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Performance of quantile rank score tests used for hypothesis testing and constructing confidence 
intervals for linear quantile regression estimates (0 ::::: r ::::: 1) were evaluated by simulation for models 
with p = 2 and 6 predictors, moderate co)Jinearity among predictors, homogeneous and heterogeneous 
errors, small to moderate samples (n = 20--3(0), and centnLI to upper quantiles (0.5O-D.99). Test 
statisties evaluated were the conventional quantile rank score T statistie distributed as 1. 2 random 
variable with q degrees of freedom (where q parameters are constrained by Ho:) and an F statistic 
with its sampling distribution appror;imated by permutation. The permutation F -test maintained better 
Type I errors than the T -test for homogeneous error models with smaller 11 and more extreme quantiles 
r. An F distributional appror;imation of the F statistic provided some improvements in Type I errors 
over the T -test for models with >2 parameters, smaller n. and more er;treme quantiles but not as 
much improvement as the permutation appror;imation. Both rank score tests required weighting to 
maintain correct Type I errors when heterogeneity under the alternative model increased to 5 standard 
deviations across the domain of X. A double permutation procedure was developed to provide valid 
Type I errors for the permutation F -test when null models were foreed through the origin. Power 
was similarfor conditions where both T - and F -tests maintained correct Type I errors but the F -test 
provided some power at smaller n and extreme quantiles when the T -test had no power because of 
excessively conservative Type I errors. When tbe double permutation scheme was required for the 
permutation F -test to maintain valid Type I errors, power was less than for the T -test with decreasing 
sample size and increasing quamiles. Confidenee intervals on parameters and tolerance intervals for 
future predictions were constructed based on test inversion for an example application relating trout 
densities to stream channel width:depth. 

Keywords: Ecological limiting factors; Linear model; Permutation procedures; Quantile regression; 
Rank score statistic 

I. Introduction 

Estimating quantiles (0 ~ r ~ 1) of a response variable conditional on some set of covari­
ates in a linear model has many applications in the biological and ecological sciences [1] 
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and econometrics [2]. Quantile regression models allow the entire conditional distribution of 
a response variable y to be related to some covariates X, providing a richer description of 
functional change than is possible by focusing on just the mean (or other central statistics), yet 
requiring minimal distributional assumptions [3-5]. Regression quantile estimates are espe­
cially enlightening for relationships involving heterogeneous responses where by definition 
rates of change are not the same across all parts of the response distribution. In many appli­
cations in biology and ecology, quantile regression models have been used where scientific 
considerations suggested that upper quantiles near the maximum better estimated effects of 
the biological process being measured as a limiting constraint [6-9]. Quantile regression has 
considerable appeal both for prediction and understanding. It can be used whether interest 
is in extreme quantiles (e.g. 95th-99th percentiles) for estimating rates of change along the 
boundary of a response distribution associated with some ecological limiting factor or for 
cbaracterizing an interval (e.g. 10th-90th percentiles) of estimated effects associated with 
heterogeneous distributions. Interpretations and properties of the estimated effects in quantile 
regression are similar to those from more familiar linear modeling procedures such as least 
squares regression, but now are made for an interval of quantiles that is selected based on 
scientific considerations [1,2,5,6]. 

There is a well-developed theory for estimating covariance matrices to provide inferences 
with asymptotic validity for linear regression quantile models [3-5]. These covariance methods 
rely on estimating the reciprocal of the error density function at the quantile of interest, 
f (F- 1(0», i. e., the sparsity function. Performance of asymptotic covariance methods at 
smaller sample sizes often is poor [10, II] and the asymptotic theory becomes suspect at 
more extreme «0.3 and >0.7) quantiles (12]. In 1994, Koenker [13] introduced the idea 
of constructing confidence intervals by inverting a quantile rank score test (14], which does 
not require estimating the sparsity function and was expected to perform well under linear 
heteroscedastic regression models and for smaller sample sizes. 

We conducted an extensive simulation study to explore many questions related to the 
performance of the quantile rank score test and potential modifications. We investigated 
performance of quantile rank score tests across a range of quantiles, sample sizes, error 
distributions, and model forms likely to be encountered in scientific applications to deter­
mine where inferences become unreliable for hypotheses on single to multiple parameters. 
As expected, test performance was found to erode as quantiles were selected in regions of 
reduced density of error distributions, as sample size decreased and number of parameters 
in models increased. However, an F ratio version of the rank score test that we evalu­
ated by permutation arguments was found to perform better than the asymptotic X2 form 
of the quantile rank score test statistic [13] for more extreme quantiles and small samples for 
hypotheses on parameters other than the intercept. The quantile rank score test was found to 
perform well for linear heteroscedastic models in the limited simulations of Koenker [13]. 
We made a more thorough evaluation of the effects of heterogeneity on performance of the 
quantile rank score test and determined that valid Type I error rates required weighted ver­
sions of the test statistics. We established that the quantile rank score tests provided valid 
inferences for the intercept parameter in quantile regression models, although this hypothesis 
was excluded under the general theory of rank score tests [14]. This provided the founda­
tion for estimating confidence intervals at any specified value of the covariates to provide 
prediction and tolerance intervals. Our alternative inference procedures were applied to an 
analysis of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) response to variations 
in their stream habitat, expanding on the previous quantile regression analyses of Dunham 
et aT. (15]. 
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2. Quantile regression model 

The nh regression quantile (0 ::::::: r ::::::: 1) for the heteroscedastic linear location-scale model 
y =X~ + re: is defined a~ Qy(r IX) = X~(r) and ~(r) = ~ + FF.- J (r)y; where y is an n x 1 
vector of dependent responses, 13 is a p x 1 vector of unknown regression parameters, X 
is an n x p matrix of predictors (first column consists of 1's for an intercept term), y is a 
p x 1 vectOr of unknown scale parameters, r is a diagonal n x n matrix where the n diagonal 
elements are the n corresponding ordered elements of the n x 1 vectOr Xy(diag(Xy», e: is 
an n x 1 vector of random errors that are independent and identically distributed (ij.d), and 
F~~1 is the inverse of the cumulative distribution of the errors [4,5,11,16]. Homoscedastic 
regression models are a special case of the linear location-scale model when y = (1,0, ... , 0)' 
and Qy(rIX) = XI3(r), ~(r) = 13 + (F - l (r), 0, ... ,0)', where all parameters other than the e 
intercept ((30) in 13( r) are the same for all r. More general forms ofheteroscedastic errors can 
be accommodated with regression quantiles [5, 17] but were not considered here. 

The restriction imposed on FE to estimate regression quantiles is that a rth quantile of 
y - XI3(r) conditional on X equals 0, Ff-1(rIX) = O. Estimates, b(r), of~(r) are solutions 
to the following minimization problem: 

(I) 

where Pr(e) = e(r - I(e < 0» and I(·) is the indicator function. The estimating equation 
(I) yields primal solutions in a modification of the Barrodale and Roberts [18] simplex lin­
ear program for any specified value of r [19]. With little additional computation the entire 
regression quantile process for all distinct values of r can be estimated [19,20]. 

Consistent estimates with reduced sampling variation for heteroscedastic linear models can 
be obtained by implementing weighted versions of the regression quantile estimators, where 
weights are based on the sparsity function at a given quantile and covariate value [5,21]. In 
the linear location-scale model the weights simplify to the n x n matrix, W = r-1

, where 
the p x 1 vector of scale parameters y usually would have to be estimated in applications 
[5, 16,22]. The weighted regression quantile estimates then are given by 

min [t Pr (Yi - t b)''Cij) Wi] (2) 
,=1 /=0 

where Pr (e) = e(r - I (e < 0», I (.) is the indicator function and Wi is a weight inversely 
proportional to the scale parameters, which is easily implemented by multiplying y and X by 
W and then using estimator (l). 

3. Rank score test statistics 

The primal linear programming solution for estimator (l) has as its corresponding dual solution 

max{y'alX'a = (I - r)X'l, a E [0, In (3) 

where 1 denotes an n-vector of 1's, which serves as the basis for constructing rank score 
tests using the regression quantile estimates [13,14,17,20]. The r-quantile rank score test 



334 B. S. Cade et al. 

uses the i-quantile score function, rpr (t) = i-I (t < i), on the n x 1 vector of dual linear 
programming solutions, a(i) = [0, 1r, associated with estimating the reduced parameter 
model corresponding to constraints imposed by the null hypothesis on the full parameter model. 
The reduced parameter model, y - X2~(i) = XI~I(i) + fe, is constructed by partitioning 
X = (Xl, X2), where XI is n x (p - q) and X2 is n x q; and by partitioning ~ = (~l' ~2)' 

where ~) (i) is a (p - q) x I vector of unknown nuisance parameters under the null, and ~2 (i) 
is a q x I vector of parameters specified by the null hypothesis Ho: ~2 (i) = ~(i) (frequently 
Hr) = 0) for the full parameter model y = Xl ~l (r) + X2~2 (i) + fe; and y, f, and e are as 
stated earlier. The n x I vector of rank scores r(r) = a(i) - 0 - i)l, where 1 denotes an 
n x 1 vector of I's, is regressed on the design matrix and the test statistic 

(4)
 

where Q = n-IX;(I - XI (X; XI)-IX'I)X2 and SCi) = n-0.5(X2 - Xl (X;XI)-IX;X2)'r(r), 
is asymptotically distributed under Ho: as X2 with q degrees of freedom. Rank scores rei) 
are i for positive residuals, i-I for negative residuals, and in the interval (r - I, r) when 
residuals are 0 (observations fit exactly by the estimate). The rank scores, r(r), correspond 
to the quantile weights used in estimating the reduced parameter null model in estimator (1), 
Validity of the rank score test assumes a positive density for y at the point F-1(i). 

IfX2 = X2 and ~2 (r) is a scalar, i.e., a single predictor is being tested, then the quantile rank 
score statistic has 1degree of freedom and can be referenced to a standard normal distribution 
[13. 17]. This construction allows confidence intervals to be easily estimated by inversion with 
a modification of the linear program used to estimate regression quantiles [13]. Because the 
sampling distribution of the rank score test statistic is discrete, Koenker [13J recommended 
interpolating between adjacent hypothesized values of ~2(r) = ~(r) for constructing confi­
dence intervals when inverting quantile rank score tests. Confidence intervals estimated by 
inverting the quantile rank score test may be asymmetric. 

The i-quantile rank score test is based on a nondecreasing, square integrable scor­
ing function with mean p.,(rp) = 0 and variance 0"2(rp) = rO - r) and, thus is similar 
in form to the aligned rank transform statistic considered by Mansouri [23]. Note that 
S(i)'Q-1S(i) in test statistic (4) is the sum of squares of regression for X2, SSReg(i) = 
SSE(r)red - SSE(r)futl> where SSE(r)red = r(r)'(I - Xl (X;XI)-l X;)r(r) and SSE(i)fun = 
r(i)'(I - X(X'X)-IX')r(r). Mansouri [23J proved that a test statistic like (4) was just the 
limiting (n --+ 00) form of an F statistic, 

SSE(r)red - SSE(r)full
F =-------- (5)

q,n-p qMSE(i) 

where MSE(r) = SSE(i)full/(n - p) --+ 0 2 «(,0), and established via simulation that (5) had 
better small sample Type I error rates than (4). Because the sampling distribution of the r ­
quantile rank score test increases in discreteness and discontinuity as i approaches 0 or I, we 
expected that there might be some small sample performance advantages to using (5) over (4) 
for hypothesis tests or constructing confidence intervals by inverting the quantile rank score 
test. 

The F statistic for the quantile rank score test (5) is based on a regression with a dependent 
variable, r(r), that is a function of residuals under the reduced parameter null modeL This 
test statistic is amenable to evaluation by permutation arguments that have been developed 
for testing su bhypotheses in least squares regression [24-26]. The permutation distribution 
computed for (5) might yield more reliable Type I error rates at smaller sample sizes and 
more extreme quantiles than the F -distribution approximation with q and n - p degrees of 
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freedom. The quantile rank score F -lest evaluated by permutation arguments is defined by the 
slightly simpler form of the observed value of the statistic 

SSE(r)Ted - SSE(r)fulI
Fo = , (6)

SSE(r)full 

where SSE(r )red and SSE(r)fulJ are as stated earlier, because the degrees of freedom in (5) are 
unnecessary as they are invariant under permutation. Note that FaX SSE(r)fuJI/r(l - r) = T 
and Fo x «n - p)/q) = Fq •f1 - p ' 

Following Kennedy and Cade [24], Anderson and Legendre [25], and Anderson and 
Robinson [26], the observed value of the rank score test statistic, Fa, is evaluated under the 
null hypothesis by permuting the r-quantile rank scores, r(r), among the rows of the design 
matrix (X) with equal probability, (n!)-I. A large random sample of size m is used to approx­
imate the n! possible permutations. Probability under the null hypothesis is approximated by 
(the number of F ~ Fa + l)/(m + 1). We used a minimum of m + I = 10,000 to achieve 
probability approximations with minimal variation due to the Monte Carlo resampling. 

Although permuting residuals (e = Y- XI b l ) under the reduced parameter null model 
does not in general yield exact permutation probabilities except when the null parameter is 
just an intercept (fio), this permutation approach due to Freedman and Lane [27] converges 
in distribution and has asymptotic correlation of I with the exact test where ~I is known 
[26] and has performed well in simulation studies [24,25,28,29]. There is some correlation 
(- (n - I) -I) among residuals and they do not have constant variance (E [e e'] = (T 

2(I ­
XI(X~XJ)-IX'I))' implying that they are not exactly exchangeable. Dependency among the 
residuals decreases with increasing sample size providing some asymptotic justification for 
treating them as exchangeable random variables [30]. The r -quantile rank score transformation 
of residuals to [r - 1, r] under the null model should approach constant variance more rapidly 
than raw residuals. There are at most n - p + q residuals with rank scores of r or r - 1, and 
at least p - q rank scores in the interval (r - I, r). Together these conditions should reduce 
dependency among the transformed residuals and improve exchangeability under the null 
model. 

An obvious modification of the quantile rank score tests T and F is to incorporate a weights 
matrix, W, in estimating the reduced parameter null model and in constructing the test statistics 
(4), (5), and (6). In the weighted version of the T - and F -rank score tests, the rank scores r(r) 
are estimated from the weighted null model (2) and the matrices XI. X2, and X are replaced 
by their weighted counterparts WX I , WX2, and WX in the test statistics (4), (5), and (6). 

A potential problem with the permutation scheme for linear models occurs when null models 
are constrained through the origin as occurs when testing the intercept or when a null weighted 
model does not include all the variables contributing to the weight function. There is addi­
tional sampling variation not accounted for by the usual permutation distribution of the test 
statistic because a null model that is constrained through the origin no longer has residuals 
with r-quantile = O. If the number of positive, negative, and zero residuals are denoted by 
N+, N-. NO, respectively, and if NO = P - q under a null model that includes an intercept, 
then there are at most nr negative residuals (N- :::s n r :::s N- + NO) and at most n(l - r) pos­
itive residuals (N+ :::s n[ I - r] :::s N+ + NO) [3,21]. When the null model does not include an 
intercept, the limits on the number of positive (negative) residuals can exceed these values by 
amounts consistent with binomial random variation with probability 1 - r (or r for negative 
residuals). This is similar to the property that the mean of the residuals f. 0 when least squares 
regression is constrained through the origin. Consequently, we modified a recently proposed 
double permutation scheme for least squares regression through the origin [31] for the quantile 
rank score test. The first step randomly determines the number of the n rank scores, r(r), to 
have value r - I (negative residuals) as a random number from a binomial random variable 
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with 'success' probability r, and conversely the number to have value r (positive residuals) 
with probability I - r. As with the observed vector of rank scores, at least p - q observations 
corresponding to the zero residuals were constrained to have scores in the interval (r - 1, r) 
in the random vector of rank scores, r*(r). The second stcp randomly permutes the random 
vector of rank scores, r*(r), with respect to X. Both steps are repeated m times. So unlike the 
conventional permutation approach, the vector of rank scores, r* (r), in the double permutation 
procedure has a randomly varying number of scores (r and conversely r - 1) for each of the 
m permutations to X. 

4. Simulation experiment 

Although our primary interest was in performance of the test statistics for quantile rcgression 
mOdels estimated with heterogeneous responses, we first conducted a set of Monte Carlo 
simulations with homogeneous errors to establish performance for models with simpler error 
structure. Normal (f.t = 0, (J = 1), uniform (min = -2, max = 2), and lognormal (median = 
O. (J = 0.75) error distributions were used to provide responses with symmetric, unimodal 
variation with greatest density at the centcr, symmetric variation with constant density, and 
asymmetric variation with low density in a long upper tail. Error distributions were centered on 
the quantiles r = {0.50, 0.75,0.90,0.95, and 0.99} so that F&-l (r IX) = 0, providing a range 
of central to extreme regression quantiles. 

Simple 2 parameter and 6 parameter multiple regression models were simulated for n = 20, 
30, 60, 90, 150, and 300. Independent variables were structured to have a range of values 
and correlation structure similar to what might be expected in many biological and ecological 
investigations: Xo was a column of I's for thc intercept; Xl was uniformly distributcd (0, 1(0); 
X2 was negatively correlated (r = -0.89) with X, specified by thc function Xl = 4000 ­
20X) + N(f.t = 0, (J = 300); X3 waspositivelycorrelated(r = 0.94) with X] specifiedhythe 
function X3 = 10 + OAX, + N(f.t = 0, (J = 16); X4 was a 0,1 indicator variable randomly 
assigning half the sample to each of two groups; and Xs was the multiplicative interaction of 
X3 and X 4 • Thus, X I ranged 0-100, Xl had most values in the range 0-5000 and was inversely 
related to XI, and X3 had most values in the range 0-60 and was positively related to XI' 
Variables X2 and X3 were negatively correlated (r = -0.85) with each other through their 
indirect functional relation with X I. The indicator variable (X4 ) and its intcraction with X3 
(Xs) allowed us to simulate the effect of X3 for the rcgression quantile function with differing 
slopes, intercepts, or both tcrms for the two groups. 

Each combination of conditions (quantile, error distribution, sample size, and model struc­
ture) was sampled 1000 times, and the tcst statistics T and Fa were computed for each sample. 
Probabilities for the permutation F-test were evaluated with separate m + 1 = 10,000 ran­
dom samples of thc permutation distribution. Cumulative distribution function (CDF) plots of 
the Type I error probabilities under the null hypothesis wcre graphed and compared with the 
expected uniform CDF. Point estimates for a = 0.05 and 0.10, corresponding to coverage for 
95% and 90% eonfidence intervals, were graphed across the combination of model conditions. 
The 99% binomial confidence intervals for 1000 simulations are 0.076--0.124 for a = 0.10 
and 0.032-0.068 for a = 0.05, and are provided on graphs to serve as a guide to judge when 
the estimated error rates exceeded variation expected from the sampling simulations. Power 
under the alternative hypotheses was graphed only for a = 0.05 across all combinations of 
conditions, although CDF plots were initially examined. 

All data for the simulation studies were generated with functions in S-Plus 2000 
(Mathsoft, Inc., Seattle, WA, USA). Regression quantile estimates and test statistics 



337 Rank score and permuralion lesting allenuJlives for regression quanlile estimates 

were computed by a static memory compilation of Fortran 95 routines imple­
mented in the Blossom software available from the US Geological Survey (available 
from: www.fort.usgs.gov/products/software/blossom/blossom.asp). Regression quantile 
estimates and T -rank score tests from the software used in simulations were com­
pared with estimates from the S-Plus scripts developed by Koenker (available from: 
www.econ.uiuc.edu"-'roger/research/home.html) for selected models both before and after 
simulations were completed and found to agree to at least seven decimal places. 

4.1 Homogeneous error structure-simple regression 

The simple 2 parameter regression model, y = {3o + {31 X) + £ was evaluated for Ho: {31 = 0 
with{3o = 6.0and{31 = 0.0, 0.01, 0.05, O. 10, and 0.20. Estimated Type 1error rates ({31 = 0.0) 
for the permutation F -test maintained nominal rates across all conditions whereas the T­
test became excessively conservative for n :s 30 at r = 0.95 and for n :s 150 at r = 0.99 
(figure 1). Type I errors for the permutation test were consistent with exact exchangeability 
for this hypothesis. Results for '[ = 0.75 were nearly identical to those for r = 0.50 and, 
therefore, were not graphed for this or subsequent simUlations. Type I error rates were similar 
for all error distri butions for most conditions so only results of the lognormal error distri bution 
are given in the figures for this and suhsequent simulations. Results for normal and uniform 
error distributions are in Cade [ref. 32, Appendix 2]. 

The F distribution approximation of the F statistic controlled Type 1errors under the same 
conditions where the X2 approximation of the T -test statistic was well behaved and provided 
some improvement for smaller samples and more extreme quantiles. However, the F distribu­
tion approximation did not maintain Type 1errors as well as the permutation approximation 
at smaller n and more extreme quantiles. A comparison of the CDP's for '[ = 0.99. n = 30 
and 90, and the lognormal error distribution are in figure 2. In the simple regression model, 
the permutation F-test is identical to a permutation version of the T-test for Ho: {3t = 0, 
indicating that the improvements in Type I error rates for the permutation F -test is due to the 
permutation approximation and not the alternative form of test statistic (figure 2). 

The simple 2 parameterregression mOdel also was evaluated for Ho: f30 = 0 with {31 = 0.10 
and f30 = 0.0,0.5, 1.0,2.0, and 3.0. Type I error rates for the intercept under the null hypothesis 
(f3o = 0.0) were slightly better maintained by the double permutation F -test than the T -test 
for n ::: 150 and r = 0.99, with both tests tending to be a little conservative (figure 1). Both 
tests maintained Type I error rates well for r = 0.50-0.95, with the double permutation F -test 
becoming more conservative than the T -test at smaller sample sizes (n = 20 and 30). Typical 
improvement in Type I error rates for the double permutation F-test for Ho: f30 = 0 compared 
to the conventional permutation test are shown in figure 3. 

Power for nonzero slopes ({3t = 0.0 1,0.05,0.10, and 0.20) was similar for the F - and 
T -tests for r = 0.50-0.90 but the F -test had greater power (relative power = 0.98-1.35) 
at r = 0.95 and 0.99 at smaller n (figure 4). The F-test provided effective power down to 
n = 30 for r = 0.95 and n = 150 for '[ = 0.99, whereas the T -test only provided effective 
power down to n = 60 and 300, respectively, because of very conservative Type I error rates at 
smaller sample sizes (figure 4). The drop in power with increasing quantiles was greatest for 
the lognormal (figure 4), less for normal, and least for the uniform error distributions Lrcf. 32, 
Appendix 2]. The uniform and normal error distributions had considerably better power for 
r = 0.95 and 0.99 than the lognormal distribution, consistent with the greater density at upper 
quantiles of these distributions. Power for detecting nonzero intercepts (f3o = 0.5,1.0,2.0, and 
3.0) was slightly greater for the T compared with the double permutation F -test as quantiles 
increased and sample size decreased (figure 4). Normal and uniform error distributions had 
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90, 150, and 300. Fine dotted lines are 99% binomial confidence intervals around a = 0.05 and 0.10 for 1000 random 
samples used al each combination of Ho, n, and quantile. 

considerably less reduction in power than the lognormal distribution for r = 0.90-0.99 [ref. 
32, Appendix A]. 

4.2 Homogeneous e"or structure - multiple regression 

Simulations for multiple regression models were limited to testing subhypotheses because 
these are the tests for which permutation approximations have been controversial [24.25]. 
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for r = 0.95 in the model y = f30 + IhX I + /hX2 + IhX3 + fJ4X4 + /3sXs + (I + YX1)e for n = 30 and 90 forthe 
lognormal error distribution. 

The 6-parameter model, y = ~o + ~IXI + ~2X2 + ~3X3 + ~4X4 + ~5X5 + s, was evaluated 
for Ho: ~3 = 0 with ~o = 36.0, ~l = 0.10, fh = -0.005, ~4 = 2.0, and ~3 = ~5 = 0.0. The 
permutation F -test maintained better Type I error rates than the T -test for n < 150 for r = 0.95 
and n < 300 for r = 0.99 (figure 1). Otherwise, borh tests similarly maintained valid Type 
I error rates. The 6-parameter model also was evaluated for Ho: ~4 = 0 with ~o = 36.0, 
f3t = 0.10, f32 = -0.005, f33 = 0.05, and f34 = f35 = 0.0. Type I error rates were similar to 
those for Ho: f33 = O. Type I error rates also were similar for normal and uniform error 
distributions [ref. 32, Appendix 2]. Power was not estimated for multiple regression models 
with homogeneous errors. 

4.3 Heterogeneous error structure-simple regression 

The 2 parameter regression mOdel with heterogeneous errors, y = ~o + f31 X I + (I + YXI )s, 
was evaluated with Y = 0.025, 0.05, and 0.10 for Ho: f31 = a with ~o = 6.0 and ~1 = 0.0 
to evaluate the effects of increasing heterogeneity on Type I errOr rates for the rank score 
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Figure 3. Cumulative distributions of 1000 estimated Type I errors for pennuta[ion F - (black solid), double 
pennutation F- (purple square dots). and T- (green dashed) rank score [eSts of Ho= Po =; 0 for the model 
.Y =; Po + filXl + eandofHo:Pl =; Oforlheweightedmodelw)' "" wAJ + U.'P1X, + w(t +yXI)e,withy "" 0.05 
and w "" (1 + y Xd- 1 

; for r "" (0.90.0.95. and 0.99); forthe lognonnal error distribution and n == 90. 

tests. Type I error rates became increasingly liberal for the F - and T -tests with increasing 
heterogeneity, except that the T -test became excessively conservative at n < 60 for r = 0.95 
and at n < 150 for r = 0.99 (figure 5). Results were similar for nonnaJ and uniform error 
distributions [ref. 32, Appendix 2]. Type I error rates when y = 0.10, corresponding to a 
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Figure :'5. Inflation of Type I crror rates for a = 0.05 (open) and 0.10 (solid) with increasing heterogeneity; for 
the permutation F- (circles) and X2-distributed T- (triangles) rank score tests for Ho: fit = 0; foc lognormal error 
distributions with y = 0.025,0.05, and 0.10 in themodely = fJ<J + {3IXl + (l + yXde;for r = (0.50.0.90,0.95, 
and 0.99}; and for n = 20, 30, 60, 90, 150, and 300. Fine dotted lines are 99% binomial confidence intervals aroWld 
a = 0.05 and 0.10 for 1000 random samples used at each combination of y, n, and quantile. 

lO-fold increase in (J across the domain of Xl (0-100), were inflated so that nominal 95% 
confidence intervals based on inverting the tests would have actual coverage of only 90%. 

Weighted versions of the regression quantile estimates and the rank. score tests for y = 0.05 
were simulated using known weights, w = (1 + 0.05X1)-1, in estimate (2). Type 1 error rates 
for Ho: f3J = 0 were improved for the weighted versions of both tests (figure 6), except 
for L = 0.95 at n < 90 and n = 0.99 at n < 300. Double permutation F -tests were not as 
liberal for L = 0.99 at n < 300 for the normal and uniform error distributions as for the 
lognormal error distribution but the T -tests had similar conservative Type I error rates. The 
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Figure 6. Estimated Type [ error rates for a = 0.05 (open) and 0.[0 (solid); for the double permutation 
F· (circles) and X2·distribuled T - (triangles) rank score tests for Ho: fJo = 0 and Ho: fJt = 0; for the weighted 
model wy = w(Po + PI XI + (I + Y XI )E), Y = 0.05, and w = (l + Y X I)-I; with lognonnal error distributions; 
for T = [0.50.0.90,0.95. and 0.99); and for n = 20, 30, 60, 90, 150, and 300. Fine dotted lines are 99% binomial 
confidence intervals around a = 0.05 and 0.10 for 1000 random samples used at each combination of Ho. n, and 
quantile. 

double permutation F -test was required to maintain correct 'Type I error rates because rank 
scores for the weighted nuII model [r(r) = WX 1, where Xl is a column of l's] forced the 
estimate through the origin. Here, again the standard permutation F -test had slightly more 
liberal Type 1 errors than the double permutation F- or the T-test, except at r = 0.99 and 
n < 300 where none of the weighted statistics worked well (figure 3). Power for detecting 
f31 = 0.0 1,0.05,0.10, and 0.20 for y = 0.05 for the weighted rank score tests was less for 
the double pennutation F -compared with the T -test for r = 0.90-0.99, with the difference 
becoming greater with increasing quantiles with decreasing n (figure 7). A similar pattern was 
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Figure 7. Estimated power for a = 0.05 for the double permutation F- (solid) and Xl-distributed T - (open) rank 
score tests; for heterogeneous lognormal error distributions; for Ho: /30 =0 and Ho: ft. =0 in the weighted model 
wy = w(jJo + filXI + (I + yXI)e), y = 0.05, and w = (I + yXtl- l ; for fio = 0.0, 0.5,1.0,2.0, and 3.0 and for 
/31 = 0.0,0.01,0.05,0.10, and 0.20; for T = (0.50.0.90,0.95, and 0.99); and for n = 30 (circle), 60 (triangle), 150 
(square), and 300 (scar). Open symbols often are hfdden behind solid symbols when equal. Sample sizes that had no 
power >a for either test were not graphed. 1000 random samples were used at each combination of effect size, n, 
and quantile. 

observed for normal and uniform error distributions except that the reduction in power with 
increasing quantiles was not as great as for the lognormal error distribution. 

The Ho: f30 = 0 also was evaluated in the 2 parameter weighted regression model, y = 
f30 + f31 Xl + (1 + YXde, with y = 0.05, known weights w = (l + 0.05X I )-1, {jl = 0.10, 
and f30 = 0.0, 0.5, 1.0, 2.0, and 3,0. Type I error rates for both the double permutation F­
and T -tests became conservative with decreasing n and increasing r > 0.90 (figure 6). Power 
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to detect /30 = 0.5, 1.0, 2.0, and 3.0 was slightly greater for the T compared with the dou­
ble permutation F -weighted rank score tests, again with the discrepancy increasing with 
increasing r and decreasing n (figure 7), similar to homogeneous error distribution models. 
Power decreased to very low levels for r = 0.99 for the lognormal error distribution. The 
decrease in power with increasing quantiles was not as great for uniform and normal error 
distributions. 

4.4 Heterogenous error structure- mulJiple regression 

The 6-parameter model, y = /30 + /3IX I + /32X2 + /33X3 + /34X4 + 135XS + (1 + yX1)s, 
with y = 0.05 and known weights w = (l + 0.05Xd- ' was evaluated for the full model 
hypothesis Ho: /31 = /32 = /33 = /34 = fJ5 = 0 for fJo = 36.0 and fJt = fJ2 = fJ3 = fJ4 = fJ5 = 
ofor Type I error rates, and with /33 = 0.10, 0.15, 0.20, and 0.25 for power. Here, again, 
the double permutation scheme was required because the null hypothesis with the weighted 
model (wy = wfJo + We) forced the fit through the origin as all covariates (XI) in the weights 
function were not in the null model. Type I error rates were well maintained by both tests 
until n S 60 for r = 0.95 and n S ISO for r = 0.99, where the dOUble permutation F­
test became liberal and the T-test became conservative (figure 8). Similar patterns were 
observed for heteroscedastic normal and uniform error distributions except thal the Type I 
error rates for the double permutation F were not as excessively liberal for r = 0.99 and 
small n. Power estimated with one of the five slope parameters (fJ3) allowed to be nonzero 
was slightly less for the double permutation F compared with the T -test (figure 10). Power 
was low for r = 0.95 to nonexistent for r = 0.99. Power for this and other hypotheses 
evaluated for the multiple regression models was only evaluated for the lognormal error 
distribution. 

Type I error rates for subhypotheses involving continuous variables in the 6-parameter 
model with y = 0.05 and known weights w = (l + 0.05Xd- were evaluated for Ho: /33 = ' 
o and Ho: fJ3 = fJ5 = 0 with fJo = 36.0, fJl = 0.10. fJ2 = -0.005, fJ4 = 2.0, and fJ3 = 
fJ5 = 0.0. Subhypotheses involving categorical predictors also were evaluated for weighted 
estimates and test statistics for Ho: fJ4 = 0 and Ho: fJ4 = fJ5 = 0 with fJo = 36.0, fJL = 
0.10, fJ2 = -0.005, fJ3 = 0.05, and fJ4 = fJ5 = 0.0. Both tests became increasingly con­
servative with decreasing n for r = 0.95 and 0.99, with the F -test maintaining Type I 
error rates better than the T -test at higher quantiles and smaller n (figures 8 and 9). 
Patterns were similar for normal and uniform error distributions. Power estimated for 
Ho: fJ3 = 0 with fJ3 = 0.10, 0.15, 0.20, and 0.25 for the lognormal error distribution 
was similar for the tests and became exceedingly low to nonexistent for r = 0.90-0.99 
(figure 10). Power for the subhypothesis Ho: fJ4 = 0 for 134 = 1.5, 3.0, 6.0, and 12.0 
and the lognormal error distribution were similar for the tests with a slight advantage 
for the permutation F-test for r = 0.90 and 0.95 (figure 10). Power was nonexistent for 
r = 0.99. 

The F -distribution approximation of the Fq .n - p rank score statistic maintained Type I error 
rates well under similar sample sizes and quantiles where the X2-distributional approximation 
of the T -rank score statistic worked well when testing subhypotheses in multiple regression 
models. However, probabilities for the Fq . l1 - p statistic and those provided by the permut­
ation approximation of the Fa statistic were closer to nominal error rates for smaller n for 
more extreme quantiles than those for the X2-distributional approximation of the T statistic. 
An example for Ho: fJ4 = fJ5 = 0 for the lognormal error distribution and r = 0.95 is in 
figure 2. 



346 B. S. Cade et aI. 

0.00	 0.00 0.rxJ.....a:~_'---<I......-===l 
306090 150 300 306090 160 300 306090 150 300 

Sample Size 
.... T 
eF 

Figure 8. Estimated Type I error rates for ex = 0,05 (open) and 0.10 (solid); for the permutation F­
(eircles) and X2 -distributed T- (triangles) rank score tests for Ho: PI = /h = P3 = P4 = P5 = 0 (double per­
mutation). Ho: /h =0, alld Ho: P4 =0; for heterogeneous lognormal error distributions in the weighted 
model wY=W(!Io+/fLX.+{f2X2+/f3X3+f!4X4+f!SXs+(I+yXllR), y=0,05, w=(l+yXJl- 1; for 
r = {0.50, 0.90, 0.95, and 0,991; and for n = 20, 30, 60, 90, 150, and 300. Fine doned lines are 99% binomial 
confidence intervals around ex = 0.05 and 0.10 for LOOO random samples used at each combination of Ho, n, and 
quantile. 

4.5 SumltUlry ofconstraints on inferences 

Bounds on the sample sizes and quantiles providing both valid Type I error rates and power 
>Q' = 0.05 were delineated for the T - and permutation F -tests based on the previous simula­
tions for 11 models and hypothesis tests (figure 11). Contours corresponding to effective 
ranks also were graphed, where effective rank = «I - T) X n)I p for T ~ 0.5 following 
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F1ure 9. Estimated Type I error rates for a ;= 0.05 (open) and 0.10 (solid): for the permutation F - (circles) and 
X -distributed T - (triangles) rank score teslS for Ho: fl3 ;= fl5 ;= 0 and Ho: fl4 ;= fls ;= 0 for heterogeneous lognormal 
error distributions in the weighted model wy ;= UI(fJo + fll X I + fhX 2 + fh X 3 + fJ4 X4 + fJsX 5 + (l + Y X l)f.), 
Y = 0.05, w ;= (l + YX I)-I; for r = {0.50, 0.90. 0.95, and 0.99}; and for n ;= 20.30,60,90, 150, and 300. Fine 
dotted lines are 99% binomial confidence intervals around a = 0.05 and 0.10 for 1000 random samples used at each 
combination of Ho, n, and quantile. 

Chemozhukov and Umantsev [12]. Effective rank combines the number of parameters (p), 
samples size (n), and quantile (r) into a ratio of order statistic to number of parameters 
that has been used for comparing inference procedures for quantile regression [12]. Valid 
inferences always were obtained for effective ranks ~2 for homogeneous error models, with 
the permutation F -test extending valid inferences to effective ranks as small as 0.05-0.75, 
except when testing the intercept where the T -test was valid for smaller effective ranks 
(figure II). Valid inferences always were obtained for effective ranks ~4 for heterogeneous 
error models, and for effective ranks as small as 2-4 for most models. The permutation F -test 
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score tests for Ho: fJI = fJ2 = fJ3 = fJ4 = fJs =0 (double permU!ation), Ho: fh =0, and Ho: f/4 = 0; for het­
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fJsXs + (l + yX,)t:), y = 0.05, w = (1 + yXt)-I; for r = (O.50, 0.90, 0.95, and 0.99): and for n = 30 (circle), 
60 (triangle), 150 (square), and 300 (star). Open symbols often are hidden behind solid symbols when equal. Sample 
sizes with no power> ct for either rest were nOl graphed. 1000 random samples were used at each eombination of 
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extended valid inferenees to effective ranks as small as 0.5-1.0, except when testing the 
intercept where the T -test was valid for smaller effective ranks. Larger effective ranks were 
required when testing hypotheses on categorical variables in heterogeneous multiple regression 
models. 
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Figure 11. Samples sizes and quantiles providing valid Type r errors and power> (( = 0.05 for at least one 
nonzero effect for T and permutation F (double permutation where appropriate) ,-quantile rank score tests based on 
simulations for n = 20,30.60,90, 150, and 300: , :;:;;: {0.50, 0.75,0.90.0.95. and 0.99}; for lognormal. normal, and 
uniform homogeneous and heterogeneous error distributions; and for p =: 2- and 6-paramerermodels and hypotheses 
in figures 1-l0. Black shaded regions are where only T was valid, white regions are where-only permutation F was 
valid, and gray shaded regions are where both were valid. Thin contour lines are effeetive ranks of 2 and 4. where 
effective rank = ((1 - ,) x n)1 p for"( ~ 0.5. 
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5. Example application 

We constructed confidence intervals for regression quantile estimates of Lahontan cutthroat 
trout (Oncorhynchus clarki henshawi) density (trout m- I ) as a function of stream channel 
morphology (width:depth ratio) for n = 71 observations of streams sampled from 1993 to 
1999 in Nevada [15]. Width:depth ratio is a measure that integrates stream channel char­
acteristics thought to be related to small stream integrity and, thus, fish populations and 
is easily measured for assessing fish habitat conditions and land use impacts over large 
regions, such as the Lahontan basin. Lahontan cutthroat trout are a threatened species of 
special interest to federal land management agencies, inhabiting streams in a desert basin 
that are particularly sensitive to impacts of overgrazing and channel alteration due to road 
construction. 

Here we considered the nonlinear model y = exp(fioXo + fi1X 1 + s), where y is trout 
m- I and X, is width:depth ratio, used by Dunham et at. [15] but weighted to account for 
heteroscedasticity. We also provide confidence intervals for estimates of fio and prediction 
intervals for the lower 90% of the population that were not provided by Dunham et al. [15] 
because the validity of the quantile rank score test for the intercept had not been estab­
lished. The mOdel was estimated in the linear form w(lny) = w(fioXo + filX, + s) and 
estimates for selected regression quantiles were plotted by exponentiating to back transform 
to the nonlinear fonn (figure 12). Estimates for all quantiles were plotted as a step function 
with 90% confidence intervals for 19 quantiles r = {0.05, 0.10, ... , 0.95) (figure 12). The 
unweighted estimates served as a basis for developing the weighting funetion. The decrease in 
estimates of f3t mirrored the increase in estimates of fio with increasing r, suggesting a linear 
location-scale model with error variation of the fonn Yo - Yl X I as a reasonable approxima­
tion. The weight function was estimated by the average pairwise difference between the 76 
unweighted regression quantile estimates for bo(r) to estimate Yo and for b1(r) to estimate 
YI' The average pairwise difference is used as an estimate of dispersion among empirical 
quantiles in multiresponse permutation procedures and has been found to be relatively insen­
sitive to effects of a few outlying values [33]. The estimated standard deviation function was 
1.310 - O.017X L and its reciprocal provided weights for the weighted regression quantile 
estimate (2). 

Confidence interval endpoints were estimated from a linear interpolation between hypothe­
sized parameter values that had T -test statistics that bracketed the standard normal test 
statistic = 1.645 associated with Ct = 0.10 [13]. Confidence intervals also were constructed 
based on inverting the double pennutation F -test for the same quantiles (figure 12). The pos­
sible boundary values for the estimated confidence interval endpoints were obtained from the 
linear programming implementation used to construct intervals by inverting the T -test statistic 
[13]. These values were then used as hypothesized parameter values of ~(r) in the transforma­
tion y - X2Hr) to test the Ho: ~2 (r) = ~(r) with (6), where ~2 was either f30 or fit and X2 was 
either Xo or X, depending on the parameter being tested. We used m + I = 100,000 permu­
tations to compute probabilities for the F -tests associated with confidence interval endpoints. 
We used a linear interpolation based on the P-values to estimate the endpoints rather than the 
more conservative approach of using the closest estimated confidence interval endpoint with 
P ::::: Ct. This had a similar effect as the linear interpolation for the T -test. 

There was little difference in the estimated 90% confidence intervals across r = 
{0.05, 0.10, ... ,0.95) for the double permutation F - and T -test inversion approaches, except 
for intervals for ,80(0.05) where the upper endpoint for the F -test inversion was closer to zero 
(figure 12). The overall pattern and width of intervals for the weighted estimates were similar 
to their unweighted counterparts [15,32], which was consistent with the rather weak « 1 stan­
dard deviation change) pattern of heterogeneity across width:depth ratios. Both weighted and 
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Figure 12. (A) Lahontan cutthroat trout m- J and width:depth ratios for 13 small streams sampled over 
7 years (n = 71); exponentiated estimates for 0.90, 0.50, and 0.10 regression quantiles (solid lines) 
and weighted least squares 0.90 percemile (dotted line) estimates in the model w(ln y) = w(fJo + fJLX 1+ 
(YO - YI X j}F), III = (1.310 - O.017x l)-L (doned lines). Dashed litle is nonsimultaneous one-sided upper 90% eon­
fidence intervals for 0.90 regression quantile for seleeted width:depth ratios between 5 and 55. Upper dOlted line is 
nonsimultaneou s one-sided upper 90% confidence interval for 0.90 percentile es timale based on the weighted least 
squares model. Solid lines in (B) and (C) are step functions for estimates of fJo and fJl by r = [0, 1] and dashed lines 
connect pointwise 90% cunfidence inlelvals ror r E 10.05, 0.10,0.15, , .. , 0.95) based on inverting the T - (triangles) 
and double pennutation E- (cireles) rank score tests (circles) with linear interpolation belWeen estimated endpoints. 

unweighted confidence bands supported an interpretation that increasing stream width:depth 
ratios from 15 to 45 decreased the highest 20% of trout densities (r ::: 0.80) by 11-64%, i.e., 
exp(-0.004 x 30) = 0.887 and exp( -0.034 x 30) = 0.361. 

A one-sided upper 90% confidence band for the 0.90 quantile that was not simultaneous in 
X I was estimated for 11 equally spaced width:depth values between 5 and 55 corresponding 
to the range of ratios in the sample (figure 12). This was done by forming confidence intervals 
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for fJo with a two-sided a = 0.20 after shifting the width:depth ratios by the II selected 
values. Obviously, more values of width:depth ratio could have been used to obtain a smoother 
band. For comparison, a 90th percentile line based on a weighted least squares regression of 
the log transformed trout densities and corresponding nonsimuHaneous one-sided upper 90% 
confidence intervals were estimated following Vardeman [34] and Gerow and Bilen [35]. Both 
the quantile regression and weighted least squares intervals are interpreted as upper tolerance 
intervals for an individual value of width:depth [34]. The latter estimates assumed a normal 
distribution for the log transformed data, resulting in slightly wider intervals (figure 12). A 
lower confidence interval (e.g. for 0.10 quantile) was of little interest with this data as it was 
effectively 0 for all width:depth ratios. 

6. Discussion 

The permutation F -rank score test showed some promise for providing better control of 
Type I error rates than the Chi-square distributional approximation of the T -rank score test 
at more extreme quantiles when sample sizes were small. However, some of this advantage 
was diminished by having reduced power when weighted estimates and double permutation 
schemes were required. The random binomial variation introduced to the rank scores by 
the double permutation scheme at extreme quantiles and smaller samples reduced power by 
creating a mass of permutations with extreme patterns of rank scores, e.g., n - p + q of the 
r(I') = I' - I for I'th quantile. Our double permutation scheme is conceptually similar to 
the resampling procedure proposed for quantile regression by parzen et aZ. [36], except that 
their procedure does not maintain scores corresponding to the zero residuals as does ours and 
requires augmenting the data with an additional observation (n + 1) to solve the estimating 
function. parzen et aZ. [36] found their resampling procedure maintained correct coverage 
probabilities for parameters but Koenker [13] found liberal coverage probabilities. 

The example application with the Lahontan cutthroat trout data suggested that differences 
between the T - and F -rank score tests may not always be of sufficient magnitude to affect the 
interpretation of an analysis when quantiles used are not too extreme (e.g., 0.05 .:s I' .:s 0.95). 
When estimating models for more extreme quantiles (e.g., I' = 0.99), fairly large samples 
(n. > 300) will be required for models with more than just a few parameters to ensure reliable 
confidence intervals by either test, especially if weighted estimates and tests are desired. 
The F-distribution approximation of the Fq •n - p form of the rank: score statistic offered some 
advantages over the X2 distribution approximation of the T -rank score statistic at smaller n 
and more extreme quantiles when testing subhypotheses in multiple regression models. But 
there often was greater improvement by going to the permutation approximation of the F­
rank score statistic. Lower power to detect alternative hypotheses for more extreme quantiles 
(I' = 0.95 and 0.99) in the lower density tails of the lognormal error distribution compared to 
the normal and uniform error distributions was as expected. 

Part of the motivation for using the quantile rank score test for inference was a belief that it 
was insensitive to and eliminated the need to formally model error heterogeneity [13]. How­
ever, our simulations established that the rank score tests were not immune to the effects of 
heterogeneity. When variation across a single independent variable was >2.5 standard devi­
ations, tests and confidence interval estimates benefitted from using weighted estimates and 
weighted versions of the rank score tests. Without the use of weights, nominal 95% confidence 
intervals would have only 92% coverage when variation was 5 standard deviations across the 
independent variable. Power of unweighted rank score tests was only slightly lower [32] than 
the more appropriately weighted tests. Thus, when heterogeneity is not too great, inferences 
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made without weighted rank score tests will not depart much from inferences made with the 
more appropriately weighted tests. Furthermore, simulations with unweighted estimates in 
multiple regression models indicated that Type I error rates were often well maintained for 
subhypotheses on variables not contributing to heterogeneity under the alternative [32). We 
used a simple pairwise difference approach based on the initial unweighted estimates to con­
struct weights in our example application. Other approaches for estimating weights include 
regressing absolute values of residuals from an unweighted fit of the 0.5 quantile on the inde­
pendent variables for linear location-scale models [37J and the sparsity estimation approach 
for more general heteroscedastic models [5]. 

Although the simulations presented here were limited to continuous dependent variables, 
other simulations with discrete count data from Poisson distributions established that the 
rank score tests maintained correct Type I errors even though the integer count data violated 
the continuity assumption [32]. As with simulations for continuous dependent variables, the 
permutation F -test maintained TYpe I error rates better for more extreme quantiles at smaller 
n than the T -test in simulations with Poisson distributed counts. 

A comparison of our simulation results with evaluations by Chernozhukov and Umantsev 
[12] indicated that the quantile rank score tests provided valid inferences for smaller effective 
ranks (more extreme quantiles and smaller sample size relative to number of parameters) 
than standard asymptotic methods based on the variance/covariance matrix which required 
effective ranks ~25. The rank score tests were valid for effective ranks >2 except for testing 
categorical variables in multiple regression models which had minimum effective ranks of 
2-4. Valid inferences were possible for effective ranks < 1 for the permutation F -rank score 
tests on parameters other than the intercept and for the T -rank score test on the intercept, 
e.g., for n ~ 30 for r = 0.95 and for n ~ 150 for r = 0.99 in simple regression models 
with homogeneous errors. Thus, the quantile rank score tests provide valid inferences well 
into regions of extreme rank behavior (effective ranks < 10) where specialized asymptotic 
approaches for extreme values are required [12]. 

One of the potential benefits of analyzing data with regression quantiles is to focus attention 
on the utility of prediction and tolerance intervals in the linear model [34]. Our simulations 
established the validity of the quantile rank score tests for constructing confidence intervals 
for 130, and, therefore, by implication for other values of X = x. Inverting tests on appropriate 
regression quantile estimates allows construction ofprediction and tolerance intervals without 
assuming a specific form of the error distribution. Zhou and Portnoy [37] provided alternative 
order statistic based approaches to constructing such intervals with regression quantiles. Quan­
tile regression based tolerance intervals estimated in our example application were slightly 
narrower than comparable intervals based on weighted least squares estimates that assumed 
a normal error distribution. Parametric distributional approaches for setting prediction and 
tolerance intervals will provide narrower intervals only when distributional assumptions are 
well founded. This will not be common in most ecological and biological applications. Recall 
that the assumed parametric error distributional form is of less eonsequence when estimating 
parameters and intervals associated with the conditional mean than it is when trying to esti­
mate parameters associated with other parts of the probability distribution, as is required for 
constructing prediction and tolerance intervals. 

The tolerance intervals constructed in our example application provide probability state­
ments for an individual value of the independent variable. Simultaneous intervals for all X 
might be estimated by emulating computations forthe Working-Hotelling procedure for simul­
taneous confidence bands [38, pp. 156-157]. This would provide a distribution-free alternative 
to simultaneous tolerance bands based on weighted least squares estimates and normal error 
distributions [35,39). 



354 B. S. Cade et al. 

Acknowledgements 

M. J. Anderson, K. D. Fausch, C. H. Flather, P. Good, R. Koenker, B. R. Noon, and J. E. Roelle 
reviewed earlier drafts of the manuscript. We thank J. B. Dunham for providing the Lahontan 
cutthroat trout data. 

References 

[1]	 Cade, B.S. and Noon, B.R., 2003, A gentle inlroduction to quantile regression for ecologists. Frontiers in Ecology 
and the Environmenl, 1,412-420. 

[2]	 Koenker, R and Halloek, K.F., 2001, Quantile regression: an introduction. Journal Economic Perspectives, 15, 
143-156. 

[3] Koenker, R. and Bassett, G., 1978, Regression quantiles. Econometrica, 46,33-50. 
[4] Koenker,	 R. and Bassett, G., 1982, Robust tests for heteroscedasticity based on regression quantiles. 

Econometrica, 50, 43--61. 
[5) Koenker, R and Machado, LA.F., 1999, Goodness of fit and related inference processes for quantile regression. 

JourTllll of the American StaliS/icaIAssociation, 94,1296-1310. 
[6) Cade, B.S., Terrell,	 J.w. and Sehroeder, RL., 1999, Estimating effects of limiting factors with regression 

quantiles. Ecology, SO, 311-323. 
[7] Cade, B.S. and Guo, Q., 2000, Estimating effects of constraints on plant performance with. regression quantiles. 

Oikos, 91, 245-254. 
[8]	 Huston. M.A., 2002, Introducwry essay: critical issues for improving predictions. In: J.M. Scort, PJ. Heglund 

and M.L. Morrison (Eds) Predicting Species Occurrences: Issues ofAccuracy and Scale (Covelo, CA: Island 
Press), pp. 7-21. 

[9] Knight, C.A. and Ackerly, D.D.,	 2002, Variation in nuelear DNA content across environmental gradients: a 
quantile regression analysis. Ecology Lerrers, 5, 66-76. 

[10) Koenker, R, 1987, A comparison of asymptotic testing methods for [I-regression. In: Y Dodge (Ed.) Statistical 
Data ATUllysis Based on the LI-Norm alld Related Methods (Amsterdam: Elsevier Seience Publishers B. V 
(North-Holland)), pp. 287-295. 

[II]	 Buchinsky, M., 1991, The theory and practice of quantile regression. PhD dissertation. Harvard University, 
Cambridge. MA, USA, 211 pp. 

[12] Chernozhukov, V	 and Umamsev, L.. 2001. Conditional value-at-risk: aspects of modeling and estimation. 
Empirical EcoMmics, 26,271-292. 

[13] Koenker, R., 1994, Confidence intervals for regression quantiles. In: P. Mandl and M. Hu~kova (Eds)A.rymptolic 
Statistics: Proceedings ofthe 5th Prague Symposium (Hei/delburg: Physica-VerJag), pp. 349-359. 

[14] Gutenbrunner, C., Jureekova. 1., Koenker, Rand Ponnoy, S.. 1993, Tests oflinearbypoth.eses based on regression 
rank scores. Nonparametric Statistics, 2, 307-331. 

[15) Dunham, J.B., Cade, B.S. and Terrell. J.w., 2002, Influences of spatial and temporal variation on fish-habitat 
relationships defined by regression quantiles. Transaerians ofthe American Fisheries Society, 131,86-98. 

[16) Gutenbrunner, C. and Jureekova, J., [992, Regression rank scores and regression quantiles.Annals afStatisilies, 
20,305-330. 

(17) Koenker, R., 1997. Rank tests for linear models. In: G.S. Maddala and C.R Rao (Eds) Handbook ofSralistics. 
(Amsterdam: E[sevier). Vol. 15, pp. 175-199. 

(18] Barrodale,1. and Roberts, F.D.K., 1974, Algorithm 478: Solution of an overdetermined system of equations in 
the II norm. Communications ofthe Association for Computing Machinery, 17, 319-320. 

[19] Koenker, Rand d'Orey, V., 1987, Computing regression quanti/es. Applied Statistics, 36, 383-393. 
[20] Koenker, R	 and d'Orey, V, 1994, A remark on algorithm AS229: eompUling dual regression Quantiles and 

regression rank scores. Applied Statistics, 43, 410-414. 
[21]	 Koenker. R. and Portnoy, S., 1996, Quantile regression. University of Illinois at Urbana-Champaign, College of 

Commeree and Business Administration, Office of Research Working Paper 97-0100,77 pp. 
[22] Koenker, R. and Zhao, Q., 1994, L-estimation for linear heteroscedastic models. NO/Jparamelric Statistics, 3, 

223-235. 
[23) Mansouri, H., 1999, Aligned rank transform tests in linear models. JourTllll ofStalistical Planning and lnferena, 

79. 141-155. 
[24) Kennedy, P.E. and Cade, B.S., 1996, Randomization tests for multiple regression. Communications in Star;stics­

Simulalion and Computation, 25, 923-936. 
(25) Anderson, M.J. and Legendre,	 P., 1999, An empirieal comparison of permutation methods for tests of panial 

regression coefficients in a linear model. ]ourTllll Statistical Computation and Simulation, 62, 271~303. 

(26) Anderson, M.J. and Robinson, J., 2001, Permutarion tests for linear models. Ausrrolian New Zealand Joumal 
ofStatistics, 43, 75-88. 

(27) Freedlllan, D. and Lane, D., 1983, A nonstochastic interpretation	 of reponed significance levels. Journal of 
Business and EcoMmic Statistics, 1, 292-298. 

[28] Cade, B.S. and Richards, J.D., 1996, Permutation tests for least absolute deviation regression. Biometrics, 52, 
886-902. 



355 Rank score and permutarion resti.ng alJemarives for regression quanJile estimates 

[29] Legendre, P., 2000, Comparison	 of permutation methods for the partial oorrelation and partial Mamel tests. 
Journal ofStatistical Computation alld Simulation, 67,37-73. 

[30] Randles, R.H.. 1984, On tests applied to residuals. Journal ofthe American Statistical Association, 79, 349-354. 
[31] Legendre,	 P. and Desdevises, Y, 2002, Independem eonrraslS and regression through the origin. Avaible ar: 

www.fas.umonrreal.ca/BIOLjlegendre/reprints/index.html. 
(32] Cade, B.S., 2003, Quantile regression models of animal habitat relationships. PhD dissertation, Colorado State 

University, Fort Collins, CO, 186 pp. 
[33]	 Mielke. P.w.. Jr. and Berry, KJ., 2001, Permutation methods: a distance function approacll (New York, Inc.: 

Springer-Verlag), 352 pp. 
[34] Vardeman, S.B., 1992, What about the other intervals'! The American Statistician, 46,193-197. 
[35] Gerow.	 K. and Bilen, c., 1999, Confidence intervals for percentiles: An application to estimation of poten­

tial maximum biomass of rrout in Wyoming streams. North American Journal ofFisheries Management, 19, 
149-151. 

[36] Parzen, M.l., Wei,	 LJ. and Ying, Z., 1994. A resampling method based on pivotal estimating functions. 
Biometrika, 81, 341-350. 

[37] Zhou, K.G. and Portnoy. S .L., 1998. Statistical inference on heteroscedastic models based on regression 
quamiles. Nonparametric Sial/sties, 9, 239-260. 

[38] Neier, J., Kutner, M.H., Nachtsheim, CJ. and Wasserman, W., 1996,Applied Linear Slat;stical Models (Chieago, 
IL: Irwin), 1408 pp. 

[39] Turner, D.L. and Bowden, D.C., 1977, Simultaneous confidence bands for percentile lines in the general linear 
model. Journal oflhe American Statistical Association, 72,886-889. 




