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Abstract. We simulated the effects of missing information on statistical distributions 
of animal response that covaried with measured predictors of habitat to evaluate the utility 
and performance of quantile regression for providing more useful intervals of uncertainty 
in habitat relationships. These procedures were evaulated for conditions in which hetero­
geneity and hidden bias were induced by confounding with missing variables associated 
with other improtant processes, a problem common in statistical modeling of ecological 
phenomena. Simulations for a large (N � 10 000) finite population representing grid lo­
cations on a landscape demonstrated various forms of hidden bias that might occur when 
the effect of a measured habitat variable on some animal was confounded with the effect 
of another unmeasured variable. Quantile (0 � � � 1) regression parameters for linear 
models that excluded the important, unmeasured variable revealed bias relative to param­
eters from the generating model. Depending on whether interactions of the measured and 
unmeasured variables were negative (interference interactions) or positive (facilitation in­
teractions) in simulations without spatial structuring, either upper (� � 0.5) or lower (� �  
0.5) quantile regression parameters were less biased than mean rate parameters. Hetero­
geneous, nonlinear response patterns occurred with correlations between the measured and 
unmeasured variables. When the unmeasured variable was spatially structured, variation 
in parameters across quantiles associated with heterogeneous effects of the habitat variable 
was reduced by modeling the spatial trend surface as a cubic polynomial of location co­
ordinates, but substantial hidden bias remained. Sampling (n � 20–300) simulations dem­
onstrated that regression quantile estimates and confidence intervals constructed by in­
verting weighted rank score tests provided valid coverage of these parameters. Local forms 
of quantile weighting were required for obtaining correct Type I error rates and confidence 
interval coverage. Quantile regression was used to estimate effects of physical habitat 
resources on a bivalve (Macomona liliana) in  the spatially structured landscape on a sandflat 
in a New Zealand harbor. Confidence intervals around predicted 0.10 and 0.90 quantiles 
were used to estimate sampling intervals containing 80% of the variation in densities in 
relation to bed elevation. Spatially structured variation in bivalve counts estimated by a 
cubic polynomial trend surface remained after accounting for the nonlinear effects of bed 
elevation, indicating the existence of important spatially structured processes that were not 
adequately represented by the measured habitat variables. 
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INTRODUCTION Forest Management Act) and other countries often ne-

The relationship between an organism and its habitat cessitate consideration of animal habitat requirements 

is of theoretical interest in ecology because it is fun- in land use planning. Theoretical and management ap­

damentally tied to questions about distribution and plications have led to the development of numerous 

abundance (Wiens 1989, Huston 2002). Understanding mathematical and statistical models for quantifying the 

habitat relationships also is important for natural re- relationship between an organism and the resources 

source management because environmental regulations provided by its habitat (Morrison et al. 1998, Stauffer 

in the United States (e.g., National Environmental Pol- 2002). The reliability of quantitative predictions from 

icy Act, Fish and Wildlife Coordination Act, National 
animal habitat models has been questioned, however, 
because factors other than the resources provided by 

Manuscript received 6 May 2004; accepted 18 June 2004; final habitat may limit populations (Rotenberry 1986, 
version received 9 August 2004. Corresponding Editor: F. He. Fausch et al. 1988, Terrell et al. 1996, Terrell and Car­

5 E-mail: brian cade@usgs.gov penter 1997). Typically, not all factors that limit pop­

786 

Admin



787 March 2005 QUANTILE REGRESSION HABITAT MODELS 

ulations are measured and included in habitat models, 
either due to logistical constraints or because they are 
unknown. As a consequence, statistical predictions of 
responses to changes in habitat often lack the generality 
to be considered reliable statements of outcomes likely 
to occur at other times or places than those originally 
sampled. This hinders both the development of general 
theory related to resource selection and the utility of 
models for predicting outcomes of alternative man­
agement or conservation actions. 

The distribution and abundance of any species is 
constrained by biophysical factors (e.g., climate, soil 
productivity), habitat resources (e.g., vegetation pro­
viding food and cover), and interspecific (e.g., com­
petition and predation) and intraspecific (e.g., density-
dependent behavioral responses) biotic interactions 
(Morrison 2001, Huston 2002, O’Connor 2002). A spe­
cies will be locally abundant when none of the factors 
are limiting over some relevant interval of time and 
space. When any single factor is limiting, the species 
will be constrained to lower abundance than expected 
when all factors are permissive. If the factor that is 
limiting differs among sample locations and times and 
is unmeasured at some sample locations, then the spe­
cies response may exhibit heterogeneous variation 
across levels of the measured factors simply because 
they were not limiting at all times or locations sampled 
(Van Horne and Wiens 1991, Kaiser et al. 1994, Cade 
et al. 1999, Huston 2002). Heterogeneity then is a log­
ical consequence of having incomplete information on 
the interactions among the multiple biotic and abiotic 
factors that affect growth, survival, and reproduction 
of the organism. Any important factor that is not ex­
plicitly included as a parameter in a statistical model 
is implicitly included as part of the error distribution. 
When those unmeasured factors interact with the mea­
sured factors, the error distribution will be heteroge­
neous with respect to the variables included in the mod­
el. This creates a form of hidden bias (sensu Rosen­
baum 1991, 1995, 1999), where effects attributed to 
the measured habitat variables are confounded with ef­
fects due to other unmeasured variables associated with 
other processes. 

Statistical distributions that are heterogenous with 
respect to variables observed on some focal process 
have created interpretation issues for a variety of phe­
nomena in addition to resource selection, e.g., density-
dependent competition in plants (Cade and Guo 2000), 
plant productivity vs. diversity (Huston et al. 2000, 
Grace 2001, Huston and McBride 2002, Schmid 2002), 
resource–consumer interactions (Clark et al. 2003), and 
regional vs. local community organization (Angermeier 
and Winston 1998). Recently, quantile regression has 
been used to estimate parameters for heterogeneous 
responses to limiting factors, where rates of change 
(slopes) cannot be the same for all parts of the distri­
bution by definition (Terrell et al. 1996, Cade et al. 
1999, Cade and Noon 2003). Viewing resources as con­

straints on organisms rather than as correlates suggests 
that changes near the maximum response better rep­
resent effects when the measured factors (e.g., habitat) 
are the active limiting constraint (Kaiser et al. 1994, 
Terrell et al. 1996, Thomson et al. 1996, Cade et al. 
1999, Huston 2002, O’Connor 2002, Cade and Noon 
2003). This is predicated on an assumption that un­
measured processes should only reduce responses rel­
ative to the focal process (Kaiser et al. 1994, Terrell 
et al. 1996, Cade et al. 1999, Cade and Guo 2000). 
However, other forms of interaction among measured 
and unmeasured variables can generate heterogeneous 
distributions, and estimated changes in the entire re­
sponse distribution should more completely character­
ize relationships in the presence of hidden bias. 

Our objectives were fourfold. First, we further ex­
plored patterns of heterogeneity and hidden bias re­
vealed with quantile regression by expanding the sim­
ulation examples of Cade et al. (1999) and Huston 
(2002) to include large, finite populations and addi­
tional relationships between measured and unmeasured 
variables. Second, we demonstrated how effects of un­
measured limiting factors that were spatially structured 
could be accounted for by incorporating spatial trend 
surfaces (Borcard et al. 1992, Lichstein et al. 2002) in 
quantile regression models. Third, the statistical per­
formance of quantile rank score tests were evaluated 
for unweighted and weighted estimates for large, finite 
populations in simulations in which unmeasured var­
iables hidden in the error term induced complex forms 
of heterogeneity. Finally, we used quantile regression 
to model bivalve abundance in relation to physical hab­
itat and spatial trend on a tidal sandflat in a New Zea­
land harbor, data previously analyzed by Legendre et 
al. (1997). In this example application we demonstrated 
approaches for selecting among candidate models using 
the Akaike Information Criterion, estimating weighted 
parameters and confidence intervals, and estimating 
tolerance intervals for a proportion of the population. 
Our ultimate objective is to encourage estimation and 
interpretation of more relevant statistical intervals to 
characterize the real uncertainty in modeled relation­
ships between organisms and their habitat resources. 

LINEAR QUANTILE REGRESSION MODELS 

Linear models y � �0X0 � �1X1 � �2X2 � . . .  � 
� X � � used with quantile regression include those p p 

where the errors � may be independent and identically 
distributed (iid) or independent but not identically dis­
tributed (inid), e.g., (� � �1X1)�; X0 is a column of 
ones for an intercept and X1 to Xp are continuous or 
categorical indicator variables. The quantile regression 
parameterization of the linear model, Qy(��X) � �0(�)X0 

� �1(�)X1 � �2(�)X2 � . . .  � �p(�)Xp, transfers the 
effect of the error distribution � to parameters for a 
family of quantiles indexed by � (0 � � � 1), where 
�p(�) � � � F�

�1 is the inverse of the cu­

0 

�1(�) and F� 

mulative distribution of the errors. If the errors are 
p 
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TABLE 1. Parameters used in quantile regression simulations for generating finite populations 
of N � 10 000 from the model y � �0X0 � �1X1 � �2X2 � �3X1X2 � �. 

X2 spatially 
Model �0 �1 �2 �3 r(X1, X2) structured? 

Additive 1.0 0.41 0.005 0.0000 0.00 no 
Interference 1.0 0.41 0.000 �0.0001 0.00 no 
Facilitation 1.0 0.01 0.000 0.0001 0.00 no 
Interference 1.0 0.41 0.000 �0.0001 0.56 no 
Interference 1.0 0.41 0.000 �0.0001 0.92 no 
Interference 1.0 0.41 0.000 �0.0001 0.00 yes 

Note: X1 � uniform [0, 50]; X2 � uniform [0, 4000] for r(X1, X2) � 0, X2 � 1200 � 32.0X1 

� uniform [�1200, 1200] for r(X1, X2) � 0.56, X2 � 600 � 56.0X1 � uniform [�600, 600] 
for r(X1, X2) � 0.92, or spatially structured as X2 � 2000 � 4.5LONG � 7.5LAT � 0.1LONG2 

� 0.2LAT2 � 0.005LONG3 � uniform (�900, 900), with LONG and LAT coordinates [�50, 
50]; and � was lognormal (median � 0, � � 0.75) or uniform [�0.50, 0.50]. 

homogeneous (iid), then slopes are identical for all 
quantiles (�p(�) � �p, p � 0) although the intercepts 
�0(�) differ. Otherwise, if the errors are heterogeneous 
(inid), then slopes for some or all quantiles may differ 
for one or more independent variables. Additional tech­
nical details are in Cade et al. (1999) and Koenker and 
Hallock (2001) and an extensive primer on quantile 
regression is provided by Cade and Noon (2003). 

Confidence intervals for parameter estimates in 
quantile regression can be constructed by several pro­
cedures but commonly are based on inverting the quan­
tile rank score test because of their ease of computation 
and because they were found to be little affected by 
error heterogeneity (Koenker 1994). Conceptually, the 
quantile rank score test can be considered a sign test 
extended to any quantile and the linear model as it is 
based on the signs of the residuals from a null model 
with constrained parameters. Recent evaluations 
(Koenker and Machado 1999, Cade 2003) suggest that 
weighted versions of the quantile rank score test are 
required to provide valid confidence interval coverage 
for models with heterogeneous errors. Weighted quan­
tile regression models are constructed by multiplying 
weights (w) by  the dependent and independent vari­
ables, Qwy(��X) � w�0(�)X0 � w�1(�)X1 � w�2(�)X2 � 
. . .  � w�p(�)Xp. Appropriate weights are proportional 
to the density of the errors evaluated at a selected quan­
tile � and can be estimated by a variety of techniques 
(Koenker and Machado 1999, Cade and Noon 2003). 
The weighted estimates are consistent, like their un­
weighted counterparts, but have reduced sampling var­
iation. 

QUANTILE REGRESSION SIMULATIONS 

WITH UNMEASURED VARIABLES 

Design and methods 

Because the effects of important unmeasured vari­
ables are implicitly incorporated into the error term of 
a statistical model, quantile regression is a useful ap­
proach for exploring hidden bias as changes in the error 
distribution are revealed by changes in �p(�). To ex­
plore patterns of heterogeneity due to missing infor­

mation on some important limiting factor, we generated 
large, finite populations of N � 10 000 from a two-
variable linear model with interaction, y � �0X0 � �1X1 

� �2X2 � �3X1X2 � �. Errors were iid lognormal to 
create asymmetric or iid uniform to create symmetric 
distributions. By varying the correlation between X1 

and X2 and direction and size of interaction effects due 
to �3 (Table 1), it was possible to simulate a range of 
linear, nonlinear, homogeneous, and heterogeneous dis­
tribution patterns associated with an estimating model 
that lacked an important variable. Spatial structuring 
was explored by relating the unmeasured limiting fac­
tor X2 to latitude (LAT) and longitude (LONG) coor­
dinates for the center of 10 000 square blocks on a 100 
� 100 grid (Table 1). We used a homogeneous cubic 
polynomial spatial trend surface model (Borcard et al. 
1992, Legendre et al. 1997) to yield an R2 � 0.426 
with the least-squares regression estimate of the mean 
spatial trend surface (Appendix A). The large, finite 
population can be thought of as 10 000 100-ha blocks 
occurring on a landscape of 100 � 100 km extent. 
Simulation data were generated with random number 
functions in S-Plus 2000 (Insightful Corporation, Seat­
tle, Washington, USA), and quantile regression models 
were estimated with S-Plus scripts available in Eco­
logical Archives E080-001 or with the Blossom statis­
tical package (available online).6 

The �th regression quantile of the generating model 
was Qy(��X0, X1, X2, X1X2) � �0(�)X0 � �1X1 � �2X2 � 
�3X1X2, where �0(�) � �0 � F� 

�1(�). This was a homo­
scedastic linear regression model where all parameters 
other than the intercept (�0) are the same for all quan­
tiles �, i.e., parallel hyperplanes (Cade et al. 1999). The 
�th regression quantile of the estimating model where 
the effect of the unmeasured covariate X2 was not di­
rectly estimable was Qy(��X0, X1) � �0(�)X0 � �1(�)X1. 
In the estimating model both the intercept �0(�) and 
slope �1(�) for the measured covariate might vary with 
quantile � because the modified error term �� � � � 
�2X2 � �3X1X2 included a mix of the additive random 

6 �http://www.fort.usgs/gov/products/software/blossom. 
asp� 
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component and a multiplicative component that was a 
function of the measured covariate X1. We  compared 
regression quantile parameters �0(�) and �1(�) from the 
estimating model with parameters �0(�) and �1 from the 
generating model for the finite populations to examine 
differences due to different interaction effects and cor­
relations with the unmeasured variable (X2). By using 
parameters for the population of N � 10 000 with the 
estimating model, our interpretations of hidden bias 
were not affected by sampling variation of estimates. 

Additive, no interaction 

We first simulated from an additive (� � 0) gen­3 

erating model (Table 1) to demonstrate why the het­
erogeneous constraint patterns investigated by Terrell 
et al. (1996), Cade et al. (1999), and Huston (2002) 
imply that there must be more than just additive effects 
between the measured and unmeasured processes gen­
erating the data. When the estimating model y � �0X0 

� �1X1 � �� was used because X2 was unmeasured, all 
the unexplained variation in the modified error term �� 
� � � �2X2 was additive. This caused differences be­
tween quantiles of the intercept parameters �0(�) in  the 
estimating Qy(��X0, X1) � �0(�)X0 � �1(�)X1 and gen­
erating �0(�) models but negligible differences between 
the slope parameters �1(�) and � (Fig. 1). The esti­1 

mating model had homogeneous variances like the gen­
erating model with bias in intercepts and little bias in 
slopes. Thus, rates of change in X1 based on sample 
estimates for any quantile or the mean would be similar 
in repeated random sampling. The slightly chaotic fluc­
tuation in parameter values at the highest quantiles (� 
� 0.99) for this and other simulations were due to 
generating the finite population as a sample from an 
error distribution that assumes infinite population size. 

Multiplicative interference interaction 

A multiplicative interference interaction (� � 0.0)3 

generating model (Table 1) produced an increasing var­
iance pattern similar to those discussed by Terrell et 
al. (1996), Thomson et al. (1996), Cade et al. (1999), 
and Huston (2002). There was little bias in the intercept 
�0(�) but large bias in the slope �1(�) parameter across 
quantiles of the estimating model relative to the gen­
erating model parameters �0(�) and �1, respectively 
(Fig. 1). Bias of �1(�) relative to �1 was less with in­
creasing quantile (� → 1). This is easy to explain by 
recognizing that the modified error distribution (�� � 
� � �0.0001X1X2) was multiplicative with respect to 
X1, and higher quantiles occurred when �0.0001X1X2 

approached its maximum as X2 approached its mini­
mum of zero. Lower quantiles occurred when 
�0.0001X1X2 approached its minimum as X2 ap­
proached its maximum of 4000. The lognormal error 
distribution resulted in a distribution in which �1(�) did 
not converge with � at highest quantiles. However, 1 

when this example was simulated with a uniform error 
distribution, �1(�) converged with � at the highest 1 

quantiles. The lesson is that we can never be sure of 
the magnitude of bias when important variables are 
unmeasured since in applications we will never know 
the exact distributional form of the generating process. 
However, we can be confident that estimates for upper 
quantiles are less biased than those for lower quantiles 
or for the mean when the assumption of interference 
interactions with unmeasured variables is reasonable. 

Multiplicative facilitation interaction 

X

A multiplicative facilitation interaction (� � 0.0) 
generating model (Table 1) yielded an increasing var­
iance pattern similar to the previous example for the 
interference interaction except that now �1(�) at  lower 
quantiles (� → 0) were less biased relative to �1 (Fig. 
1). The explanation again is that the modified error 
distribution (�� � � � 0.0001X1X2) is  multiplicative 
with respect to X1, but now higher quantiles occurred 
when 0.0001X1X2 approached its maximum as X2 ap­
proached its maximum of 4000. Lower quantiles oc­
curred when 0.0001X1X2 approached its minimum as 

2 approached its minimum of 0. This simulation cou­
pled with the previous one demonstrated that the type 
of interaction (� for facilitation or � for interference) 
between the measured variables and unmeasured pro­
cesses determines whether lower or upper quantiles 
provide less biased estimates for the measured effects. 

Multiplicative interference interaction 
and correlation 

Nonlinear, increasing variance patterns were simu­
lated by a slightly more complicated interference in­
teraction model with varying degrees of correlation (r) 
between the measured habitat variable X1 and the un­
measured variable X2 (Table 1). Here the obvious non­
linear response required an estimating model with a 
quadratic polynomial of X1, y � �0X0 � �1X1 � � X 2

1 

� �� (Fig. 2). Stronger heterogeneity with less nonlin­
earity was evident for r(X1, X2) � 0.56 and more ho­
mogeneity with stronger nonlinearity for r(X1, X2) � 
0.92. Nonlinearity occurred because the correlation 
structure implied that some of the effect of X2 was 
linearly related to X1, and, thus, their interaction in the 
modified error term �� � � � �0.0001X1X2 was partly 
explained by the quadratic term X 2

1. The stronger the 
correlation between the measured X1 and unmeasured 
X2, the more X 2

1 captured the interaction effect in the 
modified error term ��, increasing the nonlinearity 
(��(�)�) and decreasing the heterogeneity indexed by 
changes in �1(�). Depending on whether the signs of 
the interaction (�3) and correlation (r) coefficients were 
similar (��3, �r, and ��3, �r) or  dissimilar (��3, �r, 
and ��3, �r), nonlinear functions curved upwards or 
downwards, respectively. The lesson is that correlation 
between measured and unmeasured variables can result 
in nonlinear response relationships; the stronger the 
correlation the greater the nonlinearity and less het­
erogenous the response. This also suggested that some 

2 
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FIG. 1.  (A) Samples (n � 150) from the N � 10 000 population of grid cells from the generating model y � �0X0 � �1X1 

� �2X2 � �3X1X2 � � for additive, interference interaction (�), and facilitation interaction (�) models, with � lognormally 
distributed (parameters in Table 1). Lines plotted are for selected regression quantile estimates (� ∈ {0.95, 0.90, 0.75, 0.50, 
0.25, 0.10, 0.05}) when the estimating model is y � �0(�)X0 � �1(�)X1 � �� because X2 was not measured. (B) The deviation 
between �0(�) and �0(�) and (C) the deviation between �1(�) and �1(�) by  quantiles for the finite population (�’s have dashed 
lines, and �’s have solid lines). 

surrogate variable that was strongly correlated with the 
unmeasured variables might help account for some of 
the variation in the modeled relationships. 

Multiplicative interference interaction 
and spatial correlation 

The spatial coordinates of sample locations are a 
potential set of surrogate variables for unmeasured pro­
cesses that are spatially structured. An interference in­
teraction model was simulated with no correlation be­
tween measured and unmeasured variables but with the 

unmeasured variable related to latitudinal and longi­
tudinal coordinates (Table 1). The estimating model y 
� �0X0 � �1X1 � (�2X1 � LAT) � (�3X1 � LONG) � 
(�4X1 � LAT2) � (�5X1 � LONG2) � (�6X1 � LONG3) 
� ��  had relatively homogeneous parameters �2(�)– 
�6(�) across quantiles for the interactions of the mea­
sured habitat variable with the spatial trend surface, 
consistent with the homogeneous variation in the spa­
tially structured unmeasured variable (Fig. 3). Varia­
tion in �1(�) across quantiles was evident for the mea­
sured habitat variable with less bias relative to �1 at 
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FIG. 2.  (A) A sample (n � 150) from the N � 10 000 
population of grid cells from the generating model y � �0X0 

� �1X1 � �2X2 � �3X1X2 � � for interference interaction, � 
lognormally distributed, and where r(X1, X2) � 0.56 and 0.92 
between measured and unmeasured variables (parameters in 
Table 1). Lines plotted are for selected regression quantile 
estimates when the estimating model is y � �0(�)X0 � �1(�)X1 

� �2(�)X 2
1 � �� because X2 was not measured. Panels B–D 

show: (B) �0(�) and �0(�) deviating slightly for some quantiles 
(�) of  the finite population (�’s have dashed lines and �’s have 
solid lines); (C) �1(�) and �1(�) deviating less for higher quan­
tiles and less for r(X1, X2) � 0.92; and (D) �2(�) across quan­
tiles, with more negative estimates for r(X1, X2) � 0.92 in­
dicating greater nonlinearity; multiply the y-axis scale num­
bers in (D) by 10�2 for actual values. 

higher quantiles. Notice by comparing �1(�) in  Fig. 3, 
where some of the effect of the unmeasured variable 
was accounted for by the spatial trend, with �1(�) in  
Fig. 1, where it was not, that variation and average bias 
across quantiles was less for the spatial model although 
bias at higher quantiles was slightly greater. Stronger 
spatial structuring of the unmeasured variable (X2) pro­
duced less variation in �1(�) across quantiles and less 

bias relative to �1. However, the amount of variance 
explained (R2 � 0.426) with the spatial trend surface 
simulated in Fig. 3 was typical of the better results 
achieved in ecological investigations (e.g., Legendre 
et al. 1997). The lesson is that considerable hetero­
geneity and bias in parameters associated with effects 
of measured processes likely will remain even after 
accounting for effects of unmeasured processes by 
modeling their spatial structure with a trend surface. 

PERFORMANCE OF QUANTILE RANK SCORE TESTS 

FOR MODELS WITH HIDDEN BIAS 

Type I error rates for quantile rank score tests com­
monly used for constructing confidence intervals for 

FIG. 3.  Parameters for the N � 10 000 population of grid 
cells from the interference interaction generating model (�’s 
have dashed lines) as in Fig. 1 but with X2 spatially structured 
(parameters in Table 1); and for the estimating model y � 
�0(�)X0 � �1(�)X1 � [�2(�)X1 � LAT] � [�3(�)X1 � LONG] 
� [�4(�)X1 � LAT2] � [�5(�)X1 � LONG2] � [�6(�)X1 � 
LONG3] � ��(�’s have solid lines) used because X2 was not 
measured: (A) �0(�) and �0(�) deviating slightly for some 
quantiles (�); (B) �1(�) and �1(�) deviating less for higher 
quantiles; (C)–(G) relatively homogeneous effects of �2 (�), 
�3(�), �4(�), �5(�), and �6(�) across quantiles for the inter­
actions with the cubic polynomial spatial trend. For panels 
(C–G), y-axis scale numbers must be multiplied by the factor 
given in the y-axis label to obtain actual values. 
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�0(�) and �1(�) were simulated for a range of sample 
sizes (n � 20, 30, 60, 90, 150, and 300) and quantiles 
(� �  {0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 
0.99}) by repeatedly sampling from the finite popu­
lation of N � 10 000 generated by the interference in­
teraction model (Table 1). Weighted quantile estimates 
were required to maintain correct Type I error rates and 
confidence interval coverage. Because the heteroge­
neity induced by the confounding between measured 
variables and important unmeasured variables was not 
a simple location/scale form, weights were estimated 
for the selected quantiles based on a local interval 
(bandwidth) of quantiles (Koenker and Machado 1999, 
Cade and Noon 2003). Power to detect the homoge­
neous spatial trend surface model in Fig. 3 indicated 
�80% power for � � 0.05 was achieved for unweighted 
estimates of �2(�)–�6(�) for � � 0.05–0.90 when n � 
150. Details on methods and results of simulations are 
in Appendix B. 

EXAMPLE APPLICATION 

Methods 

Legendre et al. (1997) and Legendre and Legendre 
(1998:745–746) evaluated the contributions of spatial 
trend, physical habitat variables, and biotic interactions 
to bivalve distribution and abundance in a New Zealand 
harbor. Physical habitat variables included sediment 
characteristics, bed elevation, and hydrodynamic mea­
sures likely to affect larval deposition, transport of ju­
veniles, food supply, and feeding behavior. There were 
many strong correlations among the physical habitat 
variables considered. Biotic interactions considered 
adult–juvenile interactions by adding abundance of bi­
valves in different size classes to the models. Effects 
of a spatial trend surface, abundance of competitors, 
and habitat conditions were partitioned by considering 
nested sets of models in a linear least-squares regres­
sion (Legendre et al. 1997), following procedures of 
Borcard et al. (1992). We explored relationships for 
one species, Macomona liliana, using similar proce­
dures but estimated with quantile regression. We pre­
sent comprehensive analyses for the 22–23 January 
1994 counts of �15-mm Macomona, adult size class, 
in 0.25-m2 quadrats randomly located within 200 grid 
cells on a 250 � 500 m area on the sandflat of Wiroa 
Island, Manukau Harbor, New Zealand (Fig. 4). The 
data used are provided in the Supplement. A condensed 
summary of results for Macomona in size class 0.5– 
2.5 mm are in Cade (2003). 

We followed similar steps in modeling bivalve 
counts as used by Legendre et al. (1997) but made 
several adjustments because regression quantile esti­
mates were used to account for heterogeneity and be­
cause we had a slightly different philosophy regarding 
model selection. Bivalve counts were not normalized 
by taking logarithms as done by Legendre et al. (1997). 
When selecting polynomial terms to include in the final 
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FIG. 4.  Counts of �15-mm Macomona liliana in 0.25-m2 

quadrats (n � 200), 22–23 January 1994, by location and bed 
elevation (meters above chart datum) contours on a 250 � 
500 m area of sandflat at Wiroa Island, Manukau Harbor, New 
Zealand (data from Legendre et al. [1997]). Counts are pro­
portional to the size of the circle. Cubic polynomial spatial 
trend surfaces are for the 0.90, 0.50, and 0.10 regression 
quantiles of counts. Latitude (LAT) and longitude (LONG) 
were centered to mean zero. The view is from the southwest 
corner of the site. 

spatial trend surface model, we considered models with 
all linear terms; all linear and quadratic terms; and all 
linear, quadratic, and cubic terms; this resulted in com­
parisons of three spatial trend models. We did not elim­
inate any individual monomial term from the set of 
linear, quadratic, or cubic polynomial terms as done by 
Legendre et al. (1997). 

We used R1(�) coefficients of determination (Koenker 
and Machado 1999) to compare fits of different re­
gression quantile models across � � 0.05–0.95 by in­
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crements of 0.05. However, R1(�), like R2 from least-
squares regression, cannot decrease with increasing 
number of parameters and, thus, it was desirable to 
have a statistic that adjusts for inclusion of additional 
parameters relative to sample size. Therefore, we se­
lected among models using a small-sample-size-cor-
rected version of the Akaike Information Criterion 
(AICc) developed by Hurvich and Tsai (1990) for the 
0.50 regression quantile (i.e., least absolute deviation 
regression) and extended to other quantiles; AICc(�) � 
2n � ln(SAF(�)/n) � 2p(n/(n � p � 1)), where SAF(�) 
was the weighted sum of absolute deviations minimized 
in estimating the �th quantile regression with p param­
eters (including one for estimating �). Appendix C de­
scribes computations for R1(�) and AICc(�) and their 
justification. We computed differences (�AICc(�)) be­
tween AICc(�) for more complex models and the sim­
plest model with just a constant (�0) to  facilitate com­
parisons among models in a fashion comparable to us­
ing coefficients of determination. 

The modeling steps Legendre et al. (1997) and we 
followed were (1) select an appropriate polynomial 
spatial trend surface model for bivalve counts; (2) se­
lect an appropriate model for bivalve counts as a func­
tion of the physical environmental variables; and (3) 
test whether the spatial trend surface explained a sig­
nificant fraction of additional variation given that the 
physical environmental variables were already in the 
model. The two steps based on abundance of compet­
itors were not required for the adult (�15 mm) Ma­
comona (Legendre et al. 1997). Legendre et al. (1997) 
fit a spatial trend surface model first to determine 
whether there was any spatial structuring at the scale 
of the study plot associated with effects of ecological 
processes. However, we also considered the spatial 
trend surface as a potential surrogate for effects of 
unmeasured processes to be included in models after 
having accounted for effects associated with the mea­
sured variables. 

Spatial trend surface 

The cubic polynomial explained the greatest pro­
portion of variation in counts of adult Macomona 
across � � 0.05–0.95 and was the preferred trend sur­
face model based on R1(�) coefficients of determination 
and AICc(�) (Fig. 5). Trend surfaces plotted for the 
0.90, 0.50, and 0.10 quantiles had wavy variation along 
the northwest to southeast axis similar to the least-
squares regression surface estimated by Legendre et al. 
(1997), but the divergence of the quantile surfaces to­
wards the northwest was indicative of greater variation 
in counts (Fig. 4). The regression quantile estimates 
established that variation in abundance and not just 
mean abundance of adult Macomona had a spatial trend 
on the Wiroa sandflat. Substantially more variation was 
explained for higher than lower quantiles of the trend 
surface as indicated by R1(�) coefficients of determi­
nation (Fig. 5). 

Physical habitat 

Legendre et al. (1997) found that only two physical 
habitat variables explained any of the variation in mean 
counts (log transformed) of adult Macomona, bed el­
evation (in meters) and percentage of time the plot was 
covered by �20 cm of water during spring tide. These 
also were the only physical habitat variables that we 
found explained any of the variation in quantiles of 
adult Macomona. However, these two variables were 
near perfectly linearly correlated (r � �0.999) because 
bed elevation has a direct, physical relation to water 
depth during high tides. We therefore chose to use only 
bed elevation in the physical habitat model. Legendre 
et al. (1997) used a cubic polynomial of bed elevation 
to model the nonlinear response of large Macomona 
counts (Fig. 6). We initially considered this model too 
but also examined a simpler quadratic polynomial and 
compared models based on R1(�) and AICc(�). There 
was very little improvement in coefficients of deter­
mination by going to the cubic compared to the qua­
dratic polynomial (Fig. 5). Differences in �AICc(�) 
supported use of the cubic polynomial of bed elevation 
only for 0.80–0.85 quantiles. An examination of the 
cubic polynomial model of bed elevation suggested that 
regression quantile fits that were better with the cubic 
term were greatly influenced by the outlying minimum 
elevation value of 1.95 m. Removing this influential 
value and estimating quadratic and cubic polynomial 
models and associated fit and model selection statistics 
again indicated even less support for including the cu­
bic bed elevation term. 

The nonlinear response of large Macomona to bed 
elevation (Fig. 6) indicated increasing abundance at 
lower and higher bed elevations and increasing vari­
ation in abundance at higher elevations (Fig. 4). Rank 
score tests indicated that the joint effect of the linear 
and quadratic terms differed from zero for � � 0.10 (P 
� 0.05) but not for � � 0.10 (P � 0.15). Because bed 
elevation was near-perfectly negatively correlated with 
percentage of time the location was covered by �20 
cm of water at spring flood tide, this relationship in­
dicated that higher counts of adult Macomona occurred 
at locations that were flooded for shorter and longer 
periods of time. This was inconsistent with the Legen­
dre et al. (1997) interpretation that adult Macomona 
abundance was structured by food availability deter­
mined by the amount of time a location was exposed 
to tidal flooding. 

Although heterogeneity in abundance across bed el­
evation was not extreme, we constructed weighted re­
gression quantile estimates for � �  0.05–0.95 by in­
crements of 0.05, where weights were estimated sep­
arately for each individual quantile with a variant of 
the bandwidth approach used by Koenker and Machado 
(1999). Details of this approach to constructing local 
quantile weights are in Appendix D. Weighted esti­
mates for the quadratic polynomial terms of bed ele­
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FIG. 5.  R1(�) coefficients of determination and differences in Akaike Information Criteria [�AICc(�)] for linear, quadratic, 
and cubic polynomial spatial trend surfaces and for quadratic and cubic functions of bed elevation (in meters) and quadratic 
function of bed elevation plus cubic spatial trend for � � 0.05–0.95 (by increments of 0.05) regression quantiles of �15-
mm Macomona liliana counts in 0.25-m2 quadrats (n � 200), 22–23 January 1994, on the sandflat of Wiroa Island, Manukau 
Harbor, New Zealand (data from Legendre et al. [1997]). All �AICc(�) were computed by subtracting the AICc(�) for the 
model with just an intercept (�0) from the AICc(�) for more complex models. 

vation followed a similar pattern of changes with quan­
tiles as the unweighted estimates, although weighted 
estimates smoothed over a little detail because they 
were only done for 19 increments of � between 0.05 
and 0.95 (Fig. 7). The 90% confidence intervals for the 
weighted estimates were slightly narrower than those 
for the unweighted estimates at most higher quantiles. 
The overall pattern and inference for weighted esti­
mates did not differ substantially from those for un­
weighted estimates, consistent with the moderate 
amount of heterogeneity in adult Macomona counts 
across bed elevation (Fig. 6). 

m

Simultaneous 80% prediction intervals on 80% of 
adult Macomona densities indicated more than a dou­
bling in interval lengths from 22–44 to 27–85 per 0.25 

2 as bed elevation increased from 2.7 to 3.2 m (Fig. 
6). Lower intervals that extended below zero counts 
(nonsensical) for bed elevations �2.5 m and upper in­
tervals exceeding 100 for bed elevations �2.2 m were 
unreliable. The wide intervals were due to fewer ob­
servations at lowest bed elevations. This band of in­

tervals was estimated by constructing simultaneous 
confidence intervals for the 0.10 and 0.90 regression 
quantile estimates at 25 values of bed elevation be­
tween 2.10 and 3.30 m. The simultaneous prediction 
intervals emulated the Working-Hotelling simulta­
neous confidence intervals (Neter et al. 1996:234) for 
intercept estimates b0(�) with the origin of bed eleva­
tion shifted to the 25 values selected for prediction. 
Two-sided intervals were constructed by inverting the 
weighted quantile rank score test with an � � 0.0316 
� 1 � [prob F((3 � F(0.80, 3, 197)), 1, 197)], using 
the upper part of the confidence interval for b0(0.90) 
and the lower part of the confidence interval for 
b0(0.10). The interval band displayed in Fig. 6 was, 
thus, a statement about the central 80% of adult Ma­
comona densities that would be expected to occur with 
respect to bed elevation in 80% of repeated random 
samples, i.e., a tolerance band. Slight irregularities in 
the simultaneous confidence intervals should not be 
overinterpreted as they were likely due to the vagaries 
of interpolating between discrete probabilities associ­
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ated with the rank score test statistics (Cade 2003). Use 
of a more stringent confidence level such as 90% re­
quired smaller individual �’s that resulted in intervals 
with greater irregularities. 

Physical habitat plus spatial trend 

Adding the cubic polynomial spatial trend surface to 
the model indicated that there was additional variation 
in adult Macomona abundance that was spatially struc­
tured after accounting for effects of bed elevation (Fig. 
5). Changes in �AICc(�) clearly supported the model 
with bed elevation and the spatial trend surface over 
the model with just bed elevation (Fig. 5). Sampling 
distributions for most quantiles (0.20 � � � 0.85) in­
dicated the joint effects of the polynomial spatial co­
efficients differed from zero (rank score T, P � 0.05) 
after accounting for bed elevation but did not differ 
(rank score T, P � 0.10) from zero for lower (� � 0.20) 
and higher (� � 0.85) quantiles. Because bed elevation 
itself was spatially structured along the northwest to 
southeast axis (Fig. 4), estimated effects of bed ele­
vation after adjusting for spatial trend were attenuated, 
reversed in sign, and did not differ from zero (Fig. 8). 
Only unweighted estimates were used with this model, 
as the previous analysis on bed elevation suggested 
effects of heterogeneity were not sufficient for weight­
ed confidence intervals to differ substantially from un­
weighted ones. 

The model including bed elevation and spatial trend 
indicated similar wavy variation in adult Macomona 
abundance from the northwest to southeast as estimated 
by the spatial trend surface alone, except that some of 

FIG. 6.  Counts of �15-mm Macomona lil­
iana in 0.25-m2 quadrats (n � 200), 22–23 Jan­
uary 1994, on the sandflat of Wiroa Island, Ma­
nukau Harbor, New Zealand, by bed elevation 
(in meters). Solid lines are 0.90, 0.50, and 0.10 
regression quantile estimates of Macomona 
counts as a quadratic function of bed elevation. 
Lines with small dots connect upper and lower 
Working-Hotelling 80% simultaneous confi­
dence intervals for predicted 0.90 (upper) and 
0.10 (lower) regression quantiles at 28 selected 
values of bed elevation. 

the variation in the northwest corner was reduced (com­
pare Figs. 4 and 8). However, the spatial trend surface 
model explained nearly as much variation as the model 
that included bed elevation and spatial trend (Fig. 5). 
Because increases in adult Macomona abundance 
above and below 2.6–2.8 m bed elevation followed the 
dominant spatial trend from the northwest to southeast 
(Fig. 4), the effects of bed elevation and the spatial 
trend surface were partially confounded and probably 
should not both be included for an interpretable model. 

DISCUSSION 

Our example simulations demonstrated how hetero­
geneous and nonlinear relations in habitat models can 
easily arise from confounding with some important but 
unmeasured processes. More complicated arguments 
are not required to explain why heterogeneity and non-
linearities are so common in statistical models of an­
imal responses to their habitat resources. Although the 
dimensions of the measured habitat variables (X1) and 
the unmeasured limiting factors (X2) were kept to single 
variables for simulation purposes, it is reasonable to 
extend interpretation of these simulation results to 
greater dimensions by thinking of X1 and X2 as being 
the composite additive effect of more than two vari­
ables. Our simulations focused on confounding with 
unmeasured variables not related to habitat resources. 
It also is reasonable to extend the results and interpre­
tations to situations in which confounding occurs with 
some important habitat resources that were not mea­
sured and included in the model used for estimation. 
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FIG. 7.  Estimates for intercept [b0(�)], linear [b1(�)], and quadratic [b2(�)] terms for regression quantiles of �15-mm 
Macomona liliana counts in 0.25-m2 quadrats (n � 200), 22–23 January 1994, on the sandflat of Wiroa Island, Manukau 
Harbor, New Zealand, as a quadratic function of bed elevation (in meters) for both unweighted and weighted models. Solid 
lines are step functions of parameter estimates by quantiles (�), all for unweighted estimates and for � �  0.05–0.95 by 
increments of 0.05 for weighted estimates. Dashed lines connect pointwise 90% confidence intervals based on inverting the 
T rank score tests for � � 0.05–0.95 by increments of 0.05. 

The philosophy embodied in our simulations reflects 
a view that most ecological relations have an appear­
ance of randomness not because they are inherently 
random but because we are always estimating them 
with incomplete information (Regan et al. 2002). As 
long as random variation induced by missing infor­
mation is small and homogeneous, conventional re­
gression estimation procedures (e.g., least squares) may 
provide useful, reasonable estimates of conditional re­

lationships. When missing information is for processes 
of substantial importance to an organism, it is reason­
able to expect large, heterogeneous random variation 
and estimates with hidden bias. While all organisms 
are dependent on some suite of resources obtained from 
their habitat, at many times and locations other factors 
may actually exert more influence on organism growth, 
survival, reproduction, and dispersal, causing a per­
ceived disconnection between the organism response 
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FIG. 8.  (A) Estimates for linear [b1(�)] and quadratic [b2(�)] terms for regression quantiles of �15-mm Macomona liliana 
counts in 0.25-m2 quadrats (n � 200), 22–23 January 1994, on the sandflat of Wiroa Island, Manukau Harbor, New Zealand, 
as a quadratic function of bed elevation (in meters) after adjusting for the cubic polynomial spatial trend surface. Solid lines 
are step functions of parameter estimates by quantiles (�), and dashed lines connect pointwise 90% confidence intervals based 
on inverting the T rank score tests for � � 0.05–0.95 by increments of 0.05. (B) The 0.90, 0.50, and 0.10 cubic polynomial 
spatial trend surfaces after adjusting for the quadratic function of bed elevation at the mean value of 2.9 m. The view is 
from the southwest. 

and the requisite habitat resources. Garshelis (2000) 
and Morrison (2001) both have argued for improving 
our knowledge of animal habitat relations by focusing 
modeling efforts on more specifically defined resources 
and relating them to demographic parameters such as 
survival and reproductive rates that ultimately contrib­
ute to differences in abundance. These are reasonable 
suggestions. But neither a more focused definition of 
what constitutes a habitat resource nor measuring al­
ternative demographic parameters will eliminate issues 
of hidden bias due to confounding between measured 
habitat factors and unmeasured ones associated with 
other processes. 

Inference procedures based on rank scores for 
weighted regression quantile estimates provided valid 
intervals reflecting the sampling distribution of param­
eter estimates for the measured habitat processes, but 
the parameters for the estimating model clearly were 
biased relative to those generating the responses. In 
applications, the degree of hidden bias will be greater 
or lesser for different quantiles depending on the non-

estimable interaction effects and unknown error dis­
tributions. If it is possible to rule out certain types of 
interaction effects (e.g., facilitation) with unmeasured 
processes, then we might profitably focus estimation 
and inference procedures for quantile regression at one 
end of the probability distribution (e.g., upper quan­
tiles). While interference interactions may be more 
common in ecological systems, facilitation interactions 
have been suggested for some processes, e.g., trans­
gressive over-yielding where plant biomass is greater 
when a nitrogen-fixing legume and a C4 grass are grown 
together than when either species is grown separately 
(Huston and McBride 2002). Facilitation interactions 
are more difficult to articulate for animal habitat re­
lationships but may exist. Deciding whether interfer­
ence or facilitation interaction is a more reasonable 
assumption requires knowledge obtained from sources 
other than the data being analyzed. In the absence of 
such knowledge, it would appear prudent to obtain es­
timates and confidence intervals across the entire in­
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terval of quantiles that provide reliable estimates (e.g., 
� �  0.05–0.95). 

We encourage the use of prediction intervals, and 
especially simultaneous prediction intervals or toler­
ance intervals, as a strong antidote to overzealous ex­
pectations that any habitat model can provide precise 
predictions. Prediction and tolerance intervals provide 
confidence statements related to individual or a pro­
portion of individual observational units (Vardeman 
1992). These were areal plots in our simulations and 
example application as in most habitat models. It is 
unreasonable to expect habitat models to provide very 
precise predictions for any individual area when they 
exclude many other important processes, which we of­
ten barely understand or know how to measure. The 
uncertainty associated with multiple unmeasured pro­
cesses will likely increase as we increase the spatial 
and temporal extent of our sampling. Thus, the conun­
drum of developing useful habitat models is that gen­
erality requires extensive sampling in time and space, 
but doing this almost ensures that many other unmea­
sured processes will be limiting at some locations and 
times. However, this does not imply that useful pre­
dictions are impossible with habitat models, especially 
for management or conservation purposes. Predictions 
made by characterizing intervals of response with pro­
cedures such as those presented here are useful mea­
sures of uncertainty when we expect population re­
sponses to vary greatly across different locations (or 
time) even if they have similar habitat resources. Pre­
diction and tolerance intervals provide measures of 
sampling variation for individual units that actually can 
be observed and on which management or conservation 
actions can be implemented. Improving predictions 
from habitat models requires understanding the con­
texts in which habitat models fail or succeed as pre­
dictors of population change by considering contin­
gencies across individual units of area on landscapes. 

Our simulation results demonstrated that heteroge­
neity that arises due to confounding between measured 
and unmeasured variables often will not be a simple 
location-scale form. In this situation, weighted regres­
sion quantile estimates and rank score tests require es­
timating weights that are based on changes in a local 
interval of quantiles around a specific quantile rather 
than globally applied across all quantiles. We used a 
minor modification of bandwidth estimation procedures 
developed by Hall and Sheather (1988) as extended to 
regression quantiles by Koenker and Machado (1999). 
Although adequate, there clearly is room for improve­
ment in these procedures, including automating their 
computation in the necessary software. 

Our use of �AICc for model selection with the bi­
valve data extended Hurvich and Tsai (1990) proce­
dures for median regression (� � 0.5) to other quantiles. 
The fact that some large �AICc between models at high 
and low quantiles were associated with sampling dis­
tributions of parameter estimates that did not differ 
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from zero was a little disconcerting. This may reflect 
a fundamental difference between AICc and hypothesis 
tests, the former being inductive and the latter deduc­
tive inference, or that we extended estimates and in­
ferences too far into the extreme quantiles for them to 
be reliable. Machado (1993) discussed extension of the 
Schwarz information criterion (SIC) to robust M esti­
mates, including median regression, for linear models. 
The SIC increases more rapidly with additional param­
eters than AICc and, thus, will generally lead to selec­
tion of lower dimension models. Additional research 
on application of information criteria to regression 
quantile model selection is clearly warranted. 

Use of cubic polynomials of location coordinates to 
estimate spatial trend surfaces provided a reasonable 
method for modeling larger scale spatial gradients of 
responses (Legendre et al. 1997) that are of most in­
terest for models of animal response to habitat. Spatial 
trend surfaces provided an indication of spatial vari­
ation in organism response that would suggest effects 
of some relevant ecological processes (Legendre et al. 
1997) and provided a method for accounting for some 
of the variation due to unmeasured processes that were 
spatially structured. Other methods for fitting flexible 
quantile response surfaces to location coordinates such 
as piecewise linear or cubic splines are possible and 
may offer advantages in some situations (Koenker et 
al. 1994, He and Ng 1999). 

It is important to remember that gradients in space 
offer no ecological interpretation per se (Legendre et 
al. 1997). It is possible to defeat the entire purpose of 
developing general habitat relationships by over-reli-
ance on modeling spatial structure. Consider the mod­
els of adult Macomona as a function of bed elevation 
and spatial structure. There was more variation in adult 
Macomona abundance explained by the spatial trend 
surface alone than by the nonlinear bed elevation mod­
el. A parsimonious model that explained most variation 
with fewest parameters would be the cubic spatial trend 
surface model. Yet this model of bivalve counts based 
on spatial gradients on one sandflat has little chance 
of generalizing to other locations because it includes 
no information on ecological processes. The cubic spa­
tial trend does suggest that spatially structured pro­
cesses are operating within the scale of the sampled 
250 � 500 m area (Legendre et al. 1997). There is 
greater potential for generalizing the bed elevation re­
lationship to other locations to the extent that bed el­
evation is related to hydrodynamic processes affecting 
settlement, feeding, and survival of bivalves. Similarly, 
models that include indicator variables allowing for 
different habitat relationships for different geographic 
locations (e.g., Dunham and Vinyard 1997), although 
justified from a statistical standpoint, may actually de­
feat our desire to develop general habitat relationships. 
Quantile regression allows contextual differences as­
sociated with different geographic locations to be ex­
pressed through different rates of change for different 
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quantiles of one probability model (e.g., Dunham et al. 
2002). 

Although our focus in this article is on applications 
and interpretations of quantile regression for estimating 
animal habitat relationships, it should be apparent that 
heterogeneous distributions associated with many other 
ecological phenomena could benefit from similar anal­
yses. The inference tools and interpretations of linear 
quantile regression have been developed sufficiently 
that routine analyses are now possible. We expect that 
quantile regression estimates for intervals of responses 
might prove enlightening for some controversial eco­
logical debates such as whether plant productivity is a 
function of diversity (Grace 1999, Huston et al. 2000, 
Huston and McBride 2002, Schmid 2002). 
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APPENDIX A 

A figure presenting the cubic polynomial trend surface used in simulations to generate the values of X2, an  unmeasured 
nonhabitat variable, is available in ESA’s Electronic Data Archive: Ecological Archives E086-041-A1. 

APPENDIX B 

The performance of regression quantile rank score tests for models with hidden bias is available in ESA’s Electronic Data 
Archive: Ecological Archives E086-041-A2. 

APPENDIX C 

Model selection criteria are available in ESA’s Electronic Data Archive: Ecological Archives E086-041-A3. 

APPENDIX D 

The method used for estimating local quantile weights is available in ESA’s Electronic Data Archive: Ecological Archives 
E086-041-A4. 

SUPPLEMENT 

Bivalve data (Legendre et al. 1997) used for example application are available in ESA’s Electronic Data Archive: Ecological 
Archives E086-041-S1. 


