

metabolism (Whitehead & Jarvis, 1981; Cinnirella etal., 
2002; Katul et al., 2003; Breda et aI., 2006) may all playa 
role in the survival or mortality of plants during drought. 
These adjustments are influenced over decadal time scales in 
response to climate, plant size, edaphic properties such as soil 
texture and depth, and stand density (Maherali & DeLucia, 
2001; McDowell et al.• 2002a, 2006; Sperry et al., 2002; 
Mencuccini, 2003). Long-term homeostasis was originally 

defined mathematically by Whitehead & Jarvis (1981) as 
a steady-state derivation of Darcy's law similar to Eqn 1: 

kA
E=-'-' x~'¥ Eqn 2 

hrIAr 

where k, is saturated permeability of the conducting path, As 
is sapwood area, AI is leafarea, h is height, T\ is the viscosity of 
water, and ~'P is 'P, - 'P - hPwg (Eqn 1). Although Eqn 2 isr 
a simplification of the plant hydraulic system (Domec et al.. 
2007), it has proven remarkably accurate (Whitehead, 1998; 
Oren et al., 1999; Schafer et aI., 2000; McDowell et aI., 
2002a, 2005; Phillips et al., 2002; Barnard & Ryan, 2003). 
Furthermore, the structural adjustments included in Eqn 2 

are consistent with the Sperry et al. (1998) model (Addingron 
et aI., 2006). Taken together, homeostatic factors from Eqns 
1 and 2 that have been empirically documented include: 
(i) vulnerability ofxylem conductance to low water potentials 
(see Fig. 4) (Pockman & Sperry, 2000; Ogle & Reynolds, 
2002; Maherali et aI., 2004); (ii) xylem permeability (Pothier 
et al., 1989; McElrone et al., 2004); (iii) refilling of cavitated 
elements (Sperry et aI., 1987; Borgheni et aI., 1991; Holbrook 
& Zwieniecki, 1999; Tyree et al., 1999; Salleo et al., 2004; 
West et aI., 2007a); (iv) the soil-to-leafwater potential gradient 
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Fig. 7 (a) Midday (11 : 00-13 : 00 h) leaf water potential for pinon 
(open circles) and juniper (closed circles); and (b) daily precipitation 
(left axis, bars) and soil water content at 20 cm (right axis, filled 
symbols) at Mesita del Buey near Los Alamos, New Mexico. Bars in 
(a) are standard errors. Water potential was measured via pressure 
chamber within 5 min of twig collection, and consisted of two twigs 
per individual and five individuals per species per time period. 
Soil water content was measured via neutron probe. 

(Hacke et al., 2000; McDowell et al., 2002a; Barnard & 
Ryan, 2003); (v) vertical distribution of root density as a 
function of soil water availability (VanSplunder et aI., 19%; 

Volaire et aI., 1998; Ewers et al., 2000; Hacke et al., 2000; 
Lloret et al., 2004; West et aI., 2007b); (vi) ratio of root 

absorbing area to leaf area (Ewers et al., 2000; Hacke et aI., 
2000; Magnani et al., 2000); (vii) ratio ofsapwood area to leaf 
area (Mencuccini & Bonosi, 2001; McDowell et aI., 2002b, 
2006; Barnard & Ryan, 2003); (viii) leaf shedding (Tyree 
et aI., 1993; Suarez et aI., 2004; Hultine et al., 2006); (ix) 
height (McDowell et aI., 2005; Addington et aI., 2006); and 
(x) capacitance (water storage, Gold~tein et aI., 1998; Phillips 
et aI., 2003). Others, such as osmotic regulation ofleaf turgor 
(Kozlowski & Pallardy, 2002), foliar water absorption (Breshears 

et al., 2008), aquaporin mediation of hydraulic conductance 
(McElrone et aI., 2007) and cellular desiccation tolerance (Gaff, 
1971; Dace et aI., 1998; Sherwin et aI., 1998), may also play 
a role in drought tolerance or avoidance. Each of these factors 
may strongly impact the likelihood of plants to survive or 
succumb to drought. For example, the observation that tall 
trees tend to die is consistent with Eqns 1 and 2 because height 

constrains ~ and E such that the margin of safety is reduced. 
Likewise, the observation that seedlings often die is consistent 
with their having insufficient soil-to-root ~ during drought. 

Note that differences in structural parameters between our 
case study species, pinon and juniper, are consistent with 

New 
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Eqn 2 with respect to susceptibility to drought-related 
monality. Relative to pinon, juniper has more cavitation-resistant 
xylem (Fig. 4), lower leaf area to sapwood area ratio (Grier 
et aI., 1992), lower leaf area to root area ratio (West et aI., 
2008), a larger water potential gradient from soil to leaf 
(Lajtha & Barnes, 1991; West eta!', in press), and is 
shoneI' (2.7 vs 5.6 m at Mesita del Buey New Mexico). 

Over diurnal timescales, plants maintain E below Ecrit 

through stomatal closure. Plants reduce G in response to s 
increasing E (Mott & Parkhurst, 1991), with the degree of 
closure linked to \fIerit that causes embolism (Sperry et aI., 
2002). G is in turn regulated not only by water supply and s 

demand, and their impact on E, but also by plant structural 
adaptations that impact the supply or demand for water, for 
example rooting volume or leaf area, respectively (Eqn 2). 
While reducing G serves the benefit of reducing water loss, s 

it has the cost of reducing CO2 diffusion from the atmosphere 
to the site of carboxylation, and thereby constraining 
photosynthetic CO2 uptake (Cowan & Farquhar, 1977). As 
we show, this balance between water loss and CO2 uptake 
may partition plants between survival, hydraulic failure or 

carbon starvation during drought. 

3. Isohydry and anisohydry 

Plants fall into two categories across the continuum ofstomatal 
regulation of water status, labeled isohydric and anisohydric 
regulation (Tardieu, 1993; Tardieu & Simonneau, 1998). 
Isohydric plants reduce G as soil water potential decreases and s 
atmospheric conditions dry, maintaining a relatively constant 
midday \fI, regardless of drought conditions. Anisohydric 

species, by contrast, allow midday \fIJ to decline as soil \fI 
declines with drought. Pinon is a good example of isohydric 

regulation, maintaining leafwater potentials at c. -2.0 MPa 
despite severe soil drying (Fig. 7, and see Lajtha & Barnes, 
1991; Williams & Ehleringer, 2000; West etal., 2008; 
Breshears et al., in press). Although no specific thresholds 
and ranges ofisohydric control are generalized in the literature, 
isohydric behavior has been observed in temperate hardwoods, 
C4 grasses, Australasian and neotropical trees, and other species 
of gymnosperms (Tardieu & Davies, 1992; Loewenstein & 
Pallardy, 1998a,b; Tardieu & Simonneau, 1998; Niinemets 
et al., 1999; Bonal & Guehl, 2001; Fisher et al., 2006). 
Anisohydric plants maintain higher G for a given \fIJ thans 
isohydric species, effectively allowing \fI l to decline with 
decreasing soil water potential (Fig. 8, Barnes, 1986). 
Anisohydric behavior has been observed across the same 

diversity of plant groups: species such as juniper, sugar 
maple (Acer saccharum), sunflower (Helianthus annuus), and 
eucalyptus (Eucalyptus gomphocephala) allow a greater \fI1 
range than isohydric species (Loewenstein & Pallardy, 
1998a,b; Tardieu & Simonneau, 1998; Franks etal., 2007; 
Wesr et al., 2008). Anisohydric species tend to occupy more 
drought-prone habitats compared with isohydric species 
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Fig. 8 Stomatal conductance vs leaf water potential for pinon (open 
circles) and juniper (closed circles) at Mesita del Buey, Los Alamos, 
New Mexico. Data from Barnes (1986). 

and have xylem that is more resistant to negative water 
potentials (see Fig. 4). There are, however, exceptions to these 
generalizations and many comparative studies and syntheses 
(Pockman & Sperry, 2000; Maherali et aI., 2004) have not 
specifically characterized species as isohydric or anisohydric. 
Anisohydric vs isohydric regulation of water statUs may be a 
critical factor in the regulation of survival and mortality 
during drought (Fig. 3). 

It is important to clarify that relating the hydraulic 
framework to plant mortality is based on the premise that 
whole-plant hydraulic failure will cause death. This premise 
may be false in cases of resproudng, xylem refilling, or if 
cells are desiccation-tolerant. Resproming has been observed 
following cavitation-induced shoot dieback in shrubs (Davis 
et al., 2002; Sperry & Hacke, 2002), mesic hardwoods (Tyree 
etal., 1993), and riparian trees (Horton etal., 2001). A 
benefit of reducing leaf area via shoot dieback is the resulting 
improvement in water status of the remaining foliage and 
subsequent survival of the individual (Tyree & Sperry, 1989; 
Davis etal., 2002; Breda etal., 2006). Resprouters may die 
during drought, however, if persistent hydraulic failure 
leads to carbon starvation that prevents growth ofnew stems. 
Refilling of cavitated elements may occur in some species 
when drought is relieved by precipitation, although the mech
anisms and frequency of refilling remain debated (Sperry 
et al., 1987; Borghetti et aI., 1991; Holbrook & Zwieniecki, 
1999; Tyree etal., 1999; Saileo etal., 2004; West etal., 
2007a). Refilling has been observed in pinon but not juniper 
(West et aI., 2007a). Desiccation-tolerant cells, such as the live 
cells of mosses, ferns, seeds and pollen ofhigher plants, and of 
resurrection plants (e.g. Xerophyta), can withstand complete 
drying, and upon wetting they regain complete physiological 
function (Gaff, 1971; Dace et al., 1998; Sherwin et al., 1998). 
This ancestral trait is rare amongst vascular plants (Oliver 
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et al., 2000); however, a lesser degree of cellular drought 
tolerance is common (Kozlowski & Pallardy, 2002). As plants 
have become larger and more complex, water transport has 
become more limiting ro survival than cell physiology and 
so vegetative cells may have lost their capacity to tolerate 
air-drying (Oliver et aI., 2000). Based on evidence for cor
relations between cellular desiccation limits and hydraulic 
transport limits (Brodribb et aI., 2003), cellular drought 
tolerance may be as colimiting as hydraulics in determining 
plant physiological limits. 

The large number of potential interactions between iso
hydry, anisohydry and parameters within Eqns 1 and 2 
highlights that there is a large number of physiological and 
structural factors that may be adjusted to either tolerate or 
avoid water stress during drought. However, these factors may 
also have species or site-specific limits on how far they can be 
adjusted; these limits may subsequently predispose plants to 
hydraulic failure. Next we can apply the hydraulic framework 
to understand the hydraulically based hypotheses ofhydraulic 
failure and carbon starvation. 

4. Hydraulic failure 

The concept underlying the hydraulic-failure hypothesis is 
that drought causes the species- and site-specific Eeri , to be 
surpassed such that the plant irreversibly desiccates. Hydraulic 
failure occurs in small plants, as seedling mortality has been 
linked to excessive cavitation in the field (Williams et aI., 
1997) and drying experiments with potted plants often result 
in rapid mortality (Sparks & Black, 1999). The limited 
rooting volume explored by seedlings exposes them to more 
negative soil water potentials than plants with larger root 
systems, decreasing soil-to-root ~ and hence the safety margin 
between realized E and Eerie (Fig. 6). For mature trees there are 
numerous anecdotal observations of mortality occurring in 
the absence ofinsect or pathogen attack; however, it is unknown 
ifhydraulic failure or another mechanism was the cause of 
death. 

The pinon-juniper comparison provides an interesting 
contrast with respea to mortality by hydraulic failure. Modeling 
Eerie vs 'Psoil using pinon and juniper vulnerability curves 
(Fig. 4) and soil and plant architecture and water potential 
data (West et aI., 2008) yields the prediction that the aniso
hydric strategy of juniper makes it more susceptible to 

hydraulic failure than pinon, because the water-use enve
lope of juniper is closer to the xylem cavitation threshold 
(Fig. 9). Continued transpiration by juniper during drought 
reduced soil water potential to -6.9 MPa, bringing juniper 
plants close to hydraulic failure (Fig. 9, solid circle compared 
with E ) and induced an estimated 40-60% embolism in cr 

roOts and shoots, respectively (West et al., 2007a, 2008; 
Fig. 4). The species-specific difference in regulation of the 
hydraulic safety margins occurs in part via differential rela
tionships between leafwater potential and G, (Fig. 8; Barnes, 
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Fig. 9 Modeled critical transpiration threshold as a function of soil 
water potential for pinon (dashed line) and juniper (solid line) and 
observed minimum leaf water potential for each (filled and open 
symbol, respectively). Data from West et al. (2008). Dotted vertical 
lines represent the species-specific margins of hydraulic safety, which 
are 0.05 and 0.01 mmol m-2 " for pinon and juniper, respectively. 

1986; Williams & Ehleringer, 2000; West et al., 2008). 
Although this strategy allows juniper to maintain photosyn
thetic activity during drought, ultimately it may result in 
patchy dieback of crowns ifdrought is prolonged, as has been 
observed in juniper during the 2000-2002 severe drought in 
the southwestern USA (authors' personal observations). 
Whether this parcial dieback can explain whole tree mortality 
is unknown, but given a drought of sufficient intensity and 
duration, it seems a logical hypothesis that hydraulic failure 
may cause whole-plant mortality in anisohydric plants (Fig. 3). 

By contrast, the isohydric behavior of pinon prevents 
excessive cavitation even during extreme drought, making it 
unlikely to be a victim of hydraulic failure. Pinons lose only 

an estimated 5-40% of their xylem conductivity (all in their 
root systems) because stomatal closure keeps xylem water 
potentials above -2.5 MPa during drought (Figs 7-9). Safety 
margins from hydraulic failure are relatively large (Fig. 9, 
compare open circle with Ecri ,)' Of course, this control of 
cavitation in pinon comes at the price ofnegligible gas exchange, 
which leads to the carbon-starvation hypothesis, which we 
discuss in the next section. 

A notable insight that emerges from the hydraulic 
framework is that although isohydric species appear more 
vulnerable to embolism (Fig. 4), isohydric plants should actually 

be less likely to experience hydraulic failure because they close 
their stomata rather than risk cavitation. Anisohydric plants 
instead have higher rates ofgas exchange during drought, but 
risk greater cavitation as a consequence (Fig. 10). Both isohydric 
and anisohydric species are capable of carbon starvation or 
hydraulic failure; however, the isohydric species will probably 
maintain '1:') above its hydraulic failure threshold until carbon 

Short Duration of water stress Long 

Cill'bon 
.-...!.--- starvation 

-~ 
Al...--!-""""';0failure 

'----------/--
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A ----_J. __~ Hydraulic 

-----------------~------ .....-A- failure, 
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Fig. 10 Theoretical predictions of the mechanisms of drought-related 
mortality for species utiliZing isohydric vs anisohydric regulation of 
water potential. This figure is a more detailed representation of the 
hypotheses exemplified in Fig. 3, highlighting differences between 
isohydric (I) and anisohydric (A) functional types. The dashed 
horizontal line represents the point of hydraulic failure for each 
functional type. Carbon starvation is hypothesized to occur primarily 
for isohydric species that close stomata relatively early in a drought 
(solid isohydric line), initiating the phase of reliance on carbohydrate 
reserves earlier than anisohydric plants (compare solid isohydric and 
anisohydric lines). Isohydric species may experience hydraulic failure 
in cases of severe intensity of drought (dotted isohydric line). 
Anisohydric species have a more curvilinear response (similar 
to Fig. 9) and are predicted to maintain positive carbon gain for 
a longer period than isohydric species, thus prolonging the 
duration of drought they can withstand before carbon starvation 
(solid anisohydric line). However, anisohydric species have a smaller 
margin of safety, thus increasing their likelihood of mortality via 
hydraulic failure (dotted anisohydric line). 

starvation occurs (Fig. 10, thick line) and will only reach 
hydraulic failure if the drought is sufficiently intense to force 
whole-system cavitation via xylem equilibration with severely 

dry soil. By contrast, the anisohydric species will allow '1:'1 to 
approach (or even surpass, e.g. Fig. 9) its cavitation threshold, 
thus allowing a longer time period before zero carbon assimi
lation and hence a longer time period before carbon starvation 
occurs. However, the closer proximity that the anisohydric 
species has to its cavitation threshold increases the risk of 
catastrophic hydraulic failure ifdrought intensity continues to 

increase, particularly because it maintains 'l:'l in realms where 
both soil moisture release curves and cavitation response 
curves (i.e. Fig. 4) are steep. such that small changes in water 
availability can have very large impacts on water potential. 

5. Carbon starvation 

The carbon-starvation hypothesis predicts that stomatal 
closure to prevent desiccation (e.g. by isohydric plants, Figs 8 
and 9), causes photosynthetic carbon uptake to diminish to 
near zero (Fig. 10). Continued demand for carbohydrates 
to maintain metabolism will deplete carbohydrate reserves, 
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Fig. 11 Ca) Three years of monthly observations of predawn 
water potential of pinon (open circles) and juniper (closed circles) 
from Mesita del Buey, Los Alamos, New Mexico. Twigs were sampled 
at least 20 min before sunrise and kept in plastic bags until 
measurement, which took place within 1 h of collection. Samples 
consisted of two twigs per tree and a minimum of five trees per 
species per time period. (b) Seasonal leaf carbon gain for pinon 
and juniper modeled using Barnes (1986) and the predawn water 
potentials from (a). 

leading eventually to starvation or an inability to fend off 
attack from biotic agents, whichever comes first (Fig. 3). 

Similar to the hydraulic-failure hypothesis, the carbon starvation 
hypothesis lacks direct tests, although variations on this theme 
have been modeled as a driver of mortality for decades 

(Waring, 1987; Manion, 1991; Martfnez-Vilalta et aI., 2002; 
Guneralp & Gertner, 2007). Empirical evidence supporting 

a link between carbon availability and mortality is derived 

from the numerous studies reporting that trees that die have 

lower stemwood growth rates, increased growth variability, or 

increased climatic sensitivity, particularly after severe droughts 

(Kolb & McCormick, 1993; Pedersen, 1998; Demchik & 
Sharpe, 2000; Ogle et al., 2000; Lloret et aI., 2004; Rolland & 
Lemperiere, 2004; Suarez et al., 2004; Guarin & Taylor, 

2005; Bigler et al., 2006). However, still other studies have 
shown higher growth rates in trees predisposed to die, 

particularly in oak species Oenkins & Pallardy, 1995, T. Levanic 
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& N. McDowell, unpublished data). Modeling studies typically 

support the carbon-starvation hypothesis (Pedersen, 1998; 

Guneralp & Germer, 2007), including models that predict 

carbon starvation initiated by stomatal closure (Martlnez
Vilalta et aI., 2002). 

The primary means ofreduced photosynthesis by isohydric 

species during drought is the constraint on CO2 diffUsion into 

leaf intercellular spaces as a result of stomatal closure (Figs 8 

and 9). For example, pinon net photosynthesis is halved at a 

rhizosphere water potential of -1.0 MPa, and reaches zero 

at a water potential of-2.3 MPa (Lajtha & Barnes, 1991). 

However, respiratory consumption of stored carbohydrates 

continues during drought to maintain plant metabolism, even 
if growth is zero (Amthor, 2000). Accounting for nocturnal 

leaf respiration costs, pinon leaf carbon gain reaches zero at 

approx. -2.0 MPa (Barnes, 1986). Ifwe make the simple 

assumption that whole-plant respiration consumes 55% 
of assimilation (Ryan et aI., 1994; Waring et aI., 1998; Litton 

et aI., 2007) then pinon trees achieve negative whole-plant 

carbon balance around rhizosphere water potentials of 

-1.0 MPa. By contrast, making this same 55% assumption, we 

predict that juniper reaches a zero whole-plant carbon balance 

at a rhizosphere water potential of c. -3.0 MPa. In effect, this 

difference allows the anisohydric species to maintain positive 
carbon gain for a greater duration of the drought (Fig. 10). 

The hypothesis that carbon starvation, not hydraulic 

failure, is a likely driver of mortality in isohydric species can 
be examined by parameterizing Barnes' (1986) empirical 

model of leaf carbon gain using measurements of predawn 

water potential generated from the same field site (Mesita del 

Buey). Three years of monthly predawn water potential 

measurements demonstrate that pinon regulates water potential 

within a much narrower range than juniper (Fig. lla). By 

contrast, modeled leafcarbon gain is substantially more variable 

for pinon than juniper (Fig. 11 b), owing to the greater sto

matal sensitivity of pifton to water stress (Fig. 8). During the 

2000-2002 drought, when pinon experienced region-scale 
mortality, Breshears et al. (in press) observed that pifton and 

juniper predawn water potential was below -2.0 MPa for 

11 months before observed mortality, effectively precluding 
carbon gain for a year. 

The theory that carbon starvation and hydraulic failure 
are the dominant mechanisms of mortality for isohydric and 

anisohydric species, respectively, is further supported when a 

broader set of plant species is considered. In Fig. 12 we plotted 

a typical rhizosphere drying curve for a drought period after a 

precipitation event at time zero. We have overlaid measured 'P 
of zero G, for all isohydric species and 'P of 100% cavitation 

for all anisohydric species. These species are described in our 

literature review from the 'Isohydry and anisohydry' section. 

An assumed time lag of 10 months from zero G, to carbon 

starvation is applied uniformly to all isohydric species (from 
observations of piflon pine; Breshears et al., in press). 
Figure 12 demonstrates that the isohydry/anisohydry continuum 
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Fig. 12 Theoretical mortality response of isohydric and anisohydric 
species to drought. The curve illustrates the decline in rhizosphere 
water potential under a 30 month drought scenario. For isohydric 
species, the horizontal dotted lines extend from where the 'Pleal at 
zero G crosses the rhizosphere 'P curve to the date of death vias 
carbon starvation (filled symbols). For anisohydric species, '1'ent is the 
'Pstem or 'Pleal at which some portion of the plant xylem experiences 
K, = 0, and is plotted on top of the rhizosphere 'P curve (open 
symbols), For isohydric species, the length of time until carbon 
starvation is based on observations of pinon pine (see text). Isohydric 
species (solid symbols): flowering dogwood (square), tatuba (circle), 
black elderberry (triangle), pinon pine (diamond), Anisohydric species 
(open symbols): sunflower (downward triangle), sugar maple 
(hexagon), eucalyptus (square), juniper (upward triangle), Sources 
are from the literature review proVided in Section v'3, Isohydry and 
anisohydry. 

partitions species vulnerability to drought as a function of 

drought duration. For example, if drought were relieved by 

precipitation after 10 months, one anisohydric species 

(sunflower) would have died but all other species would 

have survived. By contrast, if drought-relieving precipitation 

did not occur until 15 months then all isohydric species 
would have died. If the drought were more intense, such 

that the drying curve were steeper, then the likelihood of 
more anisohydric species succumbing earlier would increase; 

and vice versa, if the drought were less intense, such that the 

drying curve was shallower, proportionally more isohydric 

species would succumb because they would reach carbon 

starvation long before anisohydric species reach o/erit" Perhaps 
the most important observation from Fig. 12 is the clear need 
for informacion regarding the time required for carbon starvation 

to occur. Likewise, this analysis points to the need to understand 
interactions with biotic mortality agents and within-species 

variation in 'I' of zero G, (isohydric) and 'I'eric (anisohydric); 
such variation is known to occur in response to tree height 

(Yoder et aI., 1994; McDowell et aI., 2002a; Barnard & Ryan, 
2003) or soil texture (Hacke et aI., 2000), and may occur in 
other situations. However, variation in these variables is likely 

to move species timing of mortality only slightly relative to 
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the larger general pattern of mortality shown in Fig. 12. 

The patterns in Fig. 12 support the concept that isohydric 
species are more likely to die of carbon starvation than 

hydraulic failure, and that partitioning of mortality between 
isohydric and anishydric planes is a function of drought 

intensity and duration (Figs 3 and 10). 

Drought may also reduce photosynthesis by other mech

anisms, such as loss of leaf turgor (Dreyer et aI., 1992; 
Rodriguez et al., 1993; Kolb & Sperry, 1999) and leafshedding 

(Tyree et al.. 1993 and citations mentioned earlier). When 

elevated temperatures accompany drought (Breshears et aI., 
2005), a nonhydraulic mechanism of reduced photosynthesis 

may result from the impact of temperature on photosynthetic 

optima, both on electron transport and Rubisco activity 
(Berry & Bjorkman, 1980; Sage & Kubien, 2007). For our 

case study, juniper has a higher temperature optima for peak 

photosynthesis (21 vs 17°C) and a broader temperature range 

above which 90% of maximum photosynthesis is sustained 

(16.5 vs 14.2°C) than does pinon (Barnes, 1986). Adaptation 

of the biochemical machinery driving photosynthesis to rising 

temperatures may occur if the temperature rise is consistent 

and slow, but will be insufficient if temperature extremes 

happen rapidly and infrequently. Temperature impacts on 

photosynthesis occur in broadleaf species that have high 
interception of solar radiation, and may possibly occur in 

needleleaf species during periods of low wind speed and 
high radiative load (Kolb & Robberecht, 1996; Martin et aI., 

1999). Atmospheric conditions that promote high leaf 
temperatures in needleleaf species are not frequent; however, 

just a single day of lethal conditions could severely impede 

future photosynthesis if there are no stored carbohydrates for 

use in repair of the photosynthetic apparatus, such as during a 

severe drought. Mesophyll conductance to CO2 also shows 

temperature optima, and therefore may also be a constraint 

on photosynthesis under temperature extremes (Diaz-Espejo 

et aI., 2007). 
In addition to reductions in carbon uptake there are increases 

in carbon use for maintenance respiration and perhaps below

ground root production during drought. Carbon allocation to 

maintenance respiration may increase as a result of elevated 

temperatures of foliage, sapwood and roots (Amthor, 2000), 

although acclimation to temperature and drought may occur 

that would minimize this effect (Bryla et aI., 1997; King et al., 
2006). During relatively mild droughts, allocation to roots 

and sapwood may increase to maintain adequate K.. if there are 
carbohydrates available (Gower et aI., 1994; Cinnirella et aI., 
2002; Kozlowski & Pallardy, 2002). 

Carbon starvation may facilitate mortality from biotic 

agents (Fig. 3) when carbon starvation and the population 

abundance of these agents are synchronous (Schoeneweiss, 
1981; Mar<;ais & Breda, 2007). This synchrony is mediated 

by the degree ofwater stress imposed on the trees. The growth
differentiation balance hypothesis (Herms & Mattson, 1992; 

Reeve et aI., 1995; Stamp, 2003; Fine et al., 2006) predicts a 
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curvilinear relationship between water stress and carbon 
allocation to resin because moderate water stress impacts 
photosynthesis slightly but shifts carbon allocation from 
growth to storage and defensive chemicals. This shift in carbon 
allocation results in greater resin flow from phloem wounds in 
moderately stressed compared with nonstressed trees (Lorio, 
1986; Dunn & Lorio, 1993). However, severe droughts 
cause a cessation of carbon allocation to all sinb, including 
resin defense, when photosynthetic carbon gain is near zero 
(Christiansen et al., 1987; Waring, 1987; Herms & Mamon, 
1992; Lewinsohn et al., 1993; Reeve et al., 1995; Stamp, 2003). 
Consistent with the carbon-starvation hypothesis, ponderosa 
pine (Pinus ponderosa) resin flow decreases with stresses 
that reduce radial growth (Kolb et al., 1998; McDowell et al., 
2007). Drought duration is important because stored carbo
hydrates may temporarily buffer effects on carbon allocation 
to resin (consistent with Fig. 10). Studies examining carbohy
drate content oftissues in relation co drought and mortality are 
consistent with the idea that reduced carbon storage is associ
ated with susceptibility to hiotic mortality agents (Marryais & 
Breda, 2007). 

Carbon starvation may also facilitate biotic accack via 
changes in the release of volatile attractants or changes in the 
quality of forage for hiotic agents. The production of ethanol 
and other volatiles changes during drought in order to preserve 
cellular function (Kimmerer & Kozlowski, 1982; Tadege 
et aI., 1999) and perhaps as a byproduct of increased tissue 
temperatures associated with reduced transpiration (Hietz 
et al., 2005). Such increases in volatile emissions may be used 
by insects to locate stressed plants (Kelsey, 2001; Kelsey & 
Joseph, 2003; Manter & Kelsey, 2008). The composition 
of defensive compounds within plant tissues may also shift 
during drought, though little conclusive evidence yet exists 
(Tognetti et al., 1997; Thoss & Byers, 2006). Host palatability 
may improve or decline during drought, depending in part on 
soil nutrient availability (Price, 1991; Waring & Cobb, 1992; 
Warren et al.• 1999; Erbilgin & Raffa, 2000; Campo & 
Dirzo, 2003; Rieske et al., 2003; Hui & Jin, 2004) and 
phloem thickness (Amman, 1972; Haack et aI., 1984; Amman 
& Pasek, 1986). Lastly, predisposition to biotic agents from 
carbon starvation may feed back to hydraulic failure as the 
proximal call~e of mortality. For many pine species, hark 
beetles attack stressed trees and inoculate them with fungi 
that occludes the xylem, functionally halting transpiration 
(Larsson et al., 1983; Waring & Pitman, 1985; Lorio, 1986; 
Christiansen et al., 1987). It remains an open question 
whether hydraulic failure or carbon starvation per se leads to 
mortality in these cases (Wullschleger et aI., 2004). 

VI. Implications of future climate on 
hypothesized mortality mechanisms 

The hypothesized mechanisms of mortality presented in 
previous sections and their relationships to intensity and 
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duration ofwater stress have key implications for how tree 
mortality may occur in response to global climate change. 
Climate models generally agree that over the next 50 yr the 
Earth's surface temperatures will increase along with shifts 
in precipitation that result in greater drought severity and 
frequency (Cook et al., 2004; IPCC, 2007; Seager et al., 
2007). Thus, the recent drought-related mortality events that 
have been observed worldwide (Suarez et aI., 2004; Breshears 
et al., 2005; Ciais et al., 2005; Jurskis, 2005; Breda et al., 
2006; Gitlin et al., 2006; Allen & Breshears, 2007) have the 
potential to become more frequent and exert an impact on 
larger areas (Jentsch et al., 2007). Warmer air temperature will 
exacerbate the impact of drought on plant water loss by 
elevating the vapor pressure deficit of the atmosphere (D), 
thereby placing a greater demand on transpiration, as evident 
in the basic relationship: 

E= G,x D Eqn 3 

with D heing a function ofrelative humidity and temperature. 
An increa.~e in temperature will raise D, and hence E, thus 
forcing isohydric and anisohydric plants closer towards their 
respective mechanisms of mortality. For example, from Eqn 3 
we can predict that a rise in the Earth's surface temperature of 
1.1-6.4°C (IPCC, 2007) will result in a 7-48% increase in D 
and E if G, remains constant. For isohydric species, G, will 
decline to hold E below Eceit , pushing them closer towards 
carbon starvation. For anisohydric species, failure to sufficiently 
reduce G, in response to rising D will push them closer 
cowards \f'cei,' Increased D will also exacerbate drought by 
increasing evaporative losses of water from canopy and soil 
surfaces, and altered net radiation associated wi th climate 
change could also increase E (e.g. via the Penman-Monteith 
relationship on leaf temperature, Monteith & Unsworth, 
1990). Rising surface temperatures could also facilitate 
carhon losses to maintenance respiration as a result of the 
exponential dependency ofrespiration on temperature (Amthor, 
2000) if temperature acclimation does not keep up with 
temperature changes (Ciais et aI., 2005; King et aI., 2006), 
effectively reducing the time plants may survive on stored 
carbohydrates. Therefore, increased intensity and duration 
of future droughts will increase rates of mortality hyeither 
hydraulic failure or carbon starvation. 

A logical hypothesis is that the increased droughts pre
dicted to occur over the next century will initially result in 
increased mortality of isohydric species because these species 
have shown greater susceptibility to drought. However, 
droughts ofsufficient intensity could push anisohydric species 
past their threshold for hydraulic failure (e.g. Fig. 10). These 
hypotheses can be shown via a modeling exercise using the 
pifton-juniper case study (Fig. 13). We predicted leaf carbon 
gain in the same manner as for Fig. 11 (b) and hydraulic 
failure with a \f'lcaf for zero G, set to -2.5 MPa for pifton and 
'Pcrir of 100% cavitation set to -6.9 MPa for juniper (West 
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Fig. 13 (a) To the left of the gray bar are 3 yr of monthly observations 
of predawn water potential for pinon (open circles) and juniper 
(closed circles) as from Fig. 11 (a), and to the right of the gray 
baris a simulation of the water potential response to a severe 
drought. A description of the simulation is given in the text. 
(b) Seasonal leaf carbon gain modeled as per Fig. 11 (b) using 
values of juniper predawn water potential as observed between 
2004 and 2007 (left of gray bar) or simulated for 2007-2009 
(right of gray bar). 

et ai., 2008), using predawn water pOtentials for 2004-2007 
from Mesita del Buey as a starting point. We assumed a 3 yr, 
50% reduction in rainfall, as occurred in 2000-2002, (Breshears 
et at., 2005) and a conservative 7% increase in evaporative 
losses resulting from a D increase associated with a 1.I°C 
surface temperature increase (IPCC, 2007). Under this 
scenario, predawn water potential reached \f of zero G. and 
\ferit in 7 and 15 months, respectively (Fig. 13a). Pinon never 
achieved a positive carbon balance during the simulated 

drought because the starting \f value was already below the 
zero carbon balance point, whereas juniper maintained a 
positive carbon gain until \ferit was reached (Fig. l3b). This 
simple exercise assumes no physiological acclimation, but is 
conservative relative to climate predictions for the next 
century (IPCC, 2007; Seager et ai., 2007). 

It is less clear what the impact of an increased frequency 
of droughts, or increased climatic variability (IPCC, 2007), 

will be on mortality. Climatic variability in association with 
decadal and multidecadal Pacific and Atlantic Ocean oscil
lations certainly has large impacts on vegetation mortality 
(Swetnam & Betancourt, 1998; McCabe et at., 2004). 
However, it is difficult to predict a generalized response to 

climate oscillations because there is a lack of consistency 
between observations and predictions of mortality response 
to climate oscillations. According to the hydraulic framework, 

nonlethal droughts should promote drought resilience, or 
ability to survive droughts. This is because plants typically 
respond to nonlethal drought by acclimation ofkey hydraulic 
parameters from Eqn 2 such as leafarea (reductions), root and 
sapwood area (increases), and cavitation resistance (increases), 
which should bolster trees against future droughts (Cinnirella 
et at., 2002; Holste et at., 2006). However, some field 
observations have shown that trees that die are predisposed to 

death by a prior drought period. This may depend on species 
and edaphic circumstances. Some species have shown 
increased cavitation susceptibility after exposure to drought 
(Hacke et ai., 2001) or a feedback spiral of reduced carbon 

gain leading to reduced growth and subsequent inability to 

fight off pathogens or insects in later droughts (Pedersen, 
1998). In contrast to dry periods, the hydraulic framework 
predicts that particularly wet periods will promote susceptibility 
to future drought via increased growth of leaf area and 
reduced growth of roots and sapwood, resulting in trees that 
have high ratios of hydraulic demand (leaf area) to supply 
(root area) (e.g. Eqn 2; McDowell et at., 2006). This is 
consistent with the observation of increased mortality in 
fast-growing compared with slow-growing oak trees (Jenkins 
& Pallardy, 1995, T. Levanie & N. McDowell, unpublished 
data). Likewise, this may in part explain the high mortality 
rates in 1996 and 2002 for pinon pine because southwestern 
USA experienced above-normal precipitation between the 
late 1970s and early 1990s (Breshears et ai., 2005). 

Climate change-driven drought will also increase tree 
mortality via wildfires, both directly through combustion 
and, more pertinent to this review, indirectly via structural 
damage that predisposes trees to biotic attack (McHugh & 
Kolb, 2003; Sieg etai., 2006). Wildfire extent and severity 
are strongly influenced by regional temperature and global 
climate systems such as the El Nino-Southern Oscillation, 
and are expected to increase with climate change (Swetnam & 
Betancourt, 1998; Westerling et at., 2006). Trees are killed by 
fire when exposed to temperatures greater than 60°C, and 
death of remaining above-ground tissues occurs as a result of 
disruption of water and carbohydrate transport when heat 
damages phloem and xylem (Ducrey et at., 19%). For trees 
that survive, fire reduces whole-tree leaf area and subsequent 
photosynthesis and carbon allocation to insect defenses 
(Wallin et at., 2003) and may increase olfactory signals (Kelsey 
& Joseph, 2003), leading to preferential attack from biotic 
agents such as bark beetles (Bradley & Tueller, 200l; 
McHugh & Kolb, 2003; Parker et at., 2006; Perrakis & Agee, 
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2006). Mortality of fire-damaged trees with low resin defenses 
caused by bark beetle attacks is likely a consequence of carbon 
starvation in which the source of low carbon reserves is 
defoliation from drought-associated fire, rather than from 
prolonged stomatal closure. Future fires will preferentially shift 
the landscape towards species that can resprout or quickly 
recolonize. 

VII. Conclusions 

The hydraulic framework allows quantitatively informed 
analyses of the mechanisms of mortality. Hydraulically 
mediated carbon starvation, and subsequent predisposition 
to attack from biotic mortality agents, is a likely cause of 
mortality in isohydric species because of their large margins of 
hydraulic safety. Mortality of isohydric species is particularly 
likely during prolonged droughts of intermediate intensity. 
This conclusion is consistent with prior theoretical modeling 
exercises and empirical results. Hydraulic failure is a potential 
cause of mortality in plants with isohydric constrained 
hydraulic conductance, such as particularly tall trees with a 
long hydraulic pathlength or plants with small rooting 
volumes such as seedlings. Ironically, the relatively drought
tolerant anisohydric species are more likely to die from 
hydrau[ic failure than carbon starvation because they maintain 
a thin margin of hydraulic safety. Mortality of anisohydric 
species is particularly likely during intense droughts. 
Demographics of biotic mortality agents may interact with 
carbon starvation or hydraulic failure to facilitate mortality 
because periods ofdrought are generally favorable to increased 
abundance of insects and pathogens. Mortality in the absence 
of drought should occur at low rates because some trees may 
suffer from carbon limitation even during wet climatic 
periods as a result of prior injury (e.g. from drought or 
mechanical impact) and the eventual exposure to the 
ever-present population of biotic mortality agents. 

We hypothesize that fUture droughts will kill isohydric 
species first via carbon starvation and subsequent predis
position to insect and pathogen attacks, and will result in 
mortality of anisohydric species only if hydraulic failure is 
reached as a result of particularly intense droughts, prolonged 
drought duration, or in cases of edaphic (e.g. soil) or size (i.e. 
seedling and trees at maximum height) related constraints on 
hydraulic conductance (Figs 10 and 12). Preferential mortality 
of isohydric species may have large demographic impacts 
through a reduction in seed sources, shifting the landscape 
towards anisohydric species (Mueller et al., 2005). The potential 
for long-term changes to regional vegetation composition 
is significant, supporting the need for biogeochemistry and 
climate models to continue refinement ofdynamic vegetation 
simulations (Neilson et al., 2005; Bonan & Levis, 2006; 
Scholze et al., 2006). These demographic implications may be 
exacerbated by shifts in the ranges of biotic mortality agents 
associated with climate change (Simberloff, 2000). The 
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greater likelihood of extreme climate events during this 
century, as many climate models predict, together with 
chronic climate warming will most likely lead to increased 
vegetation mortality and declining forest cover in many 
regions. Isohydric and anisohydric regulation of leaf water 
potential may partition species survival and mortality, and 
may be an effective approach to modeling plant survival and 
mortality under future climate conditions. 
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