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Abstrad: Knowledge of factors influencing animal distribution and abundance is essential In many areas of ecologi
cal research, management, and policy-making. Because common methods for modeling and estimating abundance 
(e.g., capture-recapture, distance sampling) are sometimes not practical for large areas or elWlive species, indices 
are sometimes used as surrogate measures of abundance. We present an extension of the Royle and Nichols (2003) 
generalization of the MacKenzie et al. (2002) site-occupancy model that incollJorAteS length of the sampling inter
val into the model for detection probability. A5 a result, we obtain a modeling framework that shows how useful 
information can be extracted from a class of index methods we call indirect detection indices (IDIs). Examples of 
IDls include scent station, tracking tube, snow track, tracking plate, and hair snare surveys. Our model is maximum 
likelihood, and it can be used to estimate sile occupancy and model factors influencing pallems of occupancy and 
abundance in space. Under cenain circumstances, il can also be used to estimale abundance. We evaluated model 
properties using Monte Carlo simulations and illustrate the method with tracking lube and scent station data. We 
believe this model will be a useful tool for determining factors that influence animal distribution and abundance. 
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Knowledge of animal abundance and the factors 
influencing abundance is essential in many areas 
of ecological research (e.g., demography, habitat 
or treatment effects), management (e.g., pest 
control, harvest quotas), and policy-making (e.g., 
species listings). Because it is seldom possible to 
census populations of interest, abundance is usu
ally estimated by laying fonh a set of assumptions 
and then constructing a statistical model linking 
data and parameters, so an estimator can be 
derived. Indeed, the importance of abundance 
estimators in ecological research and manage
ment is affected by the vast array of methods and 
models available for estimating population size 
(e.g., Seber 1982, Williams et al. 2(02). Most 
approaches for estimating abundance are based 
on counts (C) of animals, the expectation (E) of 
which can be related to population size (N) 
through the detection probability (P). such that 
E(G) = pN (Williams et al. 2002). Because Cis 
observable and N is the quantity to be estimated, 
the problem of estimating animal abundance 
comes down to estimating p, so we can compute 
the population size estimate using the natura! esti
mator it = C/f. Numerous models exist for esti
mating p, the most common ofwhich are based on 
capture-recapture sampling using marked indi
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viduals (Seber 1982, Pollock et al. 1990. Williams et 
al. 2(02) and distance sampling (Buckland et al. 
2(01). Such models are likelihood-based, allow 
abundance and other parameters to be modeled 
as functions covariates (e.g., habitat), and soft
ware for estimating parameters is readily available 
(White and Burnham 1999, Thomas et al. 2(02). 

Common criticisms of capture-recapture and 
distance sampling methods are that they are 
time-consuming, expensive. and difficult to 
implement. Therefore, they are sometimes not 
practical when large areas or many populations 
need to be sampled or when species are elusive 
or difficult to mark. Consequently, indices that do 
not require capturing or marking individuals and 
that can be easily implemented over large areas 
are often used as surrogate measures of popula
tion size (in spite of the loss of strong inference). 
Indices can be classified as direct, where the index 
is based on counts of individuals that are present, 
or indirect, where the index is based on evidence 
left by an animal (e.g., tracks, hair). For both 
classes of indices, the underlying premise is that 
the index (1) is proportional to abundance (N), 
such that 1 = ~(N)N In this expression, ~(N) may 
represent a detection probability (P) or per capi
ta rate of cue production, and it might vary as a 
function of N In particular, ~(N) may be monot
onic or nonmonolOnic, or linear or nonlinear
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each of which has certain implications for how 
the index should be interpreted (Williams et aL 
2(02). Because valid interpretation of indices 
requires that ~(N) be known and unchanging, 
and because this is almost never troe in practice, 
indices are generally of only limited value. In 
many applications of indices where ~(N) is 
unknown, it is tacidy assumed j){N) is constant for 
all N (Le., j)(N) = J) and that it is homogenous 
such that ~i = j)j (i l' j), where the subscript 
denotes points in time or space (or some arbi
trary category). Given these assumptions are 
true, indices can be used to estimate relative 
abundance among points: £[1]/12] ::: ElIL]/£[12] 

=j)]NL/ ~2N2 =~N] / ()N2 =Nt!N2 (Williams et al. 
2002). However, without validation of these 
assumptions, or if there is error in the indices, 
estimated relative abundance likely will be biased 
(Barker and Sauer 1992), and conclusions based 
on the estimate will be unfounded. 

Indirect indices are often implemented by estab
lishing detection stations that record visits by the 
target species over some sampling interval. During 
the sampling interval, stations may be visited by 
multiple individuals multiple times, and detection 
stations do not remove individuals from the popu
lation. At the end of the sampling interval the 
investigator records visits to stations and resets the 
stations so they can detect visits over the next sam
pling interval. By reset we mean all evidence of vis
itation by the target species is removed, erased, 
flagged, or otherwise labeled by the investigator, 
so the evidence is not counted as a visit during sub
sequent checks of the station. Hereafter, we refer 
to indirect indices that use detection stations that 
can be reset as IDls. Examples of lOIs abound in 
the literature and include scen t~tation surveys, 
where the detection station is an attractant-supple
mented stake centered in a circle of fine material 
used as a traeking substrate (Linhart and Knowl
ton 1975, Conner et al. 1983, Diefenbach et al. 
1994); tracking plate surveys, where the detection 
station is a sooted aluminum plate that records 
tracks (Ban-eu 1983, Orloff et al. 1993, Olson and 
Werner 1999); tracking tube surveys, where the 
detection station is a tunnel (e.g.. PVC pipe) that 
records tracks on a paper strip lying between 
marking sources at the tunnel enmlnces (Glen
non et a!. 2002, Nams and Gillis 2003); hair snare 
surveys, where the detection station consists of a 
snare device (e.g., tape, barbed wire) that collects 
hair from individuals visiting the station (Mowat 
and Strobeck 2000, Belan(2003); and snow track 
surveys, where a snow-<:overed transect represents 

the detection station, and visits are recorded by 
sets of tracks intersecting the transect (the station 
is reset by new snow or marking existing tracks; 
Stanley and Bart 1991, Hayward et al. 2002). Indi
rect indices like scat surveys (Clevenger and 
Purroy 1996, Harrison et al. 2004, Webbon et al. 
2004) or pellet-group surveys (Freddy and Bow
den 1983, Mooty et al. 1984, Haerkoenen and 
Heikkilae 1999), where the detection station is a 
transect, strip, or plot of land, are nonnally not 
considered IDls because it is usually not possible 
to locate all of the scat or every pellet group when 
the station is checked (i.e., detectability is <1; 
Buhnski and McArthur 2000). Thus, for these 
indices the detection stations can nOt be com
pletely reset before the next sampling interval. 

Typically, data gathered from lOIs are collapsed 
into a binary variable (Le., station was visited/not 
visited over the sampling interval) and are summa
rized as the proportion of stations visited. Some
times these proportions are standardized by the 
length of the sampling interval (e.g., Nams and 
Gillis 2(03) and are used directly as an abundance 
index (I) for N, or these proportions are l.L~ed to 
compute relative abundance in time or space. In 
either case, the implicit assumption is that j)(N) is 
constant and homogenous. As noted above, how
ever, unless this assumption is verifIed or j)(N) is 
known, the relationship between land Nwill be 
unknown, and the validity of the index will be in 
question. We present a modeling framework that 
shows how useful infonnation can be extracted 
from IDls when the detection station data are bina
ry. Specifically, we show how IDls can be used to (1) 
estimate site occupancy when detectability of indi
viduals is <I, (2) model patterns of abundance in 
space to identify factors influencing occupancy 
and abundance, and (3) estimate animal abun
dance under cenain resuictive assumptions. 

DATA AND MODEL 
We consider a sampling situation where an 

investigator uses an IDI to gather infonnation 
about a population of interest and where it is rea
sonable to assume the population is demograph
ically and geographically closed over the period 
that sampling occurs. Data collection proceeds by 
establishing R detection stations laid out in a 
grid, transect, or some other pallem, that record 
visits by the species over some sampling interval. 
At the end of a sampling interval, the investigator 
checks each station and records the length of the 
sampling interval and whether it was visited by 
the target species, and the investigator resets the 
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station for the next sampling interval (hereafter 
we assume stations are reset when they are 
checked). More formally, let i index detection 
stations (i = I, ... , R) and j index sampling occa
sions (Le., checks of stations at the end of a sam
pling interval;j = 1, .. .,ji; the index on jallows the 
number of occasions to vary among stations), 
then the data recorded are w~) where Wi' = 1 if the 
ith station was visited between sampnng occa
sions j and j - 1 (w~. = 0 otherwise), and I~., where 
Ii' = the time (e.g., days) elapsing between sam
~ling occasions j and j - 1 (we define j = 0 to be 
the occasion on which stations are established). 
We assume visits recorded at a station during a 
sampling inteIVal do not vanish before the investi
gator checks the station (e.g., under windy con
ditions, snow tracks at a station may disappear 
before the station is checked). If this assumption is 
violated, the value recorded for lijwill be incorrect, 
and this will bias estimated detection probabilities. 

Data from IDrs have much in common with data 
from site-occupancy studies, where a population 
of sites are surveyed, and presence-absence of 
the species of interest at each site is determined. 
In most site-occupancy studies, interest is in the 
proportion of sites that are occupied, and it is 
often implicitly assumed that presence-absence 
can be determined without error. For this to be 
true, however, it is necessary that the conditional
on-<lccupancy detection probability equal 1. Rec
ognizing that this is often not the case and that 
some sites will appear to be unoccupied because 
animals that were present went undetected, 
MacKenzie et al. (2002) developed a model for 
estimating conditional-<ln-<lccupancy detection 
probabilities (p) and occupancy probabilities (1jI) 
using data from multiple visits to sites. This 
model \¥as later generalized by Royle and Nichols 
(2003) to allow abundance at sites to be modeled 
and estimated using suitable covariates (e.g., 
habitat). They accomplished this by considering 
the likelihood to be a mixture of site-specific un
conditional detection probabilities that depend 
on only the number of animals available for 
detection. Specifically, they modeled the site-spe
cific unconditional detection probability Pi as 
I - (1 - T)N;, where T is the detection probability 
of an individual and Ni is the number of animals 
available for detection at site i. Royle and Nichols 
(2003) assumed closure of the site-specific popu
lations (i.e., Ni was constant for each site) and, 
while not stated explicitly, they also assumed that 
members of N, were not members of ~ (i t' j). 
That is, sites need to be far enough apart so that 

distinct individuals can not be detected at >1 site 
(i.e., the site-specific populations sampled are 
disjoint sets). Under this assumption N = 1: N i . 

If we consider detection stations in IDI studies 
to be sites where presence-absence is determined 
on multiple occasions, and if we assume site-spe
cific populations sampled by IDIs are closed and 
disjoint, then it is clear IDIs are nearly identical 
in structure to the occupancy studies considered 
by Royle and Nichols (2003) and we would expect 
their model could be applied to IDI data. How
ever, the sampling situation for IDls differs from 
that of Royle and Nichols in an important way. 
Royle and Nichols considered the sampling inter
val during which presence-absence was deter
mined to be extremely shon and constant among 
sites (in their example the interval was only 5 
minutes), whereas sampling intervals for IDIs are 
usually long (on the order of days) and may vary 
among sites. Consequently, for IDIs we expect 
that the unconditional detection probability at a 
station will depend on the nwnber of animals 
available for detection at that station (i.e., N;) 
and on the length of the sampling interval (Le., 
Ii}' That is, assuming Ni > 0 and remains constant 
over the sampling interval, then we expect the 
detection probability at site i to be near °if the 
interval is too shon, and if it is too long we expect 
it to be near I. ThU5, for IDIs we modify the Royle 
and Nichols (2003) expression for the uncondi
tional detection prObability in the following way. 
Let P~' be the unconditional detection probability 
for the ith detection station on the jth sampling 
occasion, and let T be the detection probability of 
an individual over a unit time interval (condi
tional on presence); then Pij= 1 - (l - T)I'jNi• 

From this expression, which now incorporates 
the length of the sampling interval (Iij)' we see 
that if N i = 0 then P,j = 0, no matter how long the 
sampling interval is, and ifN,> °then Pi) is in the 
interval (0, 1) for Ii} > 0 and increases toward 1 as 
Ii' grows large. 
'In IDI studies, W . is the outcome of a Bernoulli 

trial with paramet~r p~" where Pij = Pr(wLj =1 IN" 
T) = 1 - (1 - T)I,jN;. ThU5, if we let Wi = (wil> wi2, ... , 

Wij;) , then the likelihood (L) for the ith site is: 

I 
L(Tlwl,Ni):: rtp/ij(l- pd-Wij 

. 

j~1 

Under this model, ris not identifiable because N, 
is unknown. Nevenheless, it is possible to esti
mate r by following the reasoning and steps in 
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Royle and Nichols (2003). Briefly, we suppose 
she-specific abundances N j are realizations of a 
random variable having discrete probability dis
tribution j(N I A), where A is a parameter vector 
and Pr(N,. k) =I(N: k) =/k (k= 0, I, ... ). Under 
this assumption, we can remove the unobserved 
N, from the likelihood by averaging the condi
tional (on N

I 
) likelihood over the possible values 

of N j • The resulting integrated likelihood is: 

where here, pO': 1- (1- r)tijkandKis the number 
of suppon points (sensu Royle and Nichols 2(03). 
Then, assuming independence of da~ from the 
R detection stations and letting W = {wi}), we take 
the product over R to yield the full likelihood: 

yL(r,AIW) =IIR [ LK 1IIJ; Pij lUi] (1 - Aj )1-W } !k ] . 
l=1 k=O j=1 

As was done in Royle and Nichols (2003), we 
specify a parametric form for!k (e.g., a Poisson or 
negative binomial disoibution). 'The Poisson model 
is appealing because it can be motivated by suppos
ing individuals (i.e., home range centers) are dis
tributed randomly in space according to a homo
geneous Poisson point process. Under a Poisson 
model the parameter, A, is the expected abwl<J.ance 
at the ith site (i.e., E[N) : A). 'Thus, we can estimate 
the probability a species is present at a site (Le., the 
occuEancy probabiJ~ty of a detection station) as I 
/(0 I A) = 1 - exp(-A) , which is quali~tively equiva
lent to the parameter \j1 in MacKenzie et aJ. (2002). 
Likewise, as in Royle and Nichols (2003), A is an 
estimate of the average abundance at a site, so 
when populations are closed and disjoint, overall 
abundance (N) can be estimated as Ri..,. 

In many studies, we would expect Nj to exhibit 
excess variation (i.e., overdispersion) relative to 

the Poisson model. One approach for dealing 
with overdispersion is to use a negative-binomial 
distribution for h. instead of a Poisson (e.g., Royle 
and Nichols 2(03). We evaluate this approach in 
the next section. A second approach for accom
modating overdispersion is to incorporate covari
ates thought to influence abundance. For exam
ple, habi~t measurements are collected as part 
of many studies, and a common goal is to evalu
ate the relationship between abundance and 
these covariates. Covanates can be easily incor

porated into a Poisson abundance model using 
the standard Jog-linear model relating abun
dance to covariates. For example, if at s~tion i 
covariates xil ' .", Xiii exist, then the model for Aj , 

which is the expected abundance at site i (i.e., Aj 

= E(N;J) , is 10g(A,) = <Xo+ a 1xl1 + ... + akxik . Such 
models were successfully used by Royle et al. 
(2004) for modeling the relationship between 
bird density and habitat covariates under conven
tional point-counting protocols. In a similar man
ner, covariates that are thought to affect detection 
probability can be modeled. For detection covari
ates, we consider standard linear-logistic models of 
the form: logit( r) = Po + PI u ijl + ... + PkUijk , where 
U,jl' .", Uijk are the values of k detection covari
ates measured at site i during visit j. We give 2 
examples using covariates for r in the next section. 

SIMULATIONS AND EXAMPLES 

We evaluated the performance (i.e., bias and 
precision) of our model with respect to the para
meters A and \j1 under 2 simulation scenarios. 
Our goal was to provide insight into how well the 
model would be expected to perform under real
istic sample sizes, as well as its robusmess to 

assumption violation. Under the first scenario we 
let the distribution /(N) be Poisson, and we 
assumed a Poisson model for /k for our analysis. 
For these simulations R = 100 detection stations, 
Ii = 6 sampling occasions (s~tions were estab
lished on the Oth occasion), and the sampling 
interval (days) between sampling occasions was 

(Iij} = (2,4,6, 8, 10, 12). We investigated 3 other 
cases for Ilii ' (i.e., [7,7,7,7,7,7], [6,7,8,6,7,8), 
and [1,1,1,13,13,13]), but because they yield
ed similar results we did not report on them here. 
The levels investigated for r, the detection proba
bility of an individual over a unit time interval, 
and \' the expected abundance of individuals at 
site i, were rE [0.05,0.10, 0.20} and A, = A E 0.5, 
3.0). We averaged resultS over 1,000 repetitions 
(Table I). Under the second scenario, we investi-

Table 1. Performance of our model using simula1ed deta. with 
R = 100, J;= 6, and {tl;} = (2,4,6,8, 10, 12) lor all i. In Ihese 
simulations the probability distribution fiN) was Poieson, and 
for our analysis .....e modeled 'I< as a Poisson. Results are pre
sanled for IV € (O.7B, 0.95}, and all combina~ons of r€ {0.05. 
0.10, 0.20} end E[N;l = A E (1.5, 3.0), and are averages over 
1,000 repetitions. 

A ~ 1.5, ljI =0.78, A =3.0, II' =0.95 

r j. SE IV SE i SE IV SE 

0.05 1.53 0.245 0.78 0.050 3.19 0.720 0.95 0.026 
0.10 1.52 0.200 0.78 0.043 3.14 0.567 0.95 0.022 
0.20 1.51 0.184 0.78 0.040 3.12 0.814 0.95 0.021 
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Table 2. Performance of our model using simulatad data, with J, =6 and {Iv} =(2, 4, 6, 8, 10, standard errors, suggest·
12) for all I. In these simulations the probability distribution I(N) was negative binomial with ed the sarr:pling distribE[N,1 =;1,. '" {1.5, 3.0} and CV = 2.0, and for our analysis we modeled 'k as a Poisson or a nag'
 
ative binomial. Results are presented lor 'I' '" {0.65, 0.88} and r e {0.05, 0.10, 0.20) and, ution for A was strongly
 
except for ~ med (where meet denotes median), columns are a...erages O'o'er 1,000 rapetitions.
 skewed (heavy right 

tail). Instabilicy of esti
Poisson model for Ik Nagaliva binomial model for tk mates, like that we 

R r SE SE SE observed for 5.., is com
;1,.= 1.5, '1'= 0.65 mon when certain 
100 0.05 1.04 0.483 1.03 0.64 0.052 1.97 3.078 1.44 0.65 0.062 model parameters are 

0.10 1.09 0.437 1.08 0.66 0.048 1.58 0.506 1.48 0.65 0.047 near a boundary (in this 
0.20 1.08 0.440 1.07 0.66 0.049 1.62 0.604 1.50 0.65 0.047 

case r was near 0). We200 0.05 1.03 O.4n 1.03 0.64 0.036 1.67 1.708 1.48 0.65 0.042 
0.10 1.08 0.431 1.08 0.66 0.035 1.54 0.328 1.49 0.65 0.033	 suggest that when fitting 
0.20 1.08 0.431 1.08 0.66 0.036 1.53 0.358 1.48 0.65 0.034	 real data, investigators 

A=3.0, 'I' =0.88 examine the condition 
100 0.05 2.04 0.999 2.01 0.87 0.038 5.09 10.861 2.84 0.88 0.046 number of the Hessian 

0.10 2.16 0.881 2.14 0.88 0.031 3.20 1.168 2.94 0.87 0.034 matrix for their parame
0.20	 2.20 0.851 2.17 0.89 0.032 3.21 1.205 2.88 0.88 0.033 

ters to see if it is large. If 200 0.05 2.03 0.993 2.02 0.87 0.026 3.62 3.880 2.94 0.88 0.031 
0.10 2.15 0.872 2.14 0.88 0.022 3.08 0.788 2.95 0.88 0.024	 it is, then it is likely the 
0.20 2.17 0.852 2.16 0.88 0.024 3.10 0.811 2.97 0.87 0.024	 matrix is ilkonditioned 

gated the effect of overdispersion on the perfor
mance of our model. We did this by assuming 
feN) was negative binomial with E[N;.) = AE [1.5, 
3.0} and CV = 2.0, and for our analysis we mod
eledh as a Poisson or a negative binomial. As was 

true under the first scenario, J; = 6 and {t;;) = (2, 
4,6,8, 10, 12). We present results for R E (l00, 
200], Ijf E jO.65, 0.88), and r E (0.05, 0.10, 0.20) as 
averages over 1,000 repetitions (Table 2)._ 

Under the first scenario, we found lhat A had a 
small but positive bias (Table I), which was con
sistent with the simulation results obtained by 
Royle and Nichols (2003). Coefficients of varia
tion for 5.. ranged from 13% to 22%. With respect 
to 0/, our model performed very well, and esti
mates were essentially unbiased. Coefficients of 
variation for ~ ranged from 2% to 6%. Under the 
second scenario, we found that when the IN; I 
exhibited excess variation but were analyzed 
under a Poisson, which did not account for 
overdispersion, i. was strongly negatively biased 
(for our simulations relative bias was approxi
mately -30%). However. in these same simula
tions 0/ was essentially unbiased and was robust to 
the presence of excess variation in the (NiL even 
though a less-than-optimal model was used for k 
lNhen we analyzed the data under a model that 
accounted for overdispersion, specifically the 
negative binomial, our estimates of A improved 
substantially, except at the lowest values of To For 
r= 0.05, 5.. w~ positively biased, whereas the medi
an value for A was centered near the trUe value of 
A (Table 2). This, in combination with the large 

(Schneider 1987:427) 
and the optimization 

routine will yield a poor estimate of A. For r~ O.!O 
and r= 0.20 the sampling distributions for A aJso 
appeared to be skewed, but only slightly, and in 
these cases we got reasonably good estimates, 
especially for R = 200. Under the negative bino
mial model for fir? 0/ was unbiased in nearly every 
case we investigated. 

Example 1 - Tracking Tubes For Small 
Mammals 

Nams and Gillis (2003) described a study 
wherein tracking tubes were used to index small 
mammals in a boreal forest region of northern 
Nova Scotia, Canada. One of their goals was to 
determine whether small mammals change in 
their tendency to enter tracking tubes with the 
cumulative length of time a tube had been in 
place (i.e., a time effect). In terms of our nota· 
tion, they were interested in whether r was con
stant (i.e., a no-time-effect model) or whether r 

increased or decreased with cumulative length of 
time (i.e., a time-effect model). Nams and Gillis 
(2003) recorded the number of sets of tracks 
entering a tube over a sampling occasion, the 
length of sampling occasions (days), and species 
if it could be detennined. Dr. Vilis O. Nams 
(Nova Scotia Agricultural College, Nova Scotia, 
Canada) provided us with his data for 12 lines of 
tracking tubes having 80 tubes per line (thus R = 
960), each of which were rechecked 5, 6, or 8 
times (i.e.• ./; E 15,6,81) over a 4-week period. We 
collapsed the Nams and Gillis (2003) data for 
individual tubes into a binary variable, where I 
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Table 3. Analy1lcal results for the Narns and Gillis (2003) tracking tube data under a Poisson model for ~, and a negative bino
mial model for'lr The covatiate model includes a lime-ertect represenling the cumulative length 01 Ume tubes hed been in place. 
Rir PeromYSCIJS rnaniculatus a solution could not be obtained tor the negative binomial model. Akai ka Information Crllerlon (AIC) 
values with boldface type indicate the models best supported by the data. 

NQ-Covariate model Covariate model 

Species f\, SE i SE AIC ~ SE P, SE i SE AIC 

Poisson model for ~ 

Clerhrionomys 
gapperi 

Peromyscus 
maniculafus 

SOreKsPP· 

-3.7 

--4.6 
-3.3 

0.11 

0.20 
0.06 

0.37 

0.76 
0.75 

0.039 

0.170 
0.045 

1,809.3 

1,706.1 
3.779.5 

-3.8 

--4.6 
-3.3 

0.11 

0.15 
0.06 

0.10 

0.29 
0.21 

0.049 

0.054 
0.035 

0.37 

0.58 
0.67 

0.036 

0.073 
0.034 

1,809.5 

1,698.8 
3,769.5 

Negative binomial modal for ,~ 

Clefhrionomys 
gapper; --4.2 0.749 

Peromyscus 
manicularus 

0.59 0.442 1,811.0 -4.2 0.75 0.14 0.306 0.59 0.439 1,802.2 

SOrexspp. -3.5 0.271 0.96 0.260 3,780.9 -3.6 0.28 0.15 0.Ot8 0.99 0.276 3,748.1 

denoted the tube was used at least once over the 
sampling occasion (0 otherwise), and we ana
lyzed these data under a no-time-effect model for 
T and a time-effect model for T. Specifically. for 
the no-time-effect model logit{T) = llo' whereas 
for the time-effect model logit( T) = llo + llll~jj' 

where U;j was the cumulative length of time the 
tracking tube had been in place on the jth occa
sion. A result with 131 < 0 would indicate tracking 
tube use decreased with cumulative length of 
time, whereas a result with 13'1 > 0 would indicate 
tracking tube use increased with cumulative 
length of time. 

We analyzed the Nams and Gillis (2003) data 
for 2 species and I genus, under both Poisson 
and negative binomial models for fk (Table 3). 
Using the Akaike Infortrultion Criterion (AlC) [Q 

identify the model best supponed by the data 
(Akaike 1973, Burnham and Andenon 2(02), we 
found that a positive time-effect model was select
ed for all species. Thus our analysis agreed with 
that ofNams and Gillis (2003); tracking tube use 
increased with the length of time the tubes had 
been in place. For both Clethrionomys gapperi and 
Scmx spp., AlC selected the negative binomial 
model for fk over the Poisson, indicating there 
may have been some overdispersion in the data. 
Using the following form of the negative binomi
al (e.g., Lawless 1987): 

P (N -k _ r(k+8)( (l/8)A. )k( 1 )9 
r ; - ) - kJr(8) 1+ (1/8)A. 1+ (I lelA. ' 

where Aand 8 are the parameters, E[N;] = A., and 
Var[Nj ] = A. + A.2/8. we get 'If = 1:- Pr (Ni = 0) ~ 1 
- [1 + (1/8)A]-a. For C. gapperi. A. '" 0.59 and 8 = 

0.795, thus V= 0.36 and N= R).. = 566. Likewise, 
f9r S07!':, i = 0.99 and e= 2.15, thus V= 0.56 and 
N = RA. '" 950. For Peromyscus maniculatus, no solu
tion could be found for the negative binomial 
model, so we used the Poisson to estimate", and 
N. Here. i = 0.58. so V= 1 - exp(-)..)= 0.44 and 1V 
=Ri=557. 

Example 2 - Scent Stations 

Scent stations have a long history of use for 
monitoring coyote (Canis latrans) and other 
mammal populations over large areas. Hein and 
Andelt (1994) described a study at the Rocky 
Mountain Arsenal, Colorado, where 60 scent sta
tions, separated by an average distance of 1.1 km, 
were used to index deer, rodent, lagomorph, and 
coyote numbers. Scent stations were monitored 
daily for 2 weeks, with half the stations receiving 
a supplemental deer carcass the fint week and 
the other half receiving a supplemental deer car
cass the second week. Hein and Andelt conclud
ed that cOyOles visited sites with carcasses more 
than sites without carcasses but that the presence 
of deer carcasses did not influence visitation by 
deer. rodents. or lagomorphs. Dr. William F. 
Andelt (Colorado State University. Fon Collins, 
Colorado) provided us with the raw data from 
Hein and Andelt (1994), which we reanalyzed 
under our model. We evaluated 2 models; the 
first was a no-carcass-covariate model where 
logit(r) = llo. and the second was a carcass-covari
ate model, where 10git (T) = 130 + Pl uiJ and u jJ was 
an indicator variable equal to 1 if a carcass was 
present aL the ith station on the jth occasion (0 
otherwise). We evaluated the Poisson and nega
tive binomial models for fko However. we only pre





880 ESTIMATING OCCUPANCY AND ABUNDANCE • Stanley and Ruyk J. Wildl. Manage. 69(3):2005 

Table 4. Analylical results tor the Hein and Andell (1994) seenl station dala under a Poisson model 'or tk (a solution could not be 
obtained under the negative binomial model !of any of the species). The covariate model includes a carcass effect (see text). 
Akaike Inlonmation Criterion (AIC) values with boldface type indicale the modals best supported by the data. 

No-covariate model Covariate model 

Species ~ SE i SE AIC ~ SE ~ SE i SE AIC 

Lagomorph 0.24 0.031 0.80 0.121 341.0 0.25 0.039 0.23 0.039 0.81 0.122 342.9 
Rodent 0.28 0.039 3.17 0.480 536.2 0.28 0.M3 0.28 0.M2 3.16 0.481 538.2 
Deer 0.09 0.029 2.16 0.711 383.1 0.07 0.027 0.10 0.033 2.22 0.753 364.3 
Coyote 0.08 0.031 5.11 1.973 537.9 O.M 0.026 0.06 0.044 8.47 5.970 532.5 

sent results for the Poisson model (Table 4) 
because for all species the likelihood was maxi
mized at the boundary when we used the nega· 
tive binomial. 

Our results are in agreement with those of Hein 
and Andelt (1994); coyotes used scent stations 
with a supplemental deer carcass more often than 
stations without a supplemental deer carcass, 
whereas deer, rodent, and lagomorphs did nm. 
Under the Poisson model occupancy was estimat· 
ed as " = I - exp(-i), which for lagomorphs, 
rodents, deer, and coymes yielded 0.5.5, 0.96, 0.88, 
and 1.00, respectively. Likewise, for N (where R = 

60) we got 48, 190, 130, and 508, respectively (see 
DISCUSSION for the probable cause of the 
rather large numben; for deer and coyotes). 

DISCUSSION 
The model of Royle and Nichols (2003) was 

motivated, in part, as a means of developing esti
maton; of site-occupancy (sensu MacKenzie et al. 
2002) that accommodate heterogeneity in the 
probability a species will be detected at a site due 
to variation in abundance. Our model extends 
the Royle and Nichols (2003) model by explicitly 
incorporating the length of the sampling interval 
into this probability. As a consequence, we obLain 
a model that allows useful infonnation to be 
extracted from IDIs when the detection station 
data are binary. Specifically, our model shows 
how data from IDls can be used to estimate site 
occupancy, model factors influencing patterns of 
occupancy and abundance in space, and estimate 
abundance under certain circumstances. 

Our simulations (Tables 1,2) showed site-occu
pancy estimates under our model were robust to 

the parametric fonn chosen for iJ... When we sim
ulated abundance data at detection stations 
under a Poisson and analyzed them under a Pois
son, estimates were unbiased, as we expected. 
Moreover, when we simulated abundance data at 
detection stations in a manner incorporating 
overdispersion relative to the Poisson (i.e., using 
a negative binomial), site-occupancy estimates 

were unbiased under a negative binomial model 
but were also unbiased under a Poisson model. 
Thus, '" appeared insensitive to model choice for 
the cases we examined and, with respect to occu
pancy estimation, suggested our model would 
perfonn well in practice. 

In contrast to ", our abundance estimate i was 
sensitive to the parametric fonn chosen for h: 
When abundance at detection stations was simu· 
lated under a negative binomial to produce over· 
dispersion relative to the Poisson, estimates 
under a negative binomial model were relatively 
good, though there was some positive bias when 
detectability was low (i.e., r = 0.05). However, 
when we analyzed those same data under a Pois· 
son model for h" estimates ofA. were strongly neg
atively biased (Table 2). It therefore seems prefer
able to accommodate overdispersion in the data 
by using biologically relevant covariates and an 
appropriate link function, because in real-world 
datasers it is common to find excess variation of 
some form in the IN) and because we typically 
will not know the form this excess variation will 
take, so we will not know the appropriate model 
to use. Whereas we did not evaluate the use of 
covariates for A., the approach was used success
fully in other studies (Royle et aI. 2(04), and we 
believe it merits further investigation for our 
model. The covariate approach has the added 
advantage that it can provide infonnation on 
habitat or other factors that might influence pat
terns of occupancy or abundance. 

The tracking tube and scent station examples 
we provided illustrate some of the strengths and 
weaknesses of our model. A strength is that we 
now have a model linking data from IDI studies 
with parameters of interest, namely site occupan
cy and abundance. We are no longer forced to 
treat data from IDIs as indices having an 
unknown relationship with the parameter{s) of 
interest. Another strength is that the model 
offen; a flexible framework for evaluating covari
ates. By using a covariate in the tracking tube 
example, we learned tubes were used more fre
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quendy the longer they were in place, and by 
using a covariate in the scent station example, we 
learned carcasses increa.~ed coyote visitation but 
had no effect on the other species monitored. 
This infonnation should prove useful in the 
design of future studies using these methods. 

A weakness of our model is that results from 
our model could be misleading if model assump
tions ~re ignored. Our estimat<: of population 
size (N) exploits the fact that if "-; is an estimate 
of the station-specific population at risk of detec
tion (analogous to the population at risk of cap
ture in a capture-recapture context), then the 
sum of i j over the R detection stations is an esti
mate of the population at risk of detection. How
ever, the veracity of this estimate is predicated on 
the assumption that detection stations are far 
enough apart that station-specific populations at 
risk of detection do not overlap (i.e., they are dis
joint sets). Even though j;" is an asymptotically un· 
biased estimate of the population at risk of detec
tion for the ith station, if some individuals at this 
station are also at risk of detection at the jth sta
tion (i F j), then summipg these estimates will 
create a positive bias in N because some individ
uals are double counted. We believe this explains 
the high values we observed for deer and coyotes 
in our scent station example above. Both deer 
and coyotes are wide-ranging animals (e.g., coy
otes can travel 4 kIn a night; Nowak 1991), yet the 
spacing of the scent Stations averaged only \.1 
km. Thus, it seems certain that some individuals 
were detected at multiple stations, and that our 
estimate of 508 for coyotes was positively biased. 
Indeed, Hein and Andelt (1995) sampled the 
same area less than a year later, and using mark
resight methods, they estimated the population 
of coyotes to be only 73 individuals. 

The problem of double counting in \DIs and 
the need to have adequate spacing between sta
tions has been recognized by others. For exam
ple, Diefenbach et al. (1994) recommended that 
scent stations be far enough apan that bobcats 
(Lynx -rufus) could not visit> I station, and Zielin
ski and Stauffer (1996) spaced track plates for 
fL'lher (MaTtes pennanti) and marten (M. ameri
cana) a distance of twice the diameter of the 
mean male home range to ensure independence 
of stations. Our scent station example under
scores the importance of spacing stations far 
enough apart that station-specific populations at 
risk of detection are disjoint sets, and this should 
serve as a warning to investigators using this 
method to estimate abundance. Moreover, it sug

gests that whenever possible the focus of \DI stud
ies should be on modeling factors influencing "'" 
rather than estimating N In ecological research 
this will often be possible because we are typical
ly more interested in comparing occupancy or 
abundance in time or space to evaluate treatment 
or habitat effects-and these effects can be built 
imo the model explicitly using the log link-than 
in detennining absolme abundance. 

An issue related to that of detection station 
spacing is the effective area of detection of a sta
tion. For some territorial species near carrying 
capacity, we might expect home range sizes to in
crease as species denSity decreases or to decrease 
as species density increases. In such cases, the 
effective area sampled by a detection station may 
change as a function of density; at low species 
density we might expect the effective area sam
pled to be larger than at high species density. 
One consequence of this effect is that abundance 
estimates for 2 areas could be identical, in spite of 
the faCt that densities differ. The severity and per
vasiveness of this problem is currendy unknown, 
and it merits funher research, as it is relevant to 
any method where abundance, rather than den
sity, is being estimated. For species that are not 
territorial, or species that are territorial but are 
well below carrying capacity, we would not expect 
this situation to occur. 

Several extensions of the model we presented will 
be imponant for increasing its applicability. One 
that we are currently investigating is to generalize 
the model to accommodate data other than binary 
detection dara. Many !DI sampling methods yield 
data that are more infonnative than simple pres
ence/absence data, in the fonn of counts of visits 
to each station. This extra information can be 
exploited in the model we described previously. 
Under the special case where the number of visits 
recorded are of unique individuals, the model pro
posed by Royle (2004) is directly applicable. More 
commonly, it is not possible to detennine the num
ber of distinct individuals visiting a station, just the 
total number of visits, say I;. In this case, one plau
sible model is to assume that each of the N; indio 
viduals visit station i tnj times (for individuals j ~ I, 
2,... , N) and that")" has a Poisson distribution with 
parameter e, the Vlsitation intensity of individuals 
in the local population. When the stations are visit
ed multiple times, subject to closure of the popUla
tion, this additional parameter can be estimated 
using a mixture model analogous to that proposed 
by Royle (2004). Indeed, simple moment estima
tors ofe and'" are available under this Poisson-Pois
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son mixture model, and it can be sh9WTl that e = 

[VarCr;) / Mean(Y;)] - 1 and that i =Mean(1)/6. 
More detailed evaluation of such models is neces
sary, and this is an area of ongoing research for us. 

MANAGEMENT IMPLICATIONS 
In management settings, a common goal is to 

determine the distribution and abundance of a 
species over some area or region of interest and to 
identify factors influencing distribution and abun
dance. Our model is a tool that can be used to 
accomplish that goal, at small and large scales, for 
species that typically can be detected only indi
rectly (e.g., by tracks or hair). When setting up an 
IDI study that will be analyzed under our model, it 
is crucial that there be an adequate number of sta
tions (usually in excess of 1(0), that stations can be 
completely reset each time they are checked, that 
stations are checked multiple times (e.g., >5), and 
that stations are far enough apart that a member 
of the target species can not visit >] station over 
the duration of the study. This latter requirement 
can often be met by determining the average 
length of the major axis of home range size (e.g., 
from literature), then spacing stations a distance 
gTeater than mean length plus 2 standard devia
tions. In the case of snow track surveys, where 
detection stations are not points as they are for 
many other IDl methods, we might for example 
specify a straight-line route where we record pres
ence or absence of tracks intersecting a l.&-km seg
ment of road (i.e., the detection station), then 
travel a distance of 8 km (more or less depending 
on the home range size of the target species) 
before recording presence or absence of tracks 
intersecting the next I.&-km segment of road. 

Our simulation results suggested that site-occu
paney estimates under our model are robust but 
that abundance estimates are sensitive to model 
assumptions. We therefore caution the reader to 

closely examine assumptions if abundance esti
mates are the goal. In some cases, it may even be 
beneficial to verify estimates under our model using 
a double sampling approach, where more intensive 
methods are used to estimate abundance for a 
randomly selected subset of the detection stations. 
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