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The number of invasive ex.oric planr species esrablishing in the Unired Srates is conrinuing to tise. When prevcnrion 

of exotic species from emering inco a counrry fails at the national level and the species esrablishes. reprodut:es, 

spreads, and hecomes invasive, the mosr successful a([ion a, a locallevcl is early detenion followed hyeradication. 

We have developed a simple geographic infotmation sysrem (GIS) analysis for developing watch lists for early 

detection of invasive exotic plams that relies upon currently available species disrriburion dat:l coupled with 

environmental data to aid in describing coarse-scale porcmial disrriburions. This GIS analysis rool develops 

environmental envelopes for species based upon the known disrribution of a species thought to be invasive and 

represents the firs, approxima,ion of its potential babita, wbile the necessary data are collected w perf'onn more in­

deprh analyses. To valida,e thi~ merhod we looked at a rime series of species distributions for 66 species in Pacific 

Norrhwes, and northern Rocky Mountain counties. The time series analysis presenred here did selecr counties that 

[he invasive exoric weeds invaded in subsequenr years, showing rhat thi~ technique could he useful in developing 

watch lisrs fot the spread of parricular exoric species. We applied this same habitar-marching model hased upon 

bioclimaric envelopes to 100 invasive exotics wirh various levels of known distributions ""rh1n continental U.S. 

counries. I;or species wirh climarically limited dimibmions, county watch lisrs describe county-specific vulnerability 

ro invasion. Species with matching habirars in a COUllty would he added to chat county's list. These watch lists can 

influence managemem decisions for early warning, control prioriti7,.;Jtion, and targered research to detetlni ne specific 

locations wichin vulnerable coumics. This rool provides lIseful information for rapid assessmem of the porenrial 

disrrihution based upon climate envelopes of current distributions for new invasive exotic spe.;ies. 

Key words: Exotic species, geographic information system, invasive species. irerative sampling, modeling, rapid 

assessment, weeds. 

Invasive exoric plant species are one of the major threars In invasive exotic species management, prevention of a 
of the 21st century, negatively impacting human health novel exOtic species teaching a new location is key to 

(Mack et al. 2000), the economy (Pimentel et a1. 2005), reducing unwanted invasions (Rejmanek and Pircairn 
native species, and ecosystem processes (Virousek et al. 2002). Priot to species esrablishmeru, early detection 
1996; Wi!cove et a!. 1998). The rare of exotic species' quickly followed by control and eradication is the mosr 
inttoductions appears [0 be increasing with globalization effective course of action in reducing spread. The cost of 
(Levine and D'Antonio 2003; Srohlgren et al. 2008; Wotk eradicating an exotic species increases exponentially as an 
er al. 2005), exacerbating rhese potenrial negative impacrs. infe.sration grows (Rejmanek and Pitcairn 2002). The large 

number of species already established or currently enrering 

001: lO.l614/IPSM-08-073.1 rhe United Stares coupled wirh rhe rime and labor demands 
• First, second, and fourth amhor>: Ecologisr, EcoIogisr Trainee, of screening for potencial invasiveness and early detection 

and ]f1va,ive Species Brancb Cbief, U.S. Gcologicat Survcy, Fan of key species makes the problem seem intractable (Levine 
Collins Science Center, 2 \ 50 Cenrre Ave., Building C. Forr Collins, and D'ArHonio 2003), Therefore, an early warning system 
CO 80526-8118; third author: Researcb Associace, Narura! is necessary in the prevention of new infesrations (Lodge et 
Resource Ecology Laboratory, Colorado Scm: University, Campus al. 2006); rhe c[earion of watch lists such as those suggesred 
,~fail 1499, Fort Collins, CO 80523-1499; fifth aumor: Biora of hete are an important component of such a system. 

Norrh AmeriC<l Program. 9319 Bracken l.ane, Chapd Hill, NC Regrettably, rhere is often a dearth of specific biological 
27516. Corrcsponding aurhor's E-mail: j'lrnevichc@usgs.gov kno·wledge about any parricular exoric species. Alrhough 
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ern rool: 

several differem methods exist ror predicting the potential 
distribution of an exotic in a new range (Caley and 
Kuhnert 2006; Krivanek and Pvsek 2006; Richardson and 
Thuiller 2007), these method; generally are used at the 
scale of countries, and require specific information about 
the native tange of the species (see Ficetola et al. 2007; 
Richardson and Thuiller 2007). Data on country distribu­
tiom are generally easily obtained. Herbarium collections 
may be used to generate Ijsts of invasive exotics for political 
entities such as countries, states, or counties, bur such lists 
are not inclusive; the species listed are not systematically 
collected nor are the species lists developed for this 
purpose. Ecolngical data concerning a porential invasive 
exotic species, including its life history requirements. may 
often be lacking unless the species has displayed invasive 
characterisrics elsewhere or it has been well studied 
throughout its narive range. Collecting these data for new 
invaders can ofren be time intensive. 'X'hen a new exotic 
species is located, managers may not be able to wait for 
derailed data colleerion and analysis befote taking action. A 
quick, general way to prioririze species watch liSIS at rhe 
scale of a management unit sucb as a U.S. counry would be 
a useful rool for field managers involved in early derection 
and rapid response activities. 

Thete are many techniques available for predicting 
species ranges (see recent review by Elith et al. 2006), 
rypically requiring point locarions for a species or an 
overlaid grid with cells identified as presen t or absent based 
upon field data. Unfortunately, these rypes or location data 
are ofren not obtained easily by resource managers. 
Occurrence data for invasive exotic plant species across 
large spatiaJ extents are ofren only readily available at 
counry-Ievel (or even state-level) distributions (or as species 
lisrs for areas such as narional parks or wiidlife tefUges). 
although there ate several online systems being developed 
to synthesize disparate f,dd data sets for invasive exotic 
species. Because of the varied size and sbape of U.S. 
counties, it can be difficulr ro transform rhese data inro the 
required poim locations or grid of presence locarions. 

There are two suites of environmenral niche models that 
are lIseful in determining species occurrences, rhose 
requiring presence-only data and rhose requiring presence 
and absence data. These models can be generated with 
location data from many sources. including mmeum and 
herbarium records, research survey dara such as plot data 
and transects, and invenrories of species for specific areas. 
Models using presence and absence data will be more 
discerning and can distinguish between factors related ro 
species absence as well as ptesence (Brorons er al. 2004; 
Zaniewski et at. 2002). However, when reliable absence 
data are unavailable differenr sttaregies may be recom­
mended. Genetally, absence locations are not implicitly 
collected in weed surveys (Barnett et a1. 2007; North 
American Weed Managemenr Association 2002), and often 
may only be inferred if an entire area has been surveyed or 
all inspected locations are known. However, this informa­
tion is generally not included ilt online databases that make 
presence data readily available (e.g., Invasive Plant Atlas of 
New England [Universiry of Connecticut 2007]). Other 
data sets, including those ftom museums and herbaria and 
species lists for areas such as counties or nationaJ parks, also 
lack absence data, again resulting from our lack of 
knowledge abour survey locations or hecause of lack of 
informarion on survey targeting and extent for species 
occurrence data. Where available, absence data has the 
potential of false absences (e.g., where a species is cryptic ot 
present as a buried seed; Crossman and Bass 2008; Rouget 
et al. 2001), and the species could be unreporred or absent 
even in highly suitable habitat. Detection of an exoric 
species can often be diftlcult early in the invasion process as 
some exotic species often grow in relatively small numbers 
for a period of time after the introduction, whicb is called 
the lag phase (Crooks 2005). Missing these presence 
locations can cause etrors in models by missing important 
suitable habitats (Horral et a!. 2008. but see wisel1e et a1. 
2008). Another kind of false absence may result from the 
fact that there is a high probability that the new invading 
species has not yet had the opporrunity to establisb itself ae 
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a particular 10cariol1, and so is our of equilibrium with irs 
environmenr. Given oppoHuniry and rime, me invader 
could evemually estahlish itself and spread into areas where 
it is currently ahsem. In these siruations, where a species 
does not occupy all suitable habitar, presence-only models 
have oue-performed presence/absence methods (Browns er 
al. 2004; Hirzel et al. 2001) and have been used insread 
(Gibson et al. 2007). Thus, we choo.~e w use presence-only 
dar-a in rhis paper for exoric species distriburion modeling. 

Given the chaIJenges of obtaining species-speciFIc data 
for exotic plants, data format (poim locations or regular 
grid) limitations, and inaccuracies of absence dara along 
with the issues associated with species distriburion models, 
we have developed ,vhat we believe w be a quick and 
effective merhod of providing information early in rhe 
invasion process co guide management decisions umil the 
informarion and resources to develop more derailed and 
specific models become avaLlable. This geographic infor­
mation system (GIS) program is adapted from an earlier 
program that we created, whieh incorporates known paine 
location data to create an environmental envelope for a 
species (Barnett et al. 2007; Evangelista et al. 2008). This 
method is simple enough for users who may not have rhe 
sta tistical background necessary w understand more 
complex predictive modeling rechniques. Ir incorporates 
counry-level species lists and ancillary data layers such as air 
temperature and annual precipitation as parameters; in this 
example we chose general bioclimatic paramerers (although 
other environmc::nral parameters such as topographic p:l­
rameters could be used) rhat are fundamentally importanr 
for mosr plant species' gro'....1:h and eSC<lblishmenr rather 
tban paf:lmerers necessary for a panicular species. Here, we 
derail our system for generating "watch lim" of species 
based upon currencly reported county-level distrihution 
data in association with various biodimatic factors. We 
plan to make this srstem avaitable for use at the National 
Institure for Invasive Species Science (National Institute of 
Invasive Species Science 2008). This GIS program will 
create a bioclimatic envelope of a species' porential 
distribution hased upon where the species is known to 
currendy occur. These envelopes ate defined by the range 
in biodim<luc conditions where a species is currently 
known and can be used to assess the potemial spread of the 
species and develop watch liscs for e.1r1y dececcion activities. 
Informacion is quickly available while more derailed 
assessmencs are gathaed. 

Materials and Methods 

Invasive Exotic Weed Data. We obtained counry-level 
presence data from 2004 and 2007 for the top ] 00 most 
problematic invasive exocic plant species within the 
conriguous 48 stares of rhe Uuited States from the Biota 
of North America Program (BONAP; Kartesz 2004, 

2007). BONAP maintains a county-level dataha..~e of 
current occurrence data and hiscoric herbarium recocds 
for all known vascular planes in the United States. The top­
100 list includes me most problematic invasive exotic 
species. These species covered a broad range of spacial 
distributions, from mesquite lProJopiJ juliflora (5w.) DC] 
found in one county to curly dock (Rumex crispus L.) found 
in 1,846 coun ties across 47 states. 

Validating our method required a tempocal dara set 
because we were predicring the potemial range of an exotic 
species given an initial disrribution after imroductiou. We 
used a counry time series data set from the INVADERS 
database (Rice 2006), which records exotic planr occur­
rence records for all counties in the PaciFIc Northwest and 
nonhern Rocky Moumain states of Washington, Oregon, 
Idaho, Momana, and Wyoming, hereafter called the 
Northwest. We queried counry-Ievel distributions for all 
100 species for t 930, 1960, 1990, and 2005. Some of the 
species documemed only a single occurrence reeord for a 
time-step and 27 species were undocumented for these 
states for all four time periods (not recorded), precluding 
rheir use. Thus, sampIe sizes varied for each rime period, 
resuJring in envelopes for 44 species for 1930, 57 for 1<)60, 
66 for 1990, and 69 for 2005. 

Climate Data Layers. We derived 19 bioclimatic ra.ster data 
layers (Appendix A) from average monthly precipitation, 
minimum temperature, and maximum temperarure (Nix 
1986) using an ArcAML script (Hijmans 2006). These 
variables represem annual trends, seasonality, and extreme oc 
limiting bioclimaric facrars. To represene currene climate 
conditions and species habitat we used the PRlSM dara ser, 
(Daly et a1. 2000; PRISM Group 2007), an 800-m (2.625-ti:) 
resolution 30-yr average data ser for 1971-2000. We then 
summarized the biodimatic variables for each counry using 
ArcGIS's Spatial Analyst Zonal Statistics tool l to calculate 
the minimum, maximum, mean, and range for each vari­
able for each councy. From these four metries we chose tbe 
statistic that matched the variable most closely, for example 
for BioI, annual mean temperature. we chose the mean. and 
for Bi06. minimum temperarure of the coldest momh. we 
chose the minimum. This method allowed us co take the 
extremes in counties rathec than simply using an average 
across cbe couney. 

Bioclimatic Envelope Tool. We developed an ArcGIS 
script to determine che biodimatic ellvelope of a species 
defined by ics known polygonal presence locations (in tbis 
case, counties). We created a bioclimatic envelope for each 
variable for each species; we define a bioclimatic envelope 
a..~ rhe range ofhiodimatic variability over which the species 
can survive. For example. we obr-ained rhe lowest recorded 
temperature and the highest recorded remperanue for a 
species in counties where ic is presenc. We rhen compared 
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Table I. Rc.sults from predicred dimibmion wirh rhe envelope model compared ro actual disrribution. 

Average % of Range in number of 
Envelope Actual Species new recorcLs county watch li.m including 

model distriburio n sample size predicred Sensitivity" Specificityb a certain species 

NW1930 NWI960 18 85% 92 27 63-151 
NWI960 NW1990 37 95% 94 24 26-148 
1'<'\\71990 NW2005 50 80% 96 25 40-150 
NW1930 BONAP2007 18 86% 86 37 63-151 
NWI960 BONAP2007 37 93% 91 29 26-148 
NW1990 BONAP2007 50 95% 95 25 40-150 

'Sensirivity is the proportion of trlle posicives, or [he numher of counties predicred as present where the species Vias actually recorded 
as present in rhe future. 

b Spe<.:ificity is rhe proportion of rrue negatives, or rhe number of coumies predicted as absent where (he species was nor recorded as 
presenr in rhe fUture. 

this range co coumie.~ where the species is absenr according 
to the BONAP data set and recorded if the county's value 
fell inside (assigned a value of one) or outside (assigned a 
value of zero) the range of the recorded ptesence locations. 
l~inally, we summed these values of one or zero for all of 
the variables by county. The sum indicares the number of 
variables for each county that fell within the biodimatic 
envelope of the species. Since 19 variahles wete used, a 
value of 10 would mean that the county was within the 
range of 10 variables and ou tside the range of nine 
variables. We did not differentiate betWeen the variables, so 
counties with a value of 10 would not necessarily fall within 
the range of the exact same 10 variables. 

For validation of the method we developed a hioclimatic 
envelope for each of the 100 worst exotic species ~lresent in 
the Northwest in 1930 and compared it to the species' 
tecorded dimibucion in 1960, 1990, and 2004. We llSed 
the Norrhwest data set because we could use the time 
periods to check validity. \Y./e performed the same 
compatison using rhe updated envelopes based upon rhe 
new species locarion tecords for hath 1960 and 1990 to 
further validate the technique. Assessmem mettics included 
percentage of new occurrences captured by the envelope, 
sensitivity and specificity (Fielding and Bell 1997), and the 
number of collnties added to the watch list. Sensitivity is 
the probability that observed ptesence locations were 
ptedicted correctly; specificity is the ptobability rhat 
absence locations were predicted correctly. Because rhe 
assessment metries required hinary data, we defined 
anything with an envelope value of at least 15 as present. 
We selected 15 as the cutoff by examining the number of 
presence locations in future years that fell into each of the 
19 envelope coune classes and selected the one where the 
\'alues leveled off for all species. The envelope from each 
time period for the Northwest and thl;: envelope from 2004 
were also compared co the 2007 BONAP data sel. After 
validation we examined an application of this bioclimatic 

envelope method, calculating the hioclimatic envelope in 
the United States for each of the 100 worst invasive exotics 
in the BONAP dara set to examine potencial species 
distriburiom. 

Results and Discussion 

Validation with Time Period Analysis. Because we 
examined 100 species, we presen t general trends and a 
few detailed examples (for all 100 species and occurtences 
see AppendiX B). A minimum of 15 occu [(ence records was 
required to capture future occurrences, as determined by 
examination of sensitivity and sample size, thus we used 
this value a.~ a cutoff for including species \"ithin furtber 
analyses teported hete. For all species in the time series, 
average sensitivity of the envelope was 92, 95, and 96% for 
1930 applied to 1960, 1960 applied to 1990, and 1990 
applied to 2005, respectively (Table 1). However, speci­
ficity, which was calculated by defining all counries not 
reporting a species as "ahsence" locations, was much lower, 
meaning that the envelope overpredicted the species 
distribution (27. 24, and 25%, respectively; Table I). 
These low specificity values could be caused hy calculating 
the metrics using absence locations that were not 
necessarily unsuitable locations for the species to grow. 
!Uther, these were places where the species has not been 
recorded either hecause of sampling errors (these data are 
hased on museum tecords and not a statistical sampling 
design) or hecause of suitabk habitat where the exOtic 
species has not yet arrived. All species have cominued to be 
recotded in new locations for the time petiod, including 
the most recent, although this period was half that of rhe 
othets. Although this could he a result of failing to detect or 
report a species, in previous analyses using the INVADERS 
data, we determined that at least some of the new records 
through time are due to species spread (Stohlgrcn et aJ. 
2008). Another reason for the dtastically different 
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a 

Envelope 
0-3 ··'7-9 1113_14.,8_191211930record 

::i:;f4-6i110-12.15~17 ~1960record 

b 

Envelope 
0-3 illf7-9 .13-14.,8-191211960record 

:>;14 - 6 10 - 121115 -17 ~1990 record 

Figure l. A bioclimaric enyelope was generared from all 
occurrences recorded by (a) 1930 and (b) 1%0 for hoary cress. 
Coumies are colored according to the number of biodimatic 
variables within the range defined by the bioclimatic envelope. 
Counrics outlined in bold with diagonal lines through rhem 
indicate recorded observarions by the years (a) 1930 and 1%0 
and (b) J%0 and J990. Ir was fOllnd in all counries by 2005. 

scusitivity and specificity values relates to rhe development 
of the envelope. Factors limiting rhe distriburion of the 
species may not have been included in the suite of 
predicrors, leading to overprediction. Other methods for 
determining species distributions thar develop statistical 
relationships with variables using both presence Md 
absence dara may be berrer able ro differemiate suirable 
habitat. 

for example, we created a biodimaric envelope for hoary 
cress lCmdaria tlraba (L.) Desv.] using the data from 1930 
(Figure 1a) and 1%0 (Figure Jb) and then compared the 
envelope's predicrion ro the reponed distribution from the 
next lime periods (1960 and 1990, respectively). The 1930 
envelope for hoary cress captured many of the new 
locations in 1960, but not as grear a ptoportion of the 

future time-step's new 10Glcions. The 1%0 envelope 
caprures more of rhe future time-srep's new locarions 
because rhe species had spread to locations with biodimaric 
condirions nor encompassed by the 1930 recorded 
distribution. By rerunning the envelope with the new 
locarions from 1960 the envelope improves byencompass­
ing these novel environments, supporring rhe need for an 
iterative approach to improve rhese models as new records 
are added to the database (Stohlgren and Schnase 2(06). 

Selecring all counties wirh a 1930 envelope score of ar 
leasr 1') for each of the species, on average 88% of locarions 
reported a~ present hy 2007 were captured by the envelope. 
The time series results indicate ehar this is a useful 
technique to reduce potential locarions to watch for such 
species to appear. County watch lisrs may be generated by 
adding species to county lists when the county has a high 
envelope score. 

Based upon the results from rhe Northwese time series, 
we found this method to be infurmative for creating species' 
watch lists. This simple model captured many of the new 
occurrences reported in fu ture rime srep~. The benefits of 
rhis approach are thar lirrle has ro be known about the 
individual species, which is helpful for unresearcbed, newly 
esmblished exotic species. TIl.is merhod provides immedi­
ately useful information while more detailed informarion is 
heing collected and analyzed. More detailed informacion 
could he used to predict locations within an ar-risk connty 
where rhe species will be most likely ro occur. ln evel)' case, 
the number of coumies on a warch lisr generated from the 
envelope resulrs was still fewer rhan the 199 counties in rhe 
Northwesr region (Table 1). 

This merhod may be especially llseful in situations where 
errors of omission (a species is predicted absent when 
present) far outweigh [hose of commission (a species is 
predicted present when ahsent). The method performed 
velY well ar capturing new locaeions and new potential 
locations. However, occasionally it overpredicted. perhaps 
due to capturing appropriate biodimatic condirions for 
growth rarher than the subset of those locarions a species is 
limited ro hy interacrions with other organisms. For rhe 
species we examined, ie is difficult to know if rhese species 
have reached rhe full range of rheir potential disrribution or 
if rhey are srill spreading. The BONAr dara set compiled 
in 2007 showed increases for all but five of the 100 species 
from the 2004 data set (an average increase of 99 counties 
added ro a species' distribution), suggesting thar the species 
examined are srill being found in new locations. 

Model Applications. Application of rhe bioclimaric en­
velope for the 100 worse invasive exotics suggesced rhat all 
species could spread rdative to rhe 2004 BONAP data set 
disrribution. On average, species were recorded in 635 
cowIties in 29 states. The average number of counties for 
each species with an envelope value of ar least J5 (e.g., at 
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least 15 of the 19 parametets fot the county were within the 
range ofrhe envelope) was 2,513 counries in 43 states, for a 
predicred average increase of l,878 counties in 14 states 
from the 2004 distribution. Thus, a species could be added 
(0 an average number of 1,878 counrv watch lists. 
Although thi; number is large, the envelop~ for 45 of the 
100 species included fewer rhan 10 new states, meaning 
that 45 of rhe species would be added to rhe \vatch lists of 
fewer than 10 srates. 

Almost all species in rhe BONAr data set did have 
increased occurrencc records ber,.veen 2004 and 2007. 
Eleven species could not be compared due to changes in 
taxonomy. which made it diffi<.:ult to differentiate between 
distribution changes based upon renaming a species and 
actual spread. For the remaining 89 species, the average 
number of species per county increased from 635 counties 
in 29 states in 2004 ro 686 counties in 31 states in 2007. all 
average increase of 98 counties over the 3-yr period. These 
da ta again suggest thar the selected species are still 
increasing in distribution, further validaring the method 
as the biodimatic envelope models based upon rhe 2004 
disttibutions showed potential inctease in disttibution, 

As an example of the tesults, \ve selected two specie,~ with 
different current distributions-clustered \'S. highly dis­
persed-to discuss in detail. Maly's-grass [Mirrostegium 
vimineuin (Trin.) .A.. Camus vat. imberbe (Nees) Honda], 
introduced into Tennessee in 1919, was found in 325 
counties in 23 states in the eastern United Slates in 2004 
and had a small predicred bioclimatic envelope (Figute 2a). 
Yellow starthistle (Centdurea .wLrritialii" L.), introdu<.:ed in 
the mid-1800s, was also found in small number of counties 
(218 counties in 32 srares), but rhese locations were widely 
distributed across the United Srares and in more states 
rather than dumped (Figure 2b), The predicted envelope 
suhsequently had a larger predicted distribution. Species 
such as curly dock and green foxtail [Setaria viridii" (L) 
Beauv.] were reporred in at least half the counties within 
the wntiguous United States and had predicted extents 
covering most coullties. However, even for the.~e species, 
unique counties such as hot, dry counties in the Southwest 
and hot, moist ones in the southern tip of Florida had a 
lower habitat match value and therefote lower Dumber of 
parameters within the envelope. The specie.~ Mary's-grass 
would then be added ro the watch lists of a fewer counties 
than yellow starrhisde, which would be added ro almost all 
counties' lists. This method for generating watch lists may 
be more beneficial for species such as Mary's-grass (species 
only on a few coumies' lists) than potentially widespread 
speCles. 

Generalist species such as thistles tend to sptead easily 
due in parr to their plumose seed dispersion method, and 
such coarse-scale modeling techniques may not be 
beneficial, as with yellow starrhistle. These generalist 
species do well in most habitats and tend ro have potential 
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Figure 2. Couney-level distribution wirh rhe current distribution 
(defined as the counties where rhe Biota of North America 
Program [BONAP] data set recorded rhe species as presenr) are 
filled wirh slashed lines in black (2004) and grey (2007) for (a) 
Mary's-grass and (b) yeBow sranhiscle. Counries are colored 
according co the number of predictor variables thac fell wirhln 
rhe range of the hioclimaric envelope genera red from rhe 2004 
BONAP disrribution, where higher values indiclte greater 
hJbitat suirahilit)". 

habitat in the vast majority of counties wi thiD the Unired 
States, and may be more difficult m model (Evangelista et 
a!. 2008). However, for species that are highly restricted by 
environmeot in their distributions. such melaleuca [lvlel­
alrura IJuinqllenerllia (Cav.) Blake], this technique could 
inform resource managers in diverse locations whether or 
not they need ro monitOt for the appearance of this plant. 
Melaleuca grows primarily in hot and wet conditiom, 
which means that the bioclimatic envelope of this species is 
very specific. Managers working in the desert southwest or 
cold mounrainous regions can prohahly rule our the need 
to monitor fOt such a plant. Although Mary's-grass is DOt as 
specialized as melaJeuca., it Still appears more testricted in 
its distribution than a thistle, and managers in the western 
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United Stares could again leave it off a watch lisr 
(Figure 2a). lr is rhis ability to tule out species for an area 
that is patticularly helpful in rhe development of species 
warch lisrs. 

If dara were available fot watersheds or ecoregions radler 
rhan politically defined unirs such as counties, yve would 
recommend using these data because rhey would be less 
prone ro rhe errors associated with amalgamating climatic 
data across a latge, diverse county. However, data for 
poIi tically defined regions ate much more readily availahle, 
and despite the issues associated with a single COUnty 

encompassing very diverse condi tions, this technique sril! 
has SOIne value. Also, by using metries orher than simply 
means for the coumy, we were able to caprure some of the 
extremes that do exist (e.g., if minimum temperarure is 
limiting, using the loweSt minimum temperature found 
anywhere within the county would indicate whether the 
species could survive any\vhere within the counry). 
Ad.ditionall y, rhis technique is not limited to the 
hioc!imatic predictors used here. Other variables deemed 
important for a parriculat species or a suite of species 
couJd be used to detJne the environmental envelope of a 
species. 

This method is not meant to replace ocher, more 
detailed methods. Jt only predicts locations that may be 
suitable climarically, and with the vatiables chosen in rhe 
example presented in rhis paper, and does nor explore other 
poretltially limiting factors such as bioric interacrions. It 
can be used as a firSt approximation of potential habitat 
after the establishment of a species rhought to be invasive 
while the necessary data are collected to perform more in­
depth analyses. As iflustrated by the time series data, tbe 
merhods described here could provide a useful means to 
quickly develop watch lim for the network of COUnty weed 
coordinators across the country requiring few addirional 
resources. The models may also be useful in selecting 
prioriry weed species for comrol based on theit potencial 
spread, and can certainly provide utility as a first-iteration 
modeling approach to inform immediate actions while 
mOte detailed data are colleered. 

Sources of Materials 

I ArcGIS, ESRI. Redland~, CA. 
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Appendix A, .t\inerecn hiocLimatic variables derived from average mOIlthly precipitation, l111nllTlUm rem perature, cUld malnmum 
temperarure, based on N jx (1986), 

Name Deseription 

BIOI Annual mean temperatUte 
B(02 Mean diurnal range (mean of monthly [maximum n;mperattlre - minimum rcmperature]) 
Bl03 Isorhermality (BI02/BI07) (X 100) 

BI04 TemperatUre seasondity (standard deviation X 100) 
BIOS Maximum temperature of wannesr month 
Bl06 Minimum rcmperamrc of coldeS[ momh 
BI07 Temperature annual range (8I05-BI06) 

BI08 Mean temperature of wettest quarter 
BI09 1\:1ean temperature of driest quarrer 
BIOlO Mean temperature of warmesr quarrel' 
BIOII Mean temperarurc; of coldest qllarrer 
BT012 Annual precipirarion 
BI013 Precipirarion of w(~rresr monrh 
B1014 Precipitarion of driest monrh 
BI01') Precipitation seasonality (coefficient of vc\rimionl 
BI0l6 Precipitation of werres[ quarter 
mO]7 Precipiration of driest quarrer 
BIOl8 Precipiration of v,"drmesr quarrel' 

BIOl9 Precipitation of coldest quarrel' 

Appendix B, One hundred of the moST prohlematic invasive exoric species idenrified hy BONAP' and the numher of counties iu the 
northwest (INVADERS darabase) and rhe continenral US (BONAl> database) each is present in per rime period. 

INVADERS darahase BONAP database 

Scienrific name Common name 1930 1960 1990 1005 2004 2007 

Abutifoil theophrtuti Medik. Velvetleaf 3 7 38 63 9'54 1,167 
Achillt'a millc[O/iuTIJ L. Yarrow, common 2,068 
Aegilops cylindric'll I-Iosr GoargrJss, jointed 6 17 51 462 480 
Ailanthus altissimrt (P. Mill.) Swingle Tree-of-heaven 5 10 18 20 720 920 
Akcbitt quinata (Hourf.) Decne. Chocolate vine 42 60 
Albtzitt futibti~Jin Dur-Ju. Silkrree 439 5'52 
Alhagi mtwrorum Medik. Camelthorn 2 4 43 44 
A/lictria petio/ata (Bieb.) Cavara & Grande Musr-Jrd, garlic 2 383 591 
Allium I/ini'ale l.. Garlic. wild 6 10 11 7'56 817 
.Amamnth1/.s retrofle:ms L Pigweed, redrool 1,I14 
ATilbriw'a rJrterniJiifolia L. Ragweed, common 1.777 
Avma lama L Oar, wild 22 33 52 74 433 456 
Bromm t!'etomm L. Brame, downy 66 122 155 171 1,507 1,677 
Br;yollia alba L. Bryony, whire 15 24 33 34 
CapJcI& bursa-p(/storis (L.) MediI.:. Shephcrd'~-pufse 58 88 120 133 1,832 2.038 
Gm/arirl chalapl'nsis (L.) Hand.-Maz. Whitetop, lens-podded 8 15 23 124 
Cardaria draba (L.) Dew. Cress, hoaLy 19 53 105 161 500 532 
Cardu1IS rtutans L. Thistle, musk 3 19 55 118 689 965 
Ccnttwrea difjiwi Lam, Knapweed, diffuse 22 74 151 264 274 
CentllurUI solstititt/is L. Sranhistle, yellow 11 24 39 82 218 .~ 15 
Cmtaurctl biebenteinii DC. Sporred knapweed 830 
C?fIltocephal.tt testiclllata (Cramz) Bess Bmtercup. bur 194 207 
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Appendix B. Cominued. 

INVADERS database BONAP database 

ScielHifJc name Common name 1930 1960 1990 2005 2004 2007 

Chenopodium album L. Lambsquaners. 58 99 135 149 1,611 
c(lmmon 

Cirsirrm ilTVense (L.) Scop. Thisde, Canada 28 75 137 185 1,051 1,245 
Conillrn mrlcul·lttrm L. Poison-hemlock 12 41 81 125 917 1,066 
CO/11Jolrllllus aYl'msls L. Bindweed, field 35 82 127 162 1,318 1,536 
Cmpinl1 liulgaris Casso Crupina, common 5 13 16 17 
Cynoglossum ojficirlllie L. Hound.srongue 12 51 88 108 664 763 
CypeTr.l.f eSCUlelltllS L. Nursedge, yellow 7 12 17 19 I.J97 0 
Cyperu.r rotundus L N ursedge, purple 306 334 
C}tisus KopariuJ (L.) Link Broom, Scotch 13 23 39 56 209 229 
Datura s/'ram01liurn L Jimsonweed 1,012 I, !7C} 
Digitt/n'a iJchaermmz (Schreb.) Schreb. Crabgrass, smooth 9 20 26 33 1.104 1,275 

ex MubJ. 
Digitaria slI/lgll/nati.>· (L.J Scar. Cr;tbgra~, large 10 29 45 53 1,359 1,528 
Echinochlol1 crus-gtdli (L) Beauv. Bamya rdgnl$S 1,692 1,835 
Eichhornia cra.<sipes (MarL) Solms W3rer},)~dcinrh 189 202 
Eliwignus angTlS!.ifllia L. Russian-olive 2 10 46 60 441 493 
ElaeagnuJ' umbel/lua Thunb. Au ru III n .(1] Lve 2 3 6 318 533 
lkusine indicl!. (L.) Gaerrn. Goosegr~ss 1.145 1,310 
Erodium cicu"ttlrium (L) L'Her. ex Air. Filaree, redstcm 57 82 LO.3 ]]5 679 726 
Emctlstrum grJllimrll (Willd.) O.E. Schulz Mustard, dog 5 6 10 15 218 243 
Euphorbia cmla L Spurge, leaf)· 6 48 96 151 687 787 
FatoTta 1J1'1losa (Thunb.) Nakai Mulberry\\'eed 61 87 
Galega officinalis L. GoatsL'Ue 2 16 L8 
Caleopsis tetrahit L. Hempnerde, 9 23 1~ 

-I 167 1% 
common 

Halogeton glomeratlls (Srephen ex Ricb.) Halogeron 10 21 26 99 102 
CA. ;'\-fey. 

Heracleum manttglUZiS1'1uln Sommier & Hogweed, giam '5 7 36 48 
Levier 

Hier,lc1um cal'spitosum Dumorr. Hawkweed, meadow 420 486 
Hyrlri/iLt l'miciliLtta (1.. 0 Royle Hydrilla 7'7 

I' 107 
Hyoscyamus lIiger L. Henbane, black 20 43 78 105 181 187 
Hypel'im1fi. per/omturn L. St, Johnswort, common 27 63 93 106 J,082 ],2:23 
Ipomoea purpurea (L.) Rorh Morningglory, tall 4 5 5 678 831 
1St/tis tinc/oria 1.. Woad, dyer's 11 30 55 J24 L32 
LII<tuca sern'olLz L. Lertuce, prickly 38 80 117 1.31 1.539 1,713 
[ail/illm amplexicaule L Henbit 15 31 50 64 1,207 lAOS 
Lamium nll1CUllltum L. Deadnerde, sparred 3 4 7 9 95 1] LJ 

Lmn;u1?1 pwpureuril L. Deadneede, purple 6 J5 36 47 679 861 
Lepidillm campestrc (L.) R. Rr. Peppcrweed, field 7 28 52 63 945 1.069 
Lepiditlm latiftlium L. Pepperweed, perennial 8 32 86 216 220 
Ll'spedeza CllnMta (Dumonr) G. Don Lcspedez3, sericea 7U2 794 
Linaria dalmatica (L.) P. Mill. Toad£lax, Dalmatian. 3 30 77 149 324 335 
Lonicera japonica Thunb. Honeysuckle. Japanese 1,O]) 1,225 
l.ythrum salicari./l L. Loosestrife, purple 5 34 98 567 929 
lYleiJleuca qllinqumervia (Cav.) Blake Meblcuca 1~ 

~) 20 
]v!icro;tegillm vimimum (Trin.) A. Mary's-gr8ss 325 400 

Camus var. imberbe (Nees) Honda 
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Appendix B. Cominued. 

INVADER5 d,uabase BONAP database 

Scientific name Common name J930 1960 1990 20D5 2004 2007 

IvJ)'Yiophylluln spicatum L. W.HcrmilfoiJ, Eurasian 3 38 260 444 
Orobanche mi1l0T Sm. Broomrape. small :2 3 4 36 47 
Pauloumla fomentosa (Thunb.) 5ieh. & Paulownia. royal 2 5 294 349 

Zucc. ex Steud. 
PegilJ1uJII harmaltl L. Rue, African 

, 
'± 4 Yl 34 

PLttntllgo lttilceolata L. Plant,lin, buckhorn 32 61 7) 85 1,456 1.637 
PO£Vg01lUnl cuspickltum SJeb. & Zucc. Kn()l;weed, Japanese 40 65 481 622 
Po£ygonllm p"r.!iJ/iatum L. Tearrhumb. deviJ's 20 72 
Pot{u/aCrl o/emall L. Purslane, common 14 33 66 75 1,073 1,294 
Prosopi.s juli/lora (Sw.) DC Mesquite 2 I 
Pucmria montanll val". /obatfl (Willd.) Kudzu 477 

Maesen & S.M. Almeida 
Ranuilcu/w repms L. Buttercup. creeping 22 50 73 76 439 495 
ROSIJ multiflora Thunb. ex 1\·f urr. Rose. multiflora :2 679 944 
Rubus anneniacus Focke Blackberry, Himalaya 141 155 
Ru.mex CnJpU5 L. Dock. curly 52 96 125 143 1,851 2,091 
Sa/sola ktt/i L Salrwort, common 149 94 
Sa/via atthiopis L. Sage. j\·fediterranean 4 14 18 27 27 
Sa/uinia molesra Mitchell Salvinia. giant II )} 

Seea!" c"real!! L. Rye, cereal 5 15 42 51 546 641 
,)'etar!ii faberi Hecrm. Foxtail, giant 813 994 
Setaria viridii (L) BeauI'. Foxtail, green 39 79 105 119 1,57 0 1,731 
Solanum uiiJmm Duna! Soda apple, tropical 24 99 
Sonelms olerac/'1I5 L. Sowrhistle, annual 14 37 54 66 848 1,021 
Sorghum ha/epmse (L.) Pecs. J0 hnso ngrass 5 10 19 41 1,238 1,375 
Sprlrtma ant/ica C.E. Hubbard Cordgras>, common 7 7 
Sphaerophysa .fal51lla (Pallas) DC. Swainsonpea 2 12 17 20 63 63 
Stel/a1'l11 meditl (L) Vill. Chickweed, common 27 66 99 109 1,524 IJII 
l~lf/1iatj,erulil caput-medusae (L.) Nevski Medusahead 5 18 "'-''-~ 38 78 85 
7~II1Uiri. .. rtmJo.,-issima Ledeb. S~ltccdar 203 
Tartt'mcum off'l'inale G.H. Weber ex Wiggers Dandelion 42 80 131 142 1.740 1,926 
Tragopogon /amouei ROllY 503 576 
TribJllu.< terre.<tris L. PunctLlrevine 4 29 39 77 708 730 
Urtici1 dioim L Nerde, stinging 1,211 
Vl'l'ba.(wm thaps1fs L Mullein, common 39 71 98 117 1,715 1,918 
Vinca minor L. Periwinkle, common 2 4 468 640 
Xanthium spinosul1J I... Cocklebur, spiny 11 23 36 38 194 211 

'BONAP, Biota of Norrh America Program. 
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