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ABSTRACT 

Detailed knowledge of patterns of native species richness, an important component 

of biodiversity, and non-native species invasions is often lacking even tbough this 

knowledge is essential to conservation efforts. However, we cannot afford to wait for 

complete information on the distribution and abundance of native and harmful invasive 

species. Using information from counties well surveyed for plants across the USA, we 

developed models to fill data gaps in poorly surveyed areas by estimating the density 

(number of species km-1 
) of native and non-native plant species. Here, we show that 

native plant species density is non-random, predictable, and is the best predictor of 

non-native plant species density. 'Ne found that eastern agricultural sites and coastal 

areas are among the most invaded in terms of non-native plant species densities, and 

that the central USA appears to have the greatest ratio of non-native to native species. 

These large-scale models cou.ld also be applied to smaller spatial scales or other taxa to 

set priorities for conservation and invasion mitigation, prevention, and control efforts. 
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INTRODUCTION 

Distributions of native species have been shaped over long evolu­
tionary periods (Ricklefs, 2004), but only recently have researchers 
begun to collect data on these ridmess patterns in the USA. Survey 
efforts over the last few hundred years and some more recent 
intensive survey dTorts have provided us with no more than a 
rudimentary knowledge of diversity patterns. Even with inten­

sive landscape-scale surveys, less than 1% of the landscape can be 
effectively sampled. For example, a 6-year floristic survey of 
Grand Staircase Escalante National Monument included 379 
0.1 ha plots and sampled only 0.004% of the 850,000 ha 

Monument; and a 5-year landscape analysis of Rocky Mountain 

National Park included 181 0.1 ha plots and sampled only 0.0001 % 

of the Park. These intensive sampling efforts still miss species 
(e.g. 390 of the 940 plants known to occur in the Monument 
were missed; Stohlgren et al., 2005b). More problematic yet, 
these f10ristic patterns that have evolved over long time periods 
that we are just beginning to understand are now being affected 
and potentially altered by the introduction of non-native species. 
Non-native species invasions threaten native biodiversity (Mack 
et a/., 2000), decrease human economical wealth by impacting 

agricultural land, rangeland, and forests (Pimentel et al., 2000), 

alter ecosystem functioning (Vitollsek et Ill., 1987), and threaten 

human health (Mack et Ill., 2000). 

Efforts to control and mitigate these negative effects of inva­
sive, non-native species are hampered by incomplete knowledge 
of species distributions (Stohlgren & Schnase, 2006). Because 
there are limited resources to be expended, species abundance 
and distribution data are needed to set management priorities. 

Therefore, good baseline information on both native and non­
native species distribution patterns is important. Knowledge of 
native species richness hotspots guides conservation efforts 
(Myers et al., 2000; Myers, 2003), while identified non-native 
richness hot spots can be monitored for early detection of new 

invasions and aid control effort prioritization. The relationship 
between native and non-native richness may be another impor­
tant component in determining conservation priorities. A highly 

invaded region with high native richness may be of less value 
than a slightly less rich area with low invasion. Competition with 
or predation by non-native species is also one of the top two rea­
SOIlS cited for the listing of federally threatened and endangered 
species (Wilcove et aI., 1998). Thm, knowledgt' of non-native 
species richness patterns may also aid in efforts aimed at conserv­
ing native species. 

The best-sampled t10ristic data sets tend to be in densely 

populated areas or near herbaria. However, even these data sets 
are not witllOut bias; even the best sampled areas miss species 
(Crosier & Stohlgren, 2004). This fact, and our inability to e.maus­
tively survey any landscape, highlights the need to extrapolate 
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information from the few, well-surveyed areas to many, poorly 

surveyed areas. 

Attempts to improve species lists using various methods of 

prediction are not new. Palmer et al. (2002) described numerous 

quantitative methods to improve species information using 

multiple species lists and broad species ranges. Others created 

predictive models for species richness using only the counties 

with a resident botanist (Iverson & Prasad, 1998), or by using the 

number of specimens in a collection to estimate survey intensity 

at the state level (Palmer et al., 2002). Pearson (1994) suggested 

criteria for choosing indicator species whose occurrence patterns 

are functionally related to species riclllless as a surrogate for 

species richness. In fact, Scott et ill. (2002) provided an edited 

volume of articles on different ways to predict species occurrences 

in space and time. 

These efforts generally covered a small spatial extent, at the 

scale of states or smaller areas, or have a spatial grain greater even 

than counties. Additionally, many concentrate on predicting the 

occurrence of a single species rather than species richness. Using 

these approaches, a model would need to be generated for each 

species and then combined to determine species richness, which 

could propagate errors and be very data-, time-, and labour­

intensive. Often, these different methods also require intensive 

amounts of data that are not readily available. For example, for 

indicator species, criteria for indicator species must be deter­

mined to choose the particular species, and then intensive survey 

data for that species must be compiled. Large-scale patterns at a 

relatively fine spatial resolution will be necessary to set regional, 

national, and global priorities for conservation and invasive 

species management. 

Stohlgren et ill. (2005a) explored patterns of plant diversity in 

the USA using data from almost all counties in the coterminous 

USA. Here, we take their work a step farther and show how a few 

well-surveyed counties can be used to improve knowledge of 

species richness patterns for the whole USA, including poorly 

sampled counties. We hypothesize that a small, well-dispersed 

sample of more complete species lists can be used to predict plant 

species richness in large, poorly sampled areas. We expect that 

we will find similar plant diversity patterns to those found by 

Stohlgren et al. (2005a) despite much smaller sample sizes due to 

predictable environmental controls on biodiversity. 

METHODS 

We chose county-level plant species richness lists from the Biota 

of North America Program (BONAP) for the 48 coterminous 

states as our example data set. It has been assembled over the past 

20 years and is regarded as highly accurate and relatively com­

plete, being accepted as the standard by many different agencies 

and organizations. This data set is the finest resolution and best 

available for the entire country, as most data sets with finer reso­

lution cover a small spatial extent, whereas data sets for large 

spatial extents are often at a very low resolution. The BONAP data 

set is based on herbarium records, giving it high accuracy, but it 

still has inherent bias like any data set. The bias stems from the 

data's origins, with more species reported for areas with a greater 

concentration of survey efforts (e.g. areas near herbaria or 

universities, Crosier & Stohlgren, 2(J()4). 

To overcome this bias, we chose the four counties from each 

state with the greatest native plant species richness reported in 

the BONAP county-level plant lists as a surrogate for the best 

sampled counties, creating an initial pool of 192 counties out of 

3111 counties in the conterminous USA. Alaska and Hawaii were 

excluded due to a lack of ancillary data for predictor variables for 

the counties in these states. From this group of 192, we removed 

Georgia, Maryland, and Mississippi counties due to incomplete 

data sets for the entire state. We also removed Washington, nc. 
and two of Delaware's three counties, resulting in a sample size of 

177 counties for the analysis. 

We used native species richness as the selection criteria 

because native species' distributiollS are relatively stable because 

of their long evolutionary history in the USA. We assumed that 

they were present in a county for the opportunity of being captured 

in a survey effort for a longer period of time th'1I1 many non­

natives that are still expanding their range. [n general, we believe 

that native species lists are typically more complete than non­

native species lists for these two reasons. We defined nativity 

based on BONAr definitions, classifying species as native if they 

are believed to have evolved in the USA as suggested by Pysek 

et ill. (2004). Non-native species included all species that are not 

believed to have evolved in the USA. We considered several met­

rics besides richness for selecting the best-sampled counties, such 

as counties with state herbariums or ones with large population 

centres. However, the number of counties with state herbariums 

would reduce the sample size by more than half. Population cen­

tres are often clustered within a state, and are highly disparate in 

size between states (compare New York and North Dakota urban 

areas). Therefore, we decided that native species richness, when 

stratified by state, was the best way to select the best-sampled 

counties. Richness was chosen rather than density, as we wanted 

to examine the species-area relationship before deciding on a 

transformation. 

We stratified our sampling by state to ensure that we captured 

the range in environments found across the USA. Ecosystems on 

the west coast differ from the more species-poor central region, 

which differs from the comparatively species-rich east coast. We 

used species density (number of species km") as the metric for 

our dependent variable because of the great variation in county 

size across the USA to account for the species-area relationship. 

We empirically chose this transformation by examining four dif­

ferent species-area relationships, including linear (untransfonned); 

semilog; log-log; and the power model (nonlinear). The linear 

relationship, referred to as density, had the most support in the 

data, both for the 177 counties actually used in the analysis and 

for all counties together (1'.1. Stohlgren, unpub!. data). 

Species density values for native and non-native plant species 

from BONAP were extracted along with other predictor variable 

values for each county. These other predictor variables were 

assembled from a variety of Geographic Information System 

(GIS) sources (Appendix). These comprised 20 possible predictor 

variables divided into three classes that could affect richness patterns. 

These variables included 13 environmental and topographical 
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variables such as mean annual precipitation and elevation, four 

anthropogenic factors such as human population density, and 

three biotic factors such as Normalized Difference Vegetation 

Index (NDV!). Variables were selected based on previous studies 

examining species richness and invasion patterns (Stohlgren et aI., 
2005a). Within each of the three groups, variables were examined 

for collinearity and those that were highly cross-correlated 

(r ±0.80; Bonferroni tests) were excluded. This resulted in seven 

environmental/topographical (mean annual precipitation, mean 

solar radiation, potential and actual evapotranspiration, elevation 

variance per county, mean elevation, .md land cover classes count), 

three human (human population density, index of habitat dis­

turbance, and percentage of crop area per county), and three 

biotic factors (native bird species density in a county, vegetative 

carbon, and NINI) being possible predictors for the models. 

Vegetative carbon and NDVI were included as surrogates for 

plant productivity, and bird species density was included as an 

additional measure of habitat heterogeneity. Data were trans­

formed when necessary. 

SYSTAT version 11 (Systat Software Inc., Point Richmond, CA, 

USA) was used for all statistical analyses. Complete regression 

models were fitted for 18 candidate models. This included all 

possible combinations of the three classes of variables for both 

native and non-native species (seven each) and a linear and a 

nonlinear model for non-native species density using native spe­

cies density as the predictor. The Akaike's Information Criteria 

for small samples (AICJ values were calculated using: 

R55J 2K(K + 1)AIC, = n log -- + 2K + --'---'- (1)
( n n-K-l 

where II was the sample size, R55 was the residual sum of squares 

in the model such that R55/n was the maximum Likelihood esti­

mator, and K was the number of parameters in the model includ­

ing the constant (Burnham & Anderson, 1998). AIC, v,llues were 

used as opposed to AIC values because n/K was « 40 (Burnham 

& Anderson, 1998, p. (6). This value is an estimate of how the 

model compares to the expected 'truth'. These values for different 

models can be compared and the model with the lowest AIC, 

value is said to be the one with the most support from the data. 

Models were assessed using both AIC, and adjusted R' values. 

The models with the lowest AIC, and highest R' values for both 

native and non-native plant species density were then applied to 

all counties in the conterminous USA, and used to calculate the 

proportion of non-native tlora per county. 

Because we were trying to predict undersampled areas using 

models generated from well-surveyed areas, we compared the 

models applied to the lIndersampled counties (2935 counties) to 

the observed values for the well-surveyed counties (177 counties), 

and examined the models applied to all counties together. When 

examining the best models, the ones using native species density 

to predict non-native species density were ignored for several 

reasons. First, we wanted to compare models of native and non­

native species density, and use one to predict the other would 

convolute the results. Second, native species are typically harder 

to predict and we did not wish to propagate errors. Third, while 

using the transformed variable of density, the relationship 
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between species and area did not appear to be completely absent 

despite this transformation having the most support in the data. 

Maps of native plant species density, non-native species plant 

density, and proportion of non-native flora per county were gen­

erated using ESRI ArcGIS, version 9.0. Maps of both predicted 

and observed county richness and proportion non-native were 

created by dividing the richness and proportion values into 10 

quartiles based on the variJble of interest (e.g. predicted native 

species density). 

Models were validated by examining residual values of the 

observed data, including the four counties with the most native 

species in each state, residual values from the four counties with 

the next greatest richness of native plant species in the BONAP 

data (rank 5 to 8), and the four counties with the fewest native 

plant species per state in the original BONAP data. Four states 

(Delaware, Rhode Island, Connecticut, and New Hampshire) 

had fewer than 12 counties and were included in this part of the 

analysis as numbers permitted, with the first four counties in the 

top-four classification, and so on. The values for these three 

groups of county data were compared to each other. 

RESULTS 

We found that native and non-native plant species densities were 

highly predictable. Of the seven candidate regression models that 

were composed of all possible combinations of environmental/ 

topographical, biotic, and human variables, the model including 

all variables (environmental/topographical, biotic, and human) 

best predicted native plant species richness (AICc =-1096.6; 

w, = 0.555, adjusted R' = 0.89; Table 1). The most influential 

variables based on standardized partial regression coefficients 

(5h) were native bird species density and human population density 

(51' =0.611 and 5" =0.265, respectively). This model is the one 

used in subsequent analyses. The combination of biotic and 

human independent variables provided the second best model 

for the prediction of native plant species density (AIC, ~ -1077.6; 

w, = 0.000]; adjusted R' = 0.872; 'Hlble 1). Despite the very similar 

adjusted R' values, this model and all the others were discounted 

because the information theoretical approach dictates that 

models with an AIC" difference greater than 10 are essentially not 

supported by the data (Burnham & Anderson, 1998). 

A nonlinear regression model of native plant species density 

using values from the best model described above had the most 

support for predicting non-native plant species density (AIC = 
-1376.8; w, = 1; adjusted R' '= 0.879), followed by the model with 

human ami biotic factors (AIC" =' -1329.7; w, ~ 3.4e- I
"; adjusted 

1<' = 0.846; lable 2). The variables with most influence in the 

human and biotic variable model were native bird species density 

and human population density (5" = 0.624 and S" = 0.537, respec­

tively). However, these L'l.i values greatly exceed 10 and, therefore, 

the models should be discounted. This model is the one used in 

subsequent analyses as we did not wish to usc the model where 

native density predicted non-native density as described in the 

methods. The R' values for the top two models were similar, and 

if the L'l.i values were standardized as other statistics are, they 

would not be discounted. 
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Table 1 Native species-density model results including AIC" i\i (AIC difference), RSS (residual sum of squares), adjusted R', K (number of 
parameters), and the rank of the model compared with the others 

Model AIC, tll RSS Adjusted R2 K Rank 

Topographical/environmental -839.38 257.19 1.403 0.511 8 6 

Human -834.65 261.92 1.512 0.485 4 7 

Biotic -1035.65 60.92 0.489 0.835 4 4 

'Iopographical/environmental + human -901.15 195.42 0.95 0.662 11 5 

Topographical/environmental 1 biotic -1059.21 37.37 0.39 0.862 II 3 

Human + biotic -1077.6 18.97 0.367 0.872 7 2 

Topographical/environmental + human + biotic -1096.57 0 0.30 0.89 14 I 

Table 2 Non-native species density model results 

Model Ale, tli RSS Adjusted R' K Rank 

Topographical /environmen tal -1067.46 309.3 0.39 0.328 8 9 

Human -1153 223.75 0.25 0.575 4 8 

Biotic -1242 134.76 0.15 0.743 4 5 

Topographic/environmental + human -1168.22 208.52 0.21 0.62753 II 7 

Topographic/environmental + biotic -1231.33 145.42 0.15 0.739 11 6 

Human + hiotic -1.329.72 47.03 0.089 0.846 7 2 

Topographical/environmental -I human I biotic -1324.07 52.69 0.08 0.849 14 3 

Native species density model (linear) -1287.09 89.67 0.12 0.798 2 4 

Native species density model (nonlinear) -1376.75 0 0.07 0.879 3 I 

The greatest observed plant species densities existed in major 

metropolitan areas. Arlington County, Virginia, had the greatest 

native species density (13.4 native species km-') and Bronx 

County, New York, contained the greatest non-native species 

density (4.1 species km-1
). Examination of the best models of 

native and non-native plant density indicated that seven of the 

2935 undersampkd counties had predicted values outside the 

observed range of variation. These density values ranged ii'om 

very large (111.7 species km-1 tor New York, New York) to much 

closer to the observed range (14.9 species km-' for Richmond, 

New York). These counties had some of the highest values for the 

top two predictor variables, native bird density (the six greatest 

values for all counties), and human population density (five 

counties ranked in the top 10). When examining the 177 well­

surveyed cuunties, there were no counties with values greater 

than 14 species km-'. 

The models predicted negative species densities for some 

counties (77 counties for non-native predictions and 3 for native 

predictions). When native density was used to predict non-native 

plant density, however, the number dropped to one county. There 

were 417 counties, including the negative predictions, in 14 states 

that had predicted values less than the observed value with an 

average decrease of D.005? species. These were scattered mainly 

in remote western plains and monntains in Montana, Texas, New 

Mexico, and Nevada. 

When the models were applied to the 2935 counties not 

included in generating the models (the unders<lmpled counties), 

native plant species density increased from an observed average 

of 0.48 species km-' to a predicted average of 0.85 species km-2 

(Table 3). This average was similar to the observed average of 

0.70 native plant species/km' for the 177 well-surveyed counties 

used to generate the model. Examining the model for non-native 

plant species density, we found that density increased from an 

observed average of 0.08 species km-2 to a predicted average of 

D.14 species km-'. Again, this value is very similar to the observed 

average non-native plant species richness of D.15 species km-' for 

the well-sampled counties. 

The calculated proportion of non-native to native plant species 

density was 0.16, compared to an observed average proportion 

of 0.14 (Table 2). This analysis used the best model for each, 

excluding the nonlinear and linear species density models. The 

predicted ratio of non-native to native plant species density was 

slightly higher for all counties (well-surveyed and undersurveyed) 

together. Thus, based on the models, the proportion of non-native 

plant species per county was greater than the observed values. 

Examining the maps, the lO quartiles changed between the 

three observed and predicted surfaces, reflecting the 'JVerage 

increase in species density. [n general. the greatest proportion of 

non-native plant species shifted cast with the modelled data. The 

Great Basin had a high proportion of non-native to native plant 

species densities in comparison to the north-east coast (Fig. 1). 

This is an important distinctiun as the north-eastern coast is 

highly invaded, but also has many native plant species. Coastal 

counties in the north-eastern USA and California also have a 
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Table 3 Results divided into the three categories of native plant species density, non-native plant species density, and the proportion non-native 
and analysed by observed and predicted values based on the models for (I) counties used to generate the models (well-sampled), (2) counties 
not used to generate the model (undersampled), and (3) all counties together. Values in parenthesis arc calculated excluding values outside the 
original range in variation (e.g. counties with> 13.4 species km-' predicted), which only occurred for seven under-sampled counties for native 

plant species 

Well-sampled 
Observed 

Well-sampled 
Predicted 

Undersampled 
Observed 

lIndcrsampled 
Predicted 

.A,JJ counties 
Observed 

All coun ties 
Predicted 

Native density (spccie's km-') 

NOH-nativc density 
(species km ') 
Proportion non-native 

Average 

Maximum 
Average 
Maximum 
Average 
Max.imum 

0.7 

4.3 

0.15 

1.93 

0.17 

0.45 

07 

6.5 

0.14 

1.35 

0.18 

1.95 

0.48 

13.4 

0.08 

4.06 

0.14 

0.75 

0.85 10.75) 

111.7 (9.88) 

0.14 

12.43 

0.16 

0.64 

0.5 

13.42 

0.08 

4.06 

0.14 

0.75 

0.84 (0.74) 

111.7 (9.88) 

0.14 

12.43 

0.16 

1.95 

high proportion of non-native plant species density. However, 

unlike other areas, these also have both high native and non­

native plant species densities. The eastern USA remains the most 

invaded area when comparing the observed and predicted non­

native plant species density maps (Fig. I), though the highest 

proportion shifted with modelled data. 

Analysis of the residuals from the modelled surfaces indicated 

that the models performed well (Fig. 2). The observed values 

used to generate the model (i.e. the four with most dense 

native plant species counties per state) had a greater range of 

variation in their residuals than did either counties with native 

plant density ranks from 5 to 8 or the four counties per state with 

the lowest recorded native plant species density. When applied to 

the undersurveyed counties, the models do not seem to generate 

atypical values. Also, the net increase in species density was greater 

than the net decrease in the modelled surface, which achieved the 

objective of improving plant species density information for 

poorly surveyed counties in the USA. 

DISCUSSION 

Patterns of the establishment of non-native plant species seem 

highly predictable when examining the high R' values obtained 

in our models, and patterns of native species density seem only 

slightly harder to predict. On average, modelled values of native 

and non-native plant species density were greater than observed 

values (natives: average of 0.5 to average of 3.55 species km-'; 

non-natives: average of 0.09 to average of 0.39 species km-2
). 

These modelled values provided much more realistic values for 

many poorly surveyed counties. For example, many small counties 

in Virginia « 20 km') are completely surrounded by a better­

surveyed county. These small counties originally reported less 

than 20 native plant species (all but three less than four) and zero 

non-native plant species, resulting in native plant density values 

averaging 1.3 species km-2 These low numbers are highly unlikely, 

especially when compared to surrounding county densities of at 

least 0.4 species k.111""' and averaging 0.8 species km-2
• The modelled 

density values for these sllJall counties (all> 0.4 species km"-' with 

an average of 0.7 species km-2
) were more similar to the surround­

ing counties with similar habitats and more complete survey 

records. Similarly, modelling improved richness and density esti­

mates in Texas and Maryland where many counties had reported 

less than 100 native species. 

The models we developed performed well, even though a few 

counties had predicted density values outside the range of densi­

ties found in the observed data set when the models were applied 

to all 3111 counties in the conterminous USA (Fig. 1). The large 

values were minimal, especially for the undersampled counties 

we were trying to predict, and these values were found in major 

urban centres such as New York City. Humans tend to settle in 

areas with fertile soil, near water, and along coasts, conditions 

that would predispose dense urban areas to high densities of 

species (Stohlgren et al., 2005a, 2006). Additionally, these urban 

counties are atypical when examining human population den­

sity, which was one of the strongest predictors in the models. 

Despite using the best model of the species~area relationship, 

we were unable to completely remove the trend. Some small 

counties still appear to have slightly inflated densities, while 

some larger counties appear to have lower values, but all of the 

candidate models for the transformation had some residual 

effect. Additionally, some of these differences may reflect real 

patterns. County boundaries are politically defined and not eco­

logically defined. Neighbouring counties of different sizes in 

homogenous areas may have similar species richness, as new 

habitat types and resources arc not being added with additional 

area. In these cases, the larger counties would have relatively 

smaller density values. 

Several interesting patterns can be observed in the model 

results that inform theories of native and non-native plant diver­

sity. Primarily, native plant species density was selected as the 

best predictor of non-native plant species density. These findings 

support the results of several large-scale observational studies in 

which native and non-native species richness were positively cor­

related at multiple scales (Wiser et al., 1998; Levine & D'Antonio, 

1999; Lonsdale, 1999; Smith & Knapp, 1999; Stohlgren et a/., 
1999,2003, 2005a, 2006; Levine, :WOO; Richardson et a/., 2005). 
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Observed	 Predicted 
(b) 

Q) 

>
'.0:; 
eel 

Z Species density (species km-2
) Species density (species km-2

) 

0-0.099 0.292-0.374 - 0.697-0.926 0-0.007 0.035-0.045 - 0.114-0.165 
0.1-0.16 0.374-0.471 - 0.926-13.428 0.008-0.014 0.046-0.062 - 0.166-4.056 
0.161-0.223 _ 0.471-0.565 0.015-0.022 _ 0.063-0.084 

_	 0.085-0.1130.224-0.291 - 0.565-0.697	 0.023-0.034 

(d)	 .{# 

:e,. 

,. 
.+ 

Q) 

> 
~ 
eel 
c 
I 

§ Species Density (species km-2
) Species Density (~~ecies km-2

) 
Z 

0-0.007 0.035-0.045 _ 0.114-0.165 0-0.023 0.087-0.104 - 0.181-0.242 
0.008-0.014 0.046-0.062 - 0.166-4.056 0.024-0.05 0.105-0.124 - 0.243-12.427 
0.015-0.022 _	 0.063-0.084 0.051-0.069 .0.125-0.147 
0.023-0.034 - 0.085-0.113 0.07-0.086 _ 0.148-0.18 

(f) .... 

~, •. ,~'$.'."'~."." ~. 

......•.. ;';-.~ .. ~".(;
·f.. 

. ~ ~j 
.. I 

. ~ " 

.. 
Species Density (species km-2

) Species Density (species km-2
) 
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Figure 1 Maps for observed and predicted plant species density (species km-') per US county by species origin and by the proportion of 
non-native species in the flora. (a) Observed native species density. (b) Predicted native species density li'om model with environmental/ 
topographical, biotic, and human variables (global model). (c) Observed non-native species density. (d) Predicted non-native species density 
from model with biotic and human variables. (e) Observed proportion of non-native to native specles. (f) Predicted proportion of non-native to 
native species from band d. The map projection is USA Contiguous Albers Equal Area Conic USGS version, datum NAD83. 
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Figure 2 Observed vs. residual values t\Jr native and non-native 

plant species density. (a) Valu~s from the top four counties per state 

tor native plant species density used to generate the models. (b) 

Values for counties ranked five to eight per state for observed native 

plant species deusity. (c) Values for the four counties per state with 

the lowest observed native plant species densities. 

However, several small-scale experimental studies have found the 

opposite result (Levine, 2000; Naeem et al., 2000; Hector et nl., 

2001; Lyons & Schwartz, 2001; Kennedy et al., 2002; Prieur-Rich­

ard et aI., 2002; Troumbis et al., 2002; Tilman, 20(4). Our results 

support the observational studies' findings where, at least at the 

county-level scale used here, non-native plant species density is 

highly predictable with knowledge of native plant species density 

patterns. This supports the theory that the same environmental 

factors affect native and non-native plant species richness 

(Richardson et al., 2005; Stohlgren et al., 2005b). 

This theory is also supported when comparing the ranking of 

the ditferent models for native and non-native plant species, 

excluding the density models that used natives to predict non­

natives. The two best models for both native and non-native spe­

cies were the human and biotic factors model and the global 

model. In all four mudels, native bird species density and human 

population density were the most important predictors. Native 

bird species density is a surrogate f(Jr habitat heterogeneity, acting 

as a species indicator group similar to an indicator species. Other 

studies have shown that native bird species demity is highly cor­

related with native plant density (Stohlgren et aI., 2006). These 

biotic variables are not assumed to be causal, but represent the 

complex factors driving species richness and density. Biotic 

substitutes such as these that are correlated with these driving 

variables provide good predictors. Given that tbe same variables 

were most important and th,Jt the same models were selected for 

both native and non-native species density, we suggest that the 

same factors affect the species richness, and, therefore, diversity, 

of both native and non-native species. 

Our effort to understand undersampJed counties can be evalu­

ated by comparing results to a similar analysis with the same. 

data set. Stuhlgren et al. (2006) used the same BONAP data set 

and the same independent variables but included all counties 

with more than !OO native species (3000 counties) to examine 

patterns of plant species richness. A primary difference was that 

models using the 177 best-sampled counties described much 

more of the variability than did the other group's models using 

the 3000 counties (native models adjusted R2 0.89 and 0.69; 0= 

non-native 1l10deb adjusted R' 0= 0.88 and 0.86, respectively). 

However, the best predictor of non-native species richness was 

the same in both studies, a nonlinear model of native plant spe­

cies richness, with both models explaining more than 90% of the 

variation (adjusted R' > 0.9). The model for native species den­

sity with the most support, the global model, was also the same. 

Model rank was also very similar, with this study and the Stohlgren 

study having the same model for each of the top five ranks. 

In general, the models with biotic factors had more support 

than the other models, further strengthening the conclusions of 

Stohlgren et nl. (2006) that biotic factors are the most important 

in predicting patterns of diversity. The ranking for the non­

native mudels was even stronger than the native models for biotic 

variables. All three models that included the biotic variables 

ranked in the top three when the models using native density are 

ignored. These comparisons indicate that limiting the dependent 

variable to well-surveyed areas did not change the important 

predictor variables. Thus, for examining correlations of variables 

with diversity, using all available data or a subset of well-surveyed 

areas does not change the results. The coefficients for the predic­

tor variables, however, did differ between tbe two data sets. So, if 

one is interested in spatial patterns of diversity (sec Fig. 1), then 

the methods described in this paper arc important for accurate 

results beca use they correct fur poorly sampled areas. 

These methods provide a strategy to determine areas most 

in need of sampling in the USA. for example, some areas such as 

Maryland, other counties were removed from tbe model calibra­

tion dataset due to poor sampling, appeared easily predictable. 

Other counties, such as those that had a modelled value less than 

the observed, may be important ones to target for future survey 

efforts as they appear more difficult to model. Also, hotspots 

identified in the models may be important areas to target survey 

efforts as they may be more biologically important. So, despite 

the fact that these models may not be completely accurate, they 

are the best that can be developed with available data, and may 

prove highly valuable in guiding future survey efforts with limited 
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resources. As new data are obtained, the models may be rerun 

and re-examined in an iterative approach. 

A leading concept to set priorities for conservation is known ,IS 

the biodiversity hotspots thesis (Myers et al., 2000; Myers, 2003). 

According to Myers et al. (2003), a few small areas containing 

most of the world's endemic species and facing the most rapid 

habitat loss should be protected. However, invasions are potentially 

another serious threat that should be considered in developing 

these priorities (Rouget et aI., 2003; Stohlgren et aI., 2005b). An 
area high in native species richness that is being heavily invaded 

may not be an ideal location for targeting long-term conserva­

tion without very active management of harmful invaders. A 

hotspot of biodiversity that has not yet been invaded may be a 

better choice, with steps taken to try and prevent large-scale inva­

sion. The increase in the proportion of non-native flora between 

the observed and predicted maps here demonstrates tha t there are 

potentially more non-native species relative to natives than arc 

currently observed. In areas like the Great Basin where there 

are few native species, the addition of only a few non-natives can 

drastically change the proportion of the flora that is non-native. 

These changes stand out as alarming when compared to areas 

with a lot of native species and non-native species. Areas such as 

the Great Basin may be important, unique areas to concentrate 

conservation efforts, especially since a few non-natives may 

have a greater impact given their high proportion in the total 

flora. 

The modelled locations of hotspots of invasion should also be 

targeted in an early detection Irapid response program because 

non-native plant density has again been shown to track native­

rich areas. Areas that show a high proportion of non-native 

species in our models that are not yet well surveyed should also 

be targeted tor inventory and monitoring. Using the predicted 

surfaces in Fig. I (b,d,O rather than the surfaces illustrating 

current knowledge (fig. I a,c,e) may be important for targeting 

invasions as these models fill in data gaps. 

The potential of the techniques described here to improve 

information on species richness patterns is supported by our 

results. These same methods could be applied to other taxa at dif­

ferent spatial scales and have the potential to be modified for a 

single species. Reliable tools such as these are urgently needed to 

determine patterns ofbiodivcrsity for conservation e[fllrts and to 

evaluate patterns of invasion at various spatial scales. Large-scale 

predictive maps to fill in gaps in knowledge are an important step 

towards understanding distribution patterns of species, improv­

ing effectiveness of conservation efforts, and making progress in 

managing the invasive species problem. 
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Appendix Source of data for the independent variables used in the analysis
 

Data set Description Source 

Nathre and llon·native 

plant species richness 

County area 

Minimum temperature 

Mean temperature 

Precipitation 

Mean elevation' 

Variation in elevation'
 

Potential
 

evapotranspiration (PET)'
 

Actual
 

evapotranspiration (AET)'
 

Solar radiation
 

Percentage of crop area 

Human population 

Land cover class count 

Native and non-native 

hird species richness 

Vegetation carbon' 

Habitat disturbance' 

Number of native and non-native plant species
 

per county (species km-')
 

Size of county (km')
 

Mean daily minimum temperature (DC) 

Mean daily average temperature ("CJ 

Mean total precipitation (mm) 

Counties were defined as lOnes, and zonal means
 

of gridded elevation data were calculated (m)
 

Counties were defmed as zones, and zonal standard
 

deviations of gridded elevation data were calculated (m)
 

Thornthwaite's formula (nun; Thornthwaite & Mather, t955)
 

Thornthwaite's formula (mm; Thornthwaite & Mather, 1955)
 

18-year annual average (1980-97) of daily shortwave
 

radiation (M) m 1 day I)
 

Percentage of each county that was cropland in .1987 (Iti')
 

Number of people per coullty from the 2000 census
 

(people km-')
 

Count of NLCD land cover classes per county
 

Number of native and non-indigenous bird species
 

per county data (species kIll ')
 
Total vegetation carhon (potential - no land use effects).
 

Kriged 30-year annual average (1961-90)
 

at 3168 lat/long locations (gC m-').
 

Index of habitat disturbance. Ratio of area of disturbed
 

land (developed, herhaceous planted/cultivated,
 

non-natural woody vegetation (e.g. orchards, vineyards),
 

surface mines (e.g. quarries, strip mines, gravel pits))
 

to total area in a county. Land cover classes as defined
 

in the National Land Cover Data (NLCD).
 

Biota of North America Program, John Kartesz,
 

University of North Carolina Chapd Hill
 

Environmental Systems ReseaJ'(h Institute
 

(ESRI, ArcView 3.2)
 

National Climatic Data Center,
 

Climate lvlapS of the United States database
 

National Climatic Data Center,
 

Climate Maps of the United States database
 

National Climatic Data Center,
 

Climate Maps of the United States database
 

Oregon Climate Sen'ice, PRJSM digital
 

elevation model (OEM), 1996.
 

Oregon Climate Service, PIUSM climate
 

digital data, 1996.
 

Curtis Flather, USDA Forest Service
 

Curtis Flather, USDA Forest Service'
 

DAYMET US Data Center
 

Environmental Research Systems Institute
 

(ESRJ, ArcView 3.2)
 

Census 2000, US Census Bureau.
 

National Land Cover Data (NLCD)
 

developed from 30 m Landsat Thematic
 

Mapper ('I'M) data by The Multi-resolution
 

Land Characterization (J'vlRLCl Consortium,
 

Version 09-06-2000
 

Bruce Pderjohn, US Geological Survey
 

National Center for Atmospheric
 

Research (NCAR). VEMAP2 DATA, 2000,
 

National Land Cover Data (NLCD)
 

developed from 30-m Landsat Thematic
 

Mapper ('I'M) data by The Multi-resolution
 

Land Characterization (J'vlRLC) Consortium,
 

version 09-06-2000.
 

+2004 Resource Interactions Database, John Hoff; Curtis Bather, and Tony Baltic. USDA Forest Service, Rocky Mountain I{esearch Station (Half et ai., 2(04). 
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