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ROBUST ESTIMATION OF POPULATION SIZE WHEN CAPTURE
PROBABILITIES VARY AMONG ANIMALS'

K. P. BURNHAM? AND W. S, OVERION
Department of Statistics, Oregon State University, Corvallis, Oregon 973001 USA

Abstrict.

A model is given for multiple recaplure studies on closed populations which allows

capture probabilities to vary among individuals. The capture probability of each individual is aysumed
to he constant over time. Based on this model we give a nonparametric estimation procedure for
population size. The estimator involves selecting one of a sequence of estimators which are each
linear combinalions of the capture frequencies. The individual estimators are derived from the gen-
eralized jackknife method. We also give a goodness of fit 1est for the model's assumption that indi-
vidual capture probabilities do not change during the study. The robustness of this estimation pro-
cedure is investigated with a simulation study. By virtue of this study, and the theoretical nature of
the estimalor, it is judged to be robusi to moderate variations in individual capture probabilities which
may occur in commonly used short-term livetrapping studies.
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INTRODUCTION

Most of the literature on capture-recapture methods
assumes that capture probabilities are equal for all an-
imals in the population being trapped (see Seber 1973,
for a comprehensive review). However, it has long
been recognized that this assumption will often be vi-
olated. Controlled studies of small mammals have
shown heterogeneity of capture probabilities among
individuals (see e.g.. Young et al. 1952, Tanaka 1956,
Crowcroft and Jeffers 1961, Huber 1962, Edwards and
Eberhardt 1967. Batley 1969, Cuarothers 1973¢). In
studies where the (rue population size was known, the
commonly used estimators were severely negatively
biased by heterogeneity of capture probabilities (see
e.g.. Edwurds and Eberhardt 1967, Carothers 1973a).
Computer simulation studies have clearly shown that
hetlerogeneity can cause substantial bias in the com-
monly used estimators (see e.g.. Burnham and Over-
ton 1969, Manly 1971, Gilbert 1973, Carothers 19735,
Olis et al. 1978). For a general discussion of the nu-
merous factors that can affect capture probabilities see
Smith et al. (1975), and Ous et al. (1978). [n spite of
this demonstrated need for models providing some
degree of onequal probabilities of capture, there has
been only meager consideration, or rigorous devel-
opment of such models and associated relevant tests
(Cormack 1966, Holgate 1966, Eberhardt 1969, Car-
others (971, Burnham 1972).

A comprehensive analysis of any capture-recapture
study should test for a variety of sources of variability
in capture probabilities and should consider the as-
sumption of closure if a model assuming closure is
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being used. The population at risk of capture is said
1o be closed if no gains timmigration or birth) or losses
{emigratton or death) occur during trapping. Such a
comprehensive analysis is now barely within the state-
of-the-art for closed populations (see Otis el al. 978}
and has not yet been developed for open populations.
The purpose of this paper 1s to present an estimator
for closed populations which allows for variability of
capture probabilities among animals, and to present
evidence of its robustness. Detailed theory on the der-
ivation of this estimator Is given in Burnham (1972),
and Burnham and Overton (1978).

The JACKKNILE ESTIMATOR
The model

Livetrapping studies on small mammals using a
fixed grid of trups and trapping every day for a period
of 3-10 d are common. In such studies it will often be
more reasonable 1o adopt a model which assumes pop-
ulation closure, as opposed 10 the open models such
as thal of Jolly (1965) and Seber (1965). A general
model for livetrapping studies conducted for | occa-
stons (days) on a closed population of size N is bused
on assuming p,, as the probability of capturing the j-th
individual on the i-th day. This model is (0o general;
some simplification is needed to obtain a model useful
for making statistical inferences. Most previous work
assumed either that the capture probabililies were all
constant, or that they varied only by time. We assume
capture probabilities are constant for any individual
animal. bul variable among individuals. In order (o
introduce a relationship among these capture proba-
bilities we assume they are a4 random sample from
some distribution on the unit interval. To summarize,
our development rests on three mathematical assump-
tions:
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The jackknife estimators N, of population size. for order k = | 10 5. based on capture frequencies (f).

number of distinct individuals encounlered (S), and number of capture events (t).
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1) Population closure.

2y P,=pforalli=1 ... tandp,, ..., px are a
random sample from a probability distribution on
the interval (0. 1).

3) Captures are independent events.

These mathematical assumptions require for their va-
lidity some constraints on the field sampling. One such
constraint worth mentioning is equal sampling effort
on each occasion, which itself implies the same num-
ber of traps used each time, preferably in a fixed grid.

The basic capture data can be expressed as a matrix
of zeros and ones:

1 if the j-th animal is caught on the i-th day,

X = .
i 0 otherwise.

Numerous summary statistics can be computed from
the basic capture data; in particular, let f; represent
the number of individuals captured exactly i times.
Fori=1,..., 1t these are the capture frequencies,
while f, is the number of individuals never captured.
An additional statistic of interest is S = if,. the
1=1
total number of distinct individuals seen during the
study. Note that N = § + f,,.

Given the assumption that the set of N capture prob-
abilities are a random sample, it follows that the cap-
ture frequencies have a multinomial distribution. This
mathematical result, and others underpinning the de-
velopments presented here are given in Burnham and
Overton (1978).

Applving the jackknife

The jackknife technique was originally devised by
Quenouille (1956) as a bias reduction technique. Since
then it has been extensively used, justified and devel-
oped as a statistical inference method. The basic idea
of the jackknife is to reduce an estimator's bias by
taking advantage of subsamples drawn from the entire
sample. Let y,, .. ., vy, denote a random sample of
size n and let A, estimate a parameter f# based on the

entire sample. Let E(6,) be the expected (average) val-
ue of 6,; then the bias of 8, is E(8,) — 6. Often this
bias witl be of the magnitude 1/n. Let any one datum,
yv:, be dropped from the computation of f,; denote the
resultant estimator as 6,_,._,. A new estimator com-
puted as nf, — {n — f,.,._; will have a bias on the
order of 1/(n)?. Greater efficiency is achieved if, in-
stead of dropping one arbitrary datum, one computes
the average of all n such estimators,

no.
2 6n—|. ot |

- 1
Oin-n = —
ni=

and defines the jackknife estimator of ¢ as

é-ll = nén = (= Uémf”.

This is the first order jackknife.

Initially, the jackknife was only concerned with
eliminating biases of the order I/n. More recent work
has generalized the jackknife to eliminate higher-order
bias terms by computing estimators after dropping 2,
3. elc., data values and defining corresponding average
values of @n-p, j = 2,3, ....For a comprehensive
introduction to the generalized jackknife see Gray and
Schucany (1972) and Miller (1964): for an example of
jackknifing applied to an ecological problem see Zahl
(1977).

The general usefulness and success of the jackknife
led us to try it in the current problem. For application
of the jackknife to this capture-recapture problem the
appropriate units of sampling effort are days; i.e.,
sample size n is equated to the number of days, t, of
trapping. The initial, biased estimator is taken as S,
the total number of distinct animals caught. Translated
to the current application, the fundamental assumption
of the jackknife is that the bias of S can be formulated
as a series in l/t:

C, <y

4.;+_,':_+...’
t ¢

E(S) - N =

for some (unknown) constants ¢,, c,. . . . .
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Actual derivation of the resultant estimators of pop-
ulation size N in this application is tedious (Burnham
and Overton 1978) and requires several steps including
determining the statistics 6,,,_,. However, the results
are simple, closed-form formulae. For example, the
first order jackknife estimator is

t—1

N.n =S+ fi.
(recall that f, is the number of animals caught exactly
once and S is the minimum number of animals known
to be in the population). Formulae for the first five
generalized jackknife estimators of N are given in Ta-
ble 1.

The estimators of Table | are all linear functions of
the capture frequencies. Because S = Zf;, it follows

that
. t
N kK = z aikﬂ.
i=1

for some known constants a;,. For convenience the
formulae of Table | are expressed as

. Kk
Nk =S + 3 aufi
=1

(note that e, = 0 for i > k). For some purposes the
constanis a, are needed; they are obtained as a,, =
a; + |. For example

(“t | 4 l)f, + 2 £

In discussing the properties of N,, the roles of t
(sampling effort) and k (jackknife order) need to be
distinguished. For any fixed value of t, the higher or-
der jackknives (k increasing) lead to greater bias re-
duction, but at the cost of increased sampling vari-
ance. Conversely, for any fixed value of k as t
increases N,, is (asymptotically) a consistent esti-
mator of N and its sampling variance will decrease as
sampling effort increases.

The pattern generally found in applying the jack-
knife to livetrapping data is exemplified by computing
N, and its estimated standard error for the data of
Edwards and Eberhardt (1967). They conducted an 18-
d livetrapping study on a penned population of 135
wild cottontail rabbits. Recorded capture frequencies
f, to f; were 43, 16, 8, 6, 0, 2, 1. Capture frequencies
f. to f,, were all zero. Results of applying N, to these
data are shown in Table 2. In this example the mean
square error (variance plus bias-squared) of the se-
quence N, has a unique minimum at k = 2 (This fact
is known here only because the true value of N is
known). Theoretical studies tn Burnham (1972) sup-
port the conjecture that there will generally be a min-
imum mean square error at a small value of k: that is,
there is a “‘best™ N,,. Hence it is meaningful to seek
a procedure to select this best estimate.

A selection procedure.—By examining the theoret-

NJI =

ROBUST ESTIMATION OF POPULATION SIZE

929

TaBLE 2. Application of the jackknife estimator N, of sev-
eral orders (k) to the data of Edwards and Eberhardl
(1967).

N Se(N,)
76

116.6
141.5
158.6
170.3
176.5

NN —O - 38
Sl N —

W = Ao |

W — O \O \O

ical mean square error of N, over a variety of distri-
butions of capture probabilities for 5§ = t = 30, we
found the minimum was usually achieved at k = 1, 2
or 3. The exact N, which achieved the minimum mean
square error varied considerably according to the dis-
tribution of capture probabilities and the value of .
Accordingly, no rule can be formulated independent
of the data to specify the N, to be used for any given
study. An objective procedure is presented below
whereby the data can be used to select N,,.

First, we test the null hypothesis that there is no
difference between the expected values of N, and N, ,

e., test H,:E(N,, — N,) = 0 versus the alternative

H,:E(N,, — N, # 0. If H,, is not rejected this is
interpreted as evidence that the decrease in the ab-
solute bias achieved by using N, rather than N,, is
small relative to the variance of N ;. Given the smaller
variance of N,, compared to N,,. it is therefore con-
cluded that there is no reason to use N.l' rather N,
should be taken as the estimator of N.

The rejection of H,, is interpreted as evidence of
significant reduction in absolute bias relative even to
the increased variance of N,,. The estimator of N,,
should be preferred to N,,. But further bias reduction
may be possible. Before accepting N, as the estimator
to be used, test N, versus Ny, If this test results in
rejection the process continues in the obvious manner.
The estimator N, chosen by this process will be called
the jackknife estimator.

The general procedure for choosing N, is as fol-
lows: test the null hypotheses Hy:E(N, i = Ny =
0 versus H, E(N,,,, — N,)# 0 sequentially for
k < 4, and choose N, = N, such that H, is the first
null hypothesis not rejected. The actual test of H,, is
conditional on S and is based on the fact that

Ny — Ngg = E b/f, for the constants b, = a, ,,, —
. Given the nul] hypothesis H,.. the test statistic
NJ k+1 NJk
[(Vdr(NJ ket = Now | S

has approximately a standard normal distribution
and
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TasLe 3. Results of applying the sequential selection tests
10 Edwards and Eberhardl's (1967) data. Sec lext for fur-
ther explanation.

Null hypothesis Ty Py
H,, 4.053 <0.0001
Ho 2,071 0.0383
H 1.071 0.2842
0.417 0.6766

Because this test is conditional upon S, it does not
depend upon the unknown value of N.

Largce absolute values of T, indicate rejcction of
H,x. In particular let P, be the probability of a value
of |Ty| larger than the observed value (i.e.. Py is
the achieved two-stded signtficance level of the test).
Values of P, can be determined from any table of
the standard normal distribution. A conventional cri-
terion for rejecting H,, is that P, be smaller than 0.05.

An estimator of the sampling variance of N, =
N.Jk is

1

var(N ) z

IK) r

and se(N,) = (var|N,])"2. Assuming a small absolute
relative bias, |N — E(N)|/se(N,), it follows that
(N, = N)/e(N,) is approximately a standard normal
variate. This allows approximate confidence inter-
vals to be constructed for N. For example N =
|.963e(N,) is the approximate 95% confidence inter-
val on N,

Table 3 shows the results of applying the selection
procedure to the data of Edwards and Eberhardt
(1967). Both H,, and H,,, are rejecled at the 5% level,
but H,, is not rejected. This suggests Nl,-, (=158.6 =
21.9) as the estimate to use for these data; recall that

= [35.

A simulation study

To get an idea of the properties of N, this estima-
tion procedure has been applied 10 some simulated
livetrapping data from Burnham and Overton (1969).
Table 4 gives the results of this study. There may be
some loss of generality because N was always 100 in
these studies.

These simulated data were generated as follows. For
a given distribution of cupture probabilities, a random
sample p,, . . . . Pyy Was drawn to represent the pop-
ulation. Livetrapping was then simulated for 30 oc-
casions. Twenty independent replications were done
for each distribution (a different set of capture prob-
abilities was used each time). Three types of distri-
butions were used: betd, symbolized as B{«,3); uni-
form on (0, #), symbolized as U(0, #); and the constant
distribution C(#) which assigns the capiure probabilily
¢ to all individuals. This last class of distributions cor-
responds to the model wherein all individuals have
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constant and equal capture probabilities. From these
three classes, 32 different distributions of capture
probabilities were used, with average capture proba-
bility, E(p), ranging from 0.24 10 0.04. This gives a
total of 640 independent studies simulated. Each study
was examined on occasions (days) 5, 10, 15, 20, 25
and 30, making a total of 3840 different, though not
independent, simulated livetrapping studies. For this
simulation evaluation the selection procedure tests
were all conducled at the 5% level.

The entries in Table 4 are mostly averages. For each
dlSlI‘IbUl]Ol’) of capture probab:llues and each value of

, the 20 values of N = NJk were dveraged as were
lhe 20 values of k. These averages are identified simply

“k™ and “*N,." The estimated standard error of N,
was computed for each study, and then averaged to
obtain 3e(N)) given under that column heading. For
each study the approximate 95% confidence interval
was computed and it was recorded whether or not the
interval covered N. The column headed **Covcrage™
gives the total times, out of 20 possible, that the in-
terval covered N = 100.

The last three columns of Table 4 came from the
original study of Burnham and Overton (1969). They
are included here 10 aid in interpreting the properties
of N;. The column headed by S gives the average num-
ber of distinct individuals seen. The Schnabel esti-
mator (Schnabel 1938), N, . is widely used to estimate
population size; it is based on the assumption of equal
capture probabilities during each trapping period. The
average of Ny, over the 20 replications of each case
is given in Table 4. The average estimated standard
error of N, is also given.

The simulation study showed two unexpected situ-
ations that can arise when applying the selection pro-
cedure: (1) sometimes all H,, are rejected, and (2) un-
der certain circumstances the chosen 1(3_, can be less
than S. Both of these cases were examined in detail,
and a decision was made as to an appropriate value of
N,.

For t = 5. N,, = Ny;, which results in H,, never
being rejected. However, for the 3020 studies where

I > 5, there was a total of 111 cases (3.797) where all
Hu. k =1, 2,3, 4 were rejected at the 5% level. For

the 800 studies where t > 5 and E(p) was 0.04 or 0.06,
there were 69 such occurrences (8.6%}, while for E(p)
= 0.09 and t > 5 there were only 42 such occurrences
out of 2400 cases {1.8%). Based on an examination of
these 111 cases when all four null hypotheses were
rejected at the 5% level it was concluded that neither
N,, nor N, should be taken as N,. Rather a choice
should be made from N,,, N,, or NJ;,. By examining
all information available it was usually not difficult to
make a reasonable choice.

We emphasize that failure of the selection procedure
was rare, especially for models with average capture
probability >0.10. As stressed by Otis et al. {1978), to
get reliable results from capture studies one should
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TasLe 4. Simulation evaluation of the jackknife estimator (N,) and a comparison to the Schnabel estimator (Na) under
selected hela, uniform and constant distributions of capture probabilities. t = number of capture events: k. N,. S, and N,
are averages for 20 replications. N = 100 in all cases.

A _ Cover- N . R  Cover- A A
t k N, se(N, age S No 8e(Ngy) 1 k N, 3e(N, age S Nai 8e(Nyy)
Distribiction = B{0.3158, 1.6) E(p) = 0.24 Distribution = U0, 0.4) E(p) =0.2
5 1.7 65.7 6.7 | 484 48.3 5.4 5 23 96.6 10.6 17 58.6 77.5 8.4
10 1.4 72.6 6.3 3 57.0 53.2 4.7 10 Ll 97.1 6.7 18 76.4 80.7 5.7
15 1.4 77.7 6.3 4 62.2 56.7 4.4 () 1.1 97.9 5.8 16 83.2 82.9 4.5
20 1.4 80.5 6.4 5 65.1 59.1 4.4 20 1.0 96.9 4.7 15 86.6 84.4 4.0
25 1.7 86.1 7.6 6 67.9 61.0 4.3 25 [.0 97.5 4.3 15 89.1 85.7 38
30 1.2 80.2 5.2 3 69.1 62.5 4.3 30 1.1 98.5 4.3 15 90.4 86.7 3.7
Distribution = 8¢1.0, 3.1667) E(p) = 0.24 Distrnibution = C(0.2)  E(p) = 0.2
5 1.6 83.8 7.6 g 59.3 65.8 6.6 5 2.4 116.8 12.5 17 67.7 100. | 11.0
1l 91.6 6.1 14 74.1 72.4 5.2 10 1.1 1137 7.6 1 88.9 99.0 4.2
15 1.1 95.3 5.6 17 80.8 76.9 4.5 15 1.t 1058 5.1 18 95.8 99.1 2.6
20 1.2 99.7 59 19 85.3 79.2 3.7 20 1.0 103.6 3.2 19 98.6 99.4 1.7
25 1.2 1019 5.9 15 87.7 81.2 3.4 25 1.0 1016 2.1 20 99.4 99.5 1.3
30 1.0 99.2 4.5 17 89.7 82.9 3.1 30 1.0 100.9 1.3 19 99.9 99.6 1.1
Disiribition = 8(6.0, 19.0)  E(p) = 0.24 Distribution = B(0.1905, 1.0)  E(p) = 0.16
5 22 115.0 1.2 14 71.8 92.8 10.8 5 2.l 51.4 6.6 0 35.1 35.9 35
10 1.1 110.6 6.7 15 89.7 93.9 4.2 10 1.7 58.9 7.0 423 39.8 2.6
15 12 109.3 5.7 19 95.9 95.6 2.7 15 1.2 57.0 5.1 0 46.0 42.2 2.6
20 1.0 103.8 3.5 20 98.1 96.6 2.0 20 1.4 61.3 5.6 2 48.5 44.0 2.7
25 1.0 102.6 2.8 20 99.1 97.3 1.6 25 1.3 63.8 5.7 2 51.2 45.7 2.8
30 1.0 101.3 1.9 18 99.5 97.7 1.3 30 1.7 69.2 7.1 4 529 47.0 2.9
Distribution = Ut 0.48)  Eip) = 0.24 Distribution = B(1.0, 5.25)  E(p) = 0.16
5 1.8 99.5 9.4 18 67.0 80.4 9.6 s 24 79.2  10.2 10 46.5 63.2 9.6
10 I.1 98.5 6.2 19 81.3 82.3 5.1 10 14 89.2 8.1 9 64.0 67.5 4.5
15 1.0 99.2 5.0 18 87.2 84.8 4.0 15 1.6 101.0 9.2 16 73.4 71.8 3.5
20 1.0 99.8 4.5 20 90.3 86.6 3.3 20 1.1 98.5 7.6 18 79.2 75.0 2.9
25 1.0 99.3 4.0 20 92.14 87.9 2.8 25 1.0 97.7 5.6 t7 83.0 77.4 2.9
30 1.0 99.3 3.6 18 93.2 89.0 2.5 30 1.1 99.1 5.5 18 85.7 79.3 2.9
Distribution = C(0.24;  Eip) = .24 Distribuiion = B(4.0, 21.0)  E(p}) =0.16
§ 22 122.4 12.0 14 75.5 102.0 7.2 5 34 110.0 14.1 19 55.4 87.0 132
10 1.1 1110 6.4 9 93.5 1004 3.2 10 1.3 108.8 8.7 18 77.9 90.0 5.8
15 1.0 106.9 4.3 14 98.2 100.2 2.2 [} l.1 110.3 7.2 5 87.7 91.6 4.4
20 1.0 1027 2.5 20 99.7 100.3 1.6 200 1.0 1076 S.6 t6 9.6 92.9 3.6
25 L0 1009 1.4 20 99.9  100.2 2 25 1.0 1061 4.8 19 95.3 93.9 3.1
30 1.0 100.2 0.6 19 99.9 100.1 1.1 30 1.0 104.7 4.2 19 96.8 94.7 2.6
Distribirion = Bi0).25, 1.0) Ep) = 0.2 Disiriburion = Ul, 0.32)  Ep) = 0.16
5 1.5 56.7 5.7 0 433 431 5.6 5 3.0 97.8 12.3 17 53.5 77.4 10.5
10 1.5 67.0 6.3 | 51.9 48.0 5.4 10 1.2 98.6 7.9 18 72.1 §0.0 4.9
1S 1.3 69.0 5.7 | 55.8 50.9 5.4 15 1.2 101.1 6.9 19 80.6 823 3.6
20 1.3 72.0 5.6 2 59.3 53.3 5.4 20 1.0 98.3 54 19 84.6 83.8 3.0
25 1.3 75.1 6.0 2 61.5 55.1 5.4 25 1.0 98.5 4.9 18 87.4 85.0 2.9
30 1.6 80.2 7.2 5 63.4 56.6 5.3 30 1.0 98.8 4.6 18 89.2 86.0 2.8
Distribnaion = B(1.0, 4.0} Eip) = 0.2 Distribution = C(0.16) Eip) = 0.16
52 87.6 8.7 12 55.5 66.8 7.0 5 33 118.2 14.6 16 58.9 100.7 10.0
o 1.5 97.0 8.3 16 72.1 72.5 4.8 10 1.2 1146 8.5 15 83.2 99.9 4.8
15 1.4 101.7 7.8 18 79.8 79.5 4.1 15 1.1 112.5 6.6 9 93.2 100.3 2.9
200 1.0 98.8 5.6 20 84.2 7%.2 3.6 20 1.0 107.7 4.8 19 96.8  100.0 2.0
25 1.1 100.5 5.4 20 87.3 81.3 33 25 1.0 105.0 3.6 18 99.0 100. 1 1.5
30 1.0 994 4.7 19 89.1 83.0 3.0 30 1.0 102.6 2.5 18 99.4 100.0 1.3
Distribution = B(4.0. 16.0)  Etp) = 0.2 Distribwtion = B(0.1364, 1.0) E(p) = 0.12
5 2.6 110.7 2.2 16 64.8 89.6 11.4 5 1.8 36.5 5.3 0 25.5 26.3 5.3
10 1.1 105.9 7.1 19 83.1 89.4 5.0 10 1.4 442 5.5 | 32.2 30.2 5.4
15 [.0 105.9 5.8 18 91.4 91.6 3.5 15 1.2 46.0 4.7 0 36.1 32.6 5.7
20 1.0 104.9 4.6 17 94.9 93.3% 3.0 20 1.2 49.3 4.9 i 39.0 4.5 6.1
25 [0 103.2 37 18 96.8 94.3 2.6 25 1.6 50.4 5.0 | 40.3 35.9 6.3
30 1.0 102.] 2.8 18 98.0 99.0 2.2 30 1.2 51.7 5.0 ] 41.5 37.0 6.3
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Tasre 4. Continued.

. Cover- . . . Cover- . )
t k N, Se(N;) age S Ny Se(Ngy) L k NJ Se(N,) age S Ny Se(Ngy)
Distribution = B(1.0, 7.333} Eip) =0.i2 Distribution = B{1.0, 15.6667) E(p} = 0.06

5 23 74.4 10.5 8 393 59.0 9.7 s 34 50.8 9.8 0 23.0 47.1 11.1
10 1.5 84.9 8.8 5 57.0 64.0 6.6 10 2.2 74.7 11.6 8 38.2 54.0 8.6
L5 1.3 90.9 7.8 10 66.7 67.9 6.2 15 1.6 829 10.0 9 493 60.0 8.0
200 1.0 900 6.1 12 728 706 6.2 20 L5 87.7 9.6 9 56.3 629 7.2
25 1.2 97.6 6.9 18 77.7 73.4 5.2 25 1.6 92.7 9.9 11 61.5 65.1 6.9
30 b 98.1 6.1 19 81.2 75.7 4.8 30 1.3 88.9 7.9 10 65.1 66.5 6.6

Distribution = B(3.0, 22.0) E(p) = 0.12 Distribution = B(3.0, 47.0) E(p} = 0.06

5 33 93.2 13.0 17 45.0 80.1 18.3 5 36 61.0 10.9 3 24.5 85.0 52,6
10 1.7 1047 11.1 16 64.6 81.6 8.7 10 2.6 926 144 18 41.8 81.2  20.7
15 1.3 1081 9.0 17 76.6 84.7 6.6 15 1.9 98.6 122 20 54.1 79.9 9.6
200 1.1 1058 7.0 19 83.5 86.6 5.0 20 1.8 1085 12.4 17 63.5 82.6 8.4
25 1.0 1043 5.9 18 87.8 88.1 4.7 25 1.4 1047 9.7 18 70.1 83.5 7.4
30 1.0 1045 5.4 18 91.0 89.4 4.0 30 1.2 1063 10.5 17 75.5 B4.8 6.0

Distribution = U(0. 0.24)  E(p) = 0.12 Distribution = U0, 0.12)  E(p) = 0.06

5 35 922 1320 15 439 792 162 5 38 6L8B 1.1 4 246 98.0 45.1
10 1.7 101.0  10.5 18 64.2 80.9 10.0 10 2.6 94.7 14.5 17 42,2 83.0 148
1S 1.2 101.0 8.0 18 74.6 81.8 6.2 15 1.9 98.3 123 18 34.0 80.9 9.7
200 1.3 1053 7.5 18 B1.2 B3S 43 200 15 97.1  10.0 12 62.0 799 8.1
25 1.2 103.2 6.6 18 84.8 84.7 3.8 25 1.2 96.3 8.1 16 69.0 80.9 6.4
30 L1 1012 5.5 18 87.4 85.7 33 30 11 98.0 7.5 18 73.1 81.3 5.5

Distribution = C(0.12) E(p) = 0.12 Distribution = C(0.06) E(p) = 0.06

5 38 1106 149 17 486 111.8 334 5 39 68.4 11.8 6 26.7 122.5 65.8
10 1.8 119.7 1.4 12 73.3 101.6 13.5 10 26 103.8 15.3 18 45.5 101.6 224
15 1.2 114.9 8.3 12 85.8 99.8 7.1 15 1.8 106.3 12.3 16 593 96.7 13.0
20 1.0 109.2 6.0 13 91.7 99.2 5.6 20 16 il144 1.6 15 70.1 98.6 11.1
25 1.0 107.3 5.2 15 95.7 99.5 4.5 25 1.2 111.5 9.0 17 77.6 98.3 7.9
30 1.0 105.9 4.1 19 97.9 9.6 3.6 30 1.0 1115 27 17 83.4 98.7 6.5

Distribution = B(1.0, 10.111) E(p) = 0.09 Distribution = B{1.0, 24.0) E(p) = 0.04

5 3. 69.3 11.0 8 33.2 645 255 5 A2 40,2 8.4 0 17.5 43 21.0
10 19 89.5 113 10 51.4 66.1 11.4 10 2.4 65.7 LL.5 6 294 583 27.8
15 1.4 90.1 8.9 13 60.8 67.5 8.7 15 2.1 79.2 12.1 10 39.0 59.1 13.5
20 1.4 94.5 8.6 It 67.1 69.5 7.4 20 2.2 90.5 13.3 13 45.8 60.9 11.4
25 1.2 94.8 7.5 13 71.9 71.6 6.8 25 1.8 89.2 114 14 5t.6 62.8 103
30 1.3 97.6 80 14 75.1 73.1 6.5 30 1.6 91.1 105 11 56.5 64.2 8.7

Distribution = B(9.0, 91.0) E(p) = 0.09 Distribution = B(2.0,48.0) E(p) = 0.04

5 38 88.3 13.3 17 37.2 110.5 48.5 5 3.4 44,3 9.1 0 17.7 66.9 31.8
10 23  112.0 146 16 58.6 927 124 10 2.7 72.2 129 8 30.7 67.3 231t
15 1.4 .3 10.3 17 73.2 93.4 8.8 15 2.2 80.2 2.4 12 40.3 67.6 12.5
20 1.2 112.4 8.4 15 82.4 94.3 7.0 20 1.8 89.8 11.5 13 48.8 71.1 10.3
25 1.0 1126 7.2 10 88.8 95.5 5.3 25 1.6 92.2 106 11 55.6 73.7 8.7
30 1.0 112.0 6.7 12 92.4 96.1 4.4 30 1.5 98.3 10.4 13 61.8 75.2 T35

Distribution = U(0, 0.18) E(p) = 0.09 Distribution = U0, 0.08) E(p) = 0.04

5 37 79.1 12.6 12 34.2 842 229 5 34 43,1 8.9 0 17.5 723 46.0
10 2.4 105.4 14.4 18 54.1 78.4 10.5 10 23 68.6 11.6 8 30.2 76.5 219
15 13 98 5 8.8 14 66.7 80.0 8.0 15 2.4 89.4 14.0 17 41.4 776 148
20 1.3 102.4 8.6 17 74.0 81.4 6.3 20 2.1 98.2 13.8 15 49.7 78.3 10.1
25 [.1 101.1 6.9 20 79.4 83.1 5.7 25 1.6 96.1 il.6 13 56.3 77.7 8.3
30 1.0 99.8 6.2 20 84.4 83.8 5.0 30 1.5 97.8 10.4 17 62.5 79.0 59

Distribution = C(0.09) E(p) = 0.09 Distribution = C(0.04)  E(p) = 0.04

5 39 94.5 14.0 18 8.7 117.) 342 5 3.5 48.2 9.6 0 18.5 104.3  41.2
10 25 123.4 i6.2 18 60.9 104.7 15.2 10 2.6 82.7 13.8 13 333 102.5 34.0
15 1.5 117.1 0.8 14 75.6 101.2 9.9 15 2.5 107.6 16.1 20 45.8 101.8 18.1
20 1.1 115.6 8.4 10 84.7 101.2 6.6 20 22 116.8 15.4 17 55.9 102.0 14.1
25 1.0 111.6 6.9 12 89.9 100.4 4.7 25 1.8 115.2 13.5 7 63.6 98.6 12.4
30 1.0 111.1 6.0 13 94.0 100.5 33 30 1.7 118.9 13.1 14 70.2 98.0 10.2

have E(p) = 0.10. Failure to achieve this will seriously and almost without exception this only occurs when
compromise the usefulness of the study. S =90 (that'is, 90% of the population had been seen).

In 96.3% of the cases the objective procedure ar- When N, < S, it was always the case that NJ2 =8 =
rived at a decision for k. However, in 119 of these N,,, so that it was sufficient to take N, = N,,, which
cases N, was =<S. All of these cases were examined always provided a good estimate in these cases. We



October 1979

concluded that this situation of the selection procedure
choosing N, < S does not constitute a problem be-
cause it seems only to occur with very good data
wherein either S or N, is a good estimator.

By examining Table 4 it is seen that N, is quite
robust. For those distributions examined it only per-
forms poorly for the B(«a, 1) type. But for these dis-
tributions of capture probabilities no estimators ex-
amined (Burnham and Overton 1969) were found to
have good properties. [t is also seen that the standard
error of N, is of similar magnitude to that of Ny,.

The order of the jackknife chosen by this procedure
is seen to vary. The chief factors appear to be the
number of trapping occasions and the average capture
probability. Att = 5, k may easily be 2, 3, or 4. But
at t = 10, k is probably 1, 2 or 3.

The coverage of N by the approximate 95% confi-
dence intervals varied, and was not always good. Ta-
ble 4 indicates that the nominal confidence level will
not be achieved if the absolute value of the bias of N,
is as large or larger than the standard error of N,
Often this is not the case and then the true coverage
of N appears to be 709 or more. In general, ignoring
the Bla, I) distributions, the confidence interval cov-
erage appears to be 50% or better in this simulation
study.

Most estimators do well under particular circum-
stances. For example, NS., performs well if capture
probabilities are constant over individuals. However,
when capture probabilities vary it is apparent from
Table 4 that N, has a consistently negative bias which
may be quite large. The jackknife estimator is often
biased but this bias may be either positive or negative;
often N, tends not to have a large absolute bias. In
fact, when the results in Table 4 for N, and Ny, are
averaged over all distributions (28 of them)} except the
B(a, 1) type the results given in Table 5 show N, to
perform quite well.

An improved selection procedure

The stopping rule for selection of an estimator as
given above was used for the simulation study and for
application to some real data, including Carothers’
(1973a) study on a real population (of taxicabs) with
known N. As a result of these studies we suggest the
following as an improved estimation procedure. (It
was not possible to re-do the simulation study using
this new procedure.)

Compute the test statistics T, and their two-sided
significance levels P,. Find the first index k such that
P, > 0.05. If k = |, take N, as the estimator of N.
If k > ], then compute an interpolated estimator be-
tween N; ., and N,,, as N, = cN,, + (1 = c)N, .,
where ¢ = (0.05 — P,_)/(P, — P,_,). This interpo-
lated estimator is still a linear combination of the
capture frequencies, say N, = X d,f;, with coeffi-
cients d; = cay + (1 — ¢)a, ,_,. The standard error
of N, is estimated by
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TABLE 5. Average values of N, and Ny, from all distributions
of Table 4, except the B(a,1) type.

1 Average N, Average N,
5 . 84.2 84.4

10 97.6 82.9

15 99.7 83.9

20 102.2 85.2

25 101.6 86.5

30 101.7 88.4

- ¢ D
se(N,) = (3 (@) - K)o
=1

This interpolated estimator smooths the otherwise dis-
crete nature of choosing exactly one of the N, and
seems to be an improvement over the non-interpolated
procedure.

When applied to Edwards and Eberhardt's (1967)
data we have k = 3, ¢ = 0,0476, and the interpolated
jackknife coefficientsared, = 2.873,d, = 0.0907, 4, =
1.033 while d, through d,4 are all 1. The resultant es-
timate is N, = 142 (true N = 135) with an estimated
standard error of 15.2.

Testing for time variation in
capture probabilities

Three mathematical assumptions are basic to this
model for capture-recapture studies: 1) closure, 2) in-
dependence of captures over individuals and occa-
sions (which we can consider for convenience as days,
and 3) individual capture probabilities are constant
during trapping. Given the independence assumption
we present some tests for variation in individual cap-
ture probabilities. First, we give a general test of the
null hypothesis Hyp, = p;, j=1, ..., S; ie., all
captured individuals have constant capture probabili-
ties over time but capture probabilities may vary
among animals. Then a more specific test is suggested
which is sensitive to behavioral variation, including
failure of closure.

A general test.—Let the individuals which have
been captured at least once be indexed from | through
S. Define z; as the number of individuals captured on
day i that were captured exactly k total times. The z,,
can be expressed analytically as a function of the basic
data xy;; doing so shows z,, is a sum over f, indepen-
dent random variables. To compute any given z,,, first
determine the subset of animals caught exactly k
times, then count how many of them were caught on
day i. We note that

L
n = % 2y = total captures on day i.
k=1

A test statistic for the null hypothesis of no time
variation in capture probabilities is
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(see Burnham 1972, Burnham and Overton 1978). Un-
der H,. this statistic i1s approximately a central chi-
square variable with t — | degrees of freedom. Con-
sequently, H, is rejected for large values of y; in this
case one is concluding that the capture probabilities
of some animals changed during the study.

This approach 1o testing the hypothesis that capture
probabilities do not change is based on a number of
assumptions. If no one assumption stands oul as
weaker or more doubtful than the others, then this test
constitutes a general test of the conformity of the data
to our model.

A specific test for behavior changes including fail-
wre of closire —A more specific test is suggested be-
low as a suitable test for closure. If animals are en-
tering or leaving the population during trapping they
will have zero capture probabilities during some initial
or terminal part of the trapping period. We would then
expect the period of time between first and last capture
for such individuals to be less, on the average, than
it would be under the closure assumption. The specific
alternatives to H, 1o which the following test is sen-
sitive include those like p; =0fori=1,...,r1or
py=0fori=s+1...., t forr <'s, while p,, = p,
fori=r+1,...,s.

For all animals captured at least twice, but not more
than t — | times, define W, as the first day of capture
and V) as the last day of capture. Then | € W, < V,
< t and defining Q; = V, ~ W;, we have Q, is in the
range y; — 1 tot — |, where vy, is the number of times
the j-th animal is captured. Conditional on y, = k, the
expected value of Q; is

EQy, = k) = =1

K —
—(t+ ).
k+[( )

[f there is a failure of closure, we expect

kK —
k +

E(Q;y; = k) < :u+ 1)

for some animals caught at Jeast twice.

To test this hypothesis, first determine Q, for all
animals caught between 2 and t — | times inclusive.
Group the Q, according to capture freguencies, so
there arc f, values of Q for those animals caught k
times. Then the average value of Q from each fre-
quency group is an estimate of E(Q;|y; = k): let this
average be represented by E(Q|k). An overall test
statistic of H, which is sensitive to behavioral changes
in capture probabilities is

-1
S EQk) -
—_ k-2

k-1
PR
SU2(0— KKk — DGt + 1)]»"z
[ (k + 2)(t + DX,

(t+ D

k=2
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This statistic. z. is approximately a standard normal
random variable under the null hypothesis. The ap-
proximation should be excellent if the sum f, +--- +
f,., is larger than 20. The actual test procedure is
one-sided: specifically. reject the null hypothesis at
the 5% level of significance if z < —1.645 occurs.

Examples.—I1 would be too lengthy to give de-
tailed examples of all steps of these tests including
the basic input data (the z,, or the Q, values). We
will give the results of some applications.

From Edwards and Eberhardt (1967) we can easily
compute

[

S {0, = )2 = 391.77,

£)1-1) oo

and hence the omnibus chi square test statistic for time
variation in capture probabilities ts 55.5 with 17 df (t =
18). Thus, there is clear evidence of time variation in
the capture probabilities of this study (P < .001). Giv-
en the true population size, it is not difficult to show
there is also evidence of considerable heterogeneity
(this latter point is difficult to show without utilizing
the known N). Under these circumstances we do not
know if the interpolated jackknife estimator (N; =
142) is a fluke, or if the procedure is not sensitive to
the time variation. There is evidence that N, is robust
to time variation in capture probabilities provided that
closure holds (Burnham 1972, Otis et al. 1978).

The overall “*closure’ test applied to Edwards and
Eberhardt’s data gave a test valueofz = —2.132(P =
.0165). This demonstrates the test is not just sensitive
to the closure assumption failing; rather it is sensitive
to certain types of alternatives to p, = p;. In particu-
lar, time trends in capture probabilities can cause re-
Jjection. In this example the average capture probabil-
ities decreased in the second 9 d of trapping.

Application 1o estinating
species ninbers

The procedure presented here can also be used to
estimate the number of species of a given taxonomic
group in a community. There is a simple analogy be-
tween our capture-recapture model and the species
estimation problem. Let N be the number of species
in the community. There will be differing numbers of
individuals of each species, and different species may
have differing behaviors. For those reasons we would
expect that different species do not have equal capture
probabilities. Rather, a model to represent the cap-
tures of these species (making no distinction between
individuals of the same species) should allow different
capture probabilities for each species.

[f sampling to estimate the number of species has
a design with t identified units of equal effort, the for-
mulae and procedures previously discussed are appli-
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cable. In so doing the basic data are the frequencies
of encounter with the species. That is. in this appli-
cation one interprets f, as the number of species en-
countered exactly i times in the various samples. Note
that an encounter occurs on the i-th sample if one or
more individuals of that species is captured (i.e., the
number of individuals seen for each species is not rel-
evant for estimating numbers of species).

Most existing attempts to estimate species numbers
are based on modeling the statistical distribution of
these frequency data (see e.g., Engen 1974). Hence,
such methods are parametric, relying on a particular
parametric model. In many such models there is no
concept of the number of trapping occasions. This
arises because often the number of capture attempts
{e.g.. sweeps with an insect collection net) is both
large and may not even be recorded. Qur model can
fit this situation by taking the limiting values of the
coefficients a,, and a, as t becomes infinite. Such a
limit exists: in fact it is

Ny =S +3 (—1)-*'(:‘)&,
1l

where (k) is the binomial coefficient. (k)7((k — i{li".
i

The formula for the a, when t becomes infinite is

a‘k:{ [I—l)'*'[‘i‘)ﬂ. = Loes:ok

1> k.

As an example we use a set of data on insects from
Mehninick (1964) (also see Engen 1974 who analyzed
these data), where S = 124. The first five frequencies,
in arder, are 50, 20. 11, 6, 5. Using formulae for N, ,
Se(N,) and the selection procedure with the above
formula lor a,, we computed the jackknife estimator
of N far these data. Basic results are given in Table
6. Wilhout computing the interpolated version of N,
we would take k = 2. hence N, = 204 (%17.3}. Using
the interpolated selection procedure we have ¢ =
0,665, hence N, = (0.665)(204) + (0.335)(174) = 194.
The corresponding coefficients b, are d, = 2.665.d, =
0.335 and the rest of the d, are all 1. Using these d,,
the standard error of N, is estimated to be 14.7. An
approximule 95% confidence interval on the number
of insects in this sampled community is 194 =
(1.96)14.7) or 165 to 223,

Discussion

We huve presented a model for capture-recapture
studies on closed populations which incorporates het-
erogeneity of capture probabilities. The juckknife es-
Limator is shown to be robust when capture probabil-
ities vary among individuals. In comparison. commonly
used estimators are negatively biased in this situation.
We applied N, to the data reported by Carothers
(1973u). wherein the true value of N was known. The
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TaBLE 6. Application of the jackknife 1o estimate total
species of insects from Mehninick's (1964) data. See text
for further explanation.

LS N Se{N ) Ty Py
| 174 10.0 3.51 0.0004
2 204 17.3 1.78 0.0750
3 225 27.2 0.93 0.3520
4 242 42.7 0.58 0.5620
5 259 68.1 —_ —

results suppoirted our conclusions above. (Because
Carothers gives the capture frequencies the interested
reader can also apply N, to Carothers’ data and com-
pare the results to estimators he computes. Alterna-
tively, the results of computing N, for these data are
available from the authors.) Finally, we showed that
our model and estimator are appropriate for estimating
species numbers.

Tests of the assumption of no time variation in in-
dividual capture probabilities have also been given,
and they appear to perform satisfactorily. We have
not. however, presented any test for heterogeneity it-
self. This is deliberate: the scope of the paper has been
limited to this one model and results derived there-
under. However, we believe any comprehensive anal-
ysis of livetrapping data should test for a variety of
possible variations in capture probabilities due to time,
behavior and heterogeneity (and combinations of
these). The only comprehensive works along these
lines we know of are Pollock (1974) and Otis et al.
(1978},

We also do not discuss study design features which
can serve to eliminate the biasing effects of hetero-
geneity. A particularly useful device is to use quite
different capture methods on each different occasion.
Often this will allow one to safely assume marked and
unmarked animals have the same average capture
probability. But application of this idea is limited in
that one cannot usually find five {or more) truly dif-
ferent capture methods. Where numerous recapture
occasions are required to accumulate sufficient data,
the investigator usually must rely on one method of
livetrapping. and hence heterogeneity of capture prob-
abilities may be unavoidable. The jackknife estimator
presented here is especially appropriate for use in the
typical small-mammal study which uses a fixed grid of
livetraps, and daily trapping on five or more consec-
utive days. For such studies, the jackknife estimator
will often be more reliable than estimators, such as
the Schnabel, which assumes equal capture probabil-
ities for all animals.
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