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ROBUST ESTIMATION OF POPULATION SIZE WHEN CAPTURE 
PROBABILITIES VARY AMONG ANIMALS' 
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Ah,llr((( I. A mouel i~ given for multiple recapture stuuies on c1o~eu populations which allows 
capture probabilitie, to vary among inuiviuuals, The capture probabilily of each inuiviuual i, a~sumeu 

to he constant over time. Baseu on this mouel we give a nonparamelric e~timalion proceuure for 
population size. The estimator involves selecting one of a ~equence of estimators which are each 
linear combinations of the carture frequencie,. The inuividual estimators are deriveu from the gen­
eralized jackknife methou. We nlso give a goouness of fit te~t for the model's assumrtion thai inui­
vidual capture probabililies do nOl change during the study. The robustnes~ of thi, e~timalion pro­
cedure b inve'Ligateu with a simulation study. By virtue of this study, and the theoretical nature of 
the eSlimator, it is juuged to be robust to moderate varialion~ in individual capture rrobabilitie, which 
may occur in commonly used ~horl-term livetrapping studies. 

!\,'." "·,,rd.,: ('(lpl"r~-r~((I[J IIIrl': j,J( ~~II!h "t('/I/"d: P"I'"IUli"" ,Ii~~ e,\'fillltJlioll: r"hu.II (·.llit/Wlioll: 
.I'illllll,,!ioll; l'riri((hI~ f'(I[JllIr~ [Jr()h(lhiliri,·~'. 

1:-1 I RO[)UC 1 ION 

MO'it of t he literature on capture-recapture met hods 
a~~llme~ that capture probabjlitie~ are equal for all an­
imals in the population being trapped (~ee Seber 1973, 
for a comprehensive review). However, it ha~ long 
been recognized that thi~ as~umption will often be vi­
olaled. Controlled ,ludie~ of small mammab have 
shown heterogeneity of capture probabilities among 
individuab (~ee e.g" Young et al. 1952, Tanaka J956, 
Crowcroft and Jeffer~ 1961, Huber 1962, Edward~ and 
Eberhardt 1967. Bailey 1969, Carothers 1973a). In 
sludies "",here the true population size was known, the 
commonly u~ed e~timators were severely negatively 
biased by heterogeneity of capture probabilities (see 
e.g., Edwards and Eberhardt 1967, Carothers 1973u). 
Computer simulation ~tudie~ have clearly ~hown that 
heterogeneity can cause sub~tantial bia~ in the com­
monly used e~timators (see e.g., Burnham and Over­
ton 1969, \1anly 1971, Gilbert 1973. Carothers I973h, 
Olis el al. 19711), For a general discu~~ion of the nu­
merou" factors that can affect capture probabilities see 
Smith et al. (1975), and Otis et al. (1978). In spite of 
thi, demonstrated need for modeb providing some 
degree of onequal probabilities of capture, there has 
been only meager consideration, or rigorous devel­
opment of such modeh and associated re Ie vant te~ ts 
,Cormack 1966, Holgate 1966, Eberhardt 1969. Car­
other~ 1971, Burnham 1972). 

A comprehensive analy~is of any capture-recapture 
study should test for a variety of source~ of variability 
in capture probabilities and should consider the a~­

~umptjon of closure if a model as~uming closure is 
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being u~ed. The population at ri~k of capture i~ said 
to be clo~ed if no gains (immigration or birth) or Im~e~ 

(emigration or death) occur during trapping. Such a 
comprehensive analysi~ i~ now barely within the slate­
of-the-art for closed population~ (see Otis el al. 197Xl 
and has not yet been developed for open populations. 
The purpose of this paper i~ to pre~ent all estimator 
for closed populations which allow~ for vHriabilily of 
capture probabilities among animals, and to pre~ent 

evidence ofib robustness. Detailed theory on the der­
ivation of this estimator is given in Burnham (1972), 
and Burnham and Overton (1978), 

TII~. JAIl'I'?"fl ~ ESJr~IArOR 

TIi<' I/IIJ<!e/ 

Livetrapping studies on small mammals u~ing a 
fixed grid of trap~ and trapping every day for a period 
of 3-10 d are common. ln such studie~ it will often he 
more reasonable to adopt a model v..-hich assume, pop­
ulation closure. as opposed to the open models ,uch 
as thaI of Jolly (1965) and Seber (1965). A general 
model for livetrapping ~tudie~ conducted for 1 occa­
sjon~ (days) on a closed population of size N is based 
on assuming PH a~ the probability of capturing the j-th 
individual on the i-lh day. Thi" model i.s 100 general: 
some simplification i~ needed to 'obl ain a model useful 
for making statistical inference~. Mo~t previous work 
assumed either that the capture probahilitie~ were all 
constant, or that {hey varied only by time, We as~ume 

capture probabilitie~ are constant for any individual 
animal, bul variable among individual~, In order 10 

introuuce a relationsh ip among Ihese capture proha­
bilities we a~sume they are a ranuom ~ample from 
some distribution on the unit interval. 'fo ~ummarize, 

our development re~ts on three mathematical a~.,ump­
tions; 

I 
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TABU	 I. The jadknifc e~limators N.. ~ of population size. ror order k = I 10 .~. based on capture rrequencies (f). 
number of dislin~1 individuals encllunlered IS). and number of capwre events (t). 

- . (I - 1)N... = .s + -i- f , 

_({_-2_}')r..NJ ., = S + 21 - 3)f
( -1- ( III - I) . 

e';6)f

'

1 
31< - I51 + Ill) ( (l - 3)' )N.., = .s + (-----r..+ f,

t(1 - I) . t(1 - 1)(1 - 2) . 

(~)r, _(6t' - 36r + 55)r., + (41" - 421' + 1481 - 175 )f _ ( (t - 4)4 )f
l	 4 

1 I(t-I) - l(t-I)(1-2) . t(1-Ij(t-2)(1-3) 

51	 - 15 )r, _( lOt" - 701 + 125)r.. + ( 101' - 1201< + 485t - 660)f _ ( (I - 4)' - (\ - 5)-' )r,N.I' = S + ( l
1 l(I-I)' 1(1-1)(1-2) 1(1-1)(1-2)(1--3) 

(I - 5)' )+ (	 f. 
I(t - 1)(1 - 2)(1 - 3)(1 - 4) .' 

J) Population closure. 
2) P" == PI for all i = J, . , t and P,. . P." are a 

random sample from a probabi Iity distribution on 
the interval (0, I). 

3) Captures are independent events. 

These mathematical assumptions require for their va­
lidity some constraints on the field sampling. One such 
constraint worth mentioning is equal sampling effort 
on each occasion, which itself implies the same num­
ber of traps used each time, preferably in a fixed grid. 

The basic capture data can be expressed as a matrix 
of zeros and ones: 

x = f l if the j-th animal is caught on the i-th day, 
J' °otherwise. 

Numerous ~u mmary statistics can be computed from 
the ba~i(; capture data: in particular, let fl represent 
the number of individuals captured exactly i times. 
For i "" I. . , t these are the capture frequencies. 
while fll is the number of individuals never captured. 

An additional statistic of interest is S = 2:I f" the 
1=1 

total number of distinct individuals seen during the 
study. Note that N = S + f". 

Given the assumpt ion that the set of N capture prob­
abilities are a random sample, it follows that the cap­
ture frequencies have a multinomial distribution. This 
mathematical result, and others underpinning the de­
velopments presented here are given in Burnham and 
Overton l1978}. 

Appl.\'ill~ the jud.f..lliji: 

The jackknife technique was originally devised by 
Quenouille (1956) as a bias reduction technique. Since 
then it has been extensively used, justified and devel­
oped as a statistical inference method. The basic idea 
of the jackknife is to reduce an estimator's bias by 
taking advantage of subsamples drawn from the entire 
sample. Let y" .. ,Yn denote a random sample of 
size n and let 0" estimate a parameter 0 based on the 

entire sample, Let E(OIl) be the expected (average) val­
ue of 0,,; then the bias of On is E(On) - O. Often this 
bias will be of the magnitude I/n. Let anyone datum, 
Yh be dropped from the computation of 0,,; denote the 
resultant estimator as 0,,-1.-,' A new estimator com­
puted as nOn - (n - I )On I. -i will have a bias on the 
order of 1I(n}2, Greater efficiency is achieved if, in­
stead of dropping one arbitrary datum, one computes 
the average of all n such estimators, 

, In. 
O,n-11 ~ - 2: 0,,_1._1 

n i==1 

and defines the jackknife estimator of 0 as 

0.11 = nOn - (n - 1)0,n_n. 

This is the first order jackknife. 
Initially, the jackknife was only concerned with 

eliminating biases of the order lin. More recent work 
has generalized the jackknife to eliminate higher-order 
bias terms by computing estimators after dropping 2, 
3. etc., data values and defining corresponding average 
values of O,n-Jh j = 2, 3, . , .. For a comprehensive 
introduction to the generalized jackknife see Gray and 
Schucany (1972) and Miller (J 964): for an example of 
jackknifing applied to an ecological problem see Zahl 
(1977). 

The general usefulness and success of the jackknife 
Jed us to try it in the current problem. For application 
of the jackknife to this capture-recapture problem the 
appropriate units of sampling effort are days; i.e., 
sample size n is equated to the number of days, t, of 
trapping. The initial. biased estimator is taken as S, 
the total number of dis tinct ani mals caught. Translated 
to the current application, the fundamental assumption 
of the jackknife is that the bias of S can be formulated 
as a series in lit: 

E(S) - N = ..s.. + <:1 + ... 
t tt ' 

for some (unknown) constants c" c2 •• 
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Actual derivation of the resultant estimators of pop­
ulation size N in this application is tedious (Burnham 
and Overton 1978) and requires several sleps including 

determining the statistics iJ'"-JI' However, the results 
are simple. closed-form formulae. For example, the 
first order jackknife estimator is 

• t - I 
N.lI == S + -t-f,. 

(recall that f, is the number of animals caught exactly 
once and S is the minimum number of animals known 
to be in the population). Formulae for the first five 
generalized jackknife estimators of N are given in Ta­
ble 1. 

The estimators of Table I are all linear functions of 
the capture frequencies. Because S = :Hi' it follows 
that 

for some known constants For convenience the 
formulae of Table) are expressed as 

a ik . 

,- , 
(note that a'k = 0 for i > k). For some purposes the 
constants a ,k are needed; they are obtained as a ,k = 
aik + I. For example 

- (t - I ) ,N.J! = -t- + I f, + ~ I· f,. 

In discussing the properties of 1\1 'k the roles of t 
(sampling effort) and k (jackknife order) need LO be 
distinguished. For any fixed value of t, the higher or­
der jackknives (k increasing) lead to greater bias re­
duction, but at the cost of increased sampling vari­
ance. Conversely, for any fixed value of k as t 
increases N.Jk is (asymptotically) a consistent esti­
mator of N and its sampling variance will decrease as 
sampling effort increases. 

The pattern generally found in applying the jack­
~nife to live trapping data is exemplified by computing 
N.Jk and its estimated standard error for the data of 
Edwards and Eberhardt (1967). They conducted an 18­
d Jivetrapping study on a penned population of 13.5 
wild cottontail rabbits. Recorded capture frequencies 
f, to f7 were 43, 16,8,6,0, 2, J. Capture frequencies 
f" to f," were all zero. Results of applying Nlk to these 
data are shown in Table 2. In this example the mean 
square e,ITor (variance plus bias-squared) of the se­
quence NJk has a unique minimum al k == 2 (This fact 
is known here only because the true value of N is 
known). Theoretical studies in Burnham (1972) sup­
port the conjecture that there will generally be a min­
imum mean square error at a small value of k: that is, 
there is a "best" N 1k . Hence it is meaningful to seek 
a procedure to select this best estimate. 

A select jon procedure.-By examining the theoret-

TABLfo 2. Application of the jackknife estimator N.Jk of sev­
eral orders (k) to Ihe dat a of Edwards and Eberhard I 
(1967). 

k r'I Jk selr'l,") 

0 76 
I 116.6 8.9 
2 141.5 14.9 
3 158.6 21.9 
4 l70.3 3 l. 1 
5 176.5 43.5 

ical mean square error of N.Jk over a variety of distri­
butions of capture probabilities for .5 ,,;; t ,,;; 30. we 
found the minimum was usually achieved at k = I, 2 
or 3. The exact N.lk which achieved the minimum mean 
square error varied considerably according to the dis­
tribution of capture probabilities and the value of l. 
Accordingly, no rule can be formulated independent 
of the data to specify the N.Jk to be used for any given 
study. An objective procedure is presented below 
whereby the data can be used to select N.lk' 

First. we test the null hypothesis that there is no 
difference betwe~n the ~xpected values of N.II and Nn, 

I.e., test H"I:E(N.l2 - Nil) = 0 versus the alternative 
H.,:E(N.J~ - N.II ) '" O. If H", is not rejected this is 
interpreted as evidence that the decrease in the ab­
solute bias achieved by using ~ 12 rather than N.II is 
small relative 10 the variance of N.J2' Given the smaller 
variance of N.I' compared to N n. it is therefore con­
cluded that there is no reason to use N,t: rather N. II 
should be taken as the estimator of N. 

The rejection of H,,, is interpreted as evidence of 
significant reduction in absolute bias relative even to 
the increased variance _of N .12' The estimator of N.l1 
should be preferred to N.J" But further bias reduction 
may be possible. !3efore accepting N.12 as the estimator 
to be used, test N l2 versus N.I.,. If this test results in 
rejection the process continues in the obvious manner. 
The estimator N J chosen by this process will be called 
the jackknife estimator. 

The general procedure for choosing N.I i~ as fol­
lows: test the null hypotheses H"k:E(N.',k+' - N.II,) = 

o versus H lIk : E(N.J.k+ I - N.'k) '" 0 sequentially for 
k ,,;; 4, and choose NJ = NJk such thaI H"k is the first 
null hypothesis not rejected. The actual test of H"l. is 
conditional on S. and is based on the fact Ihat 
, - ,
N.J ... ;! - N Jk '" 2: b,f, for the constants b, = a,.k+' ­

,~ , 
a'k' Given the null hypothesis H"k' the test statistic 

T - N.J.k+' - NJk 
k - [(var(N.J.k+' - N.tkIS)I"" 

has approximately a standard normal distribution 
and 

var(N.,. k+' - N.,k IS) 

= -.L[i (bYf, - (N.I·I.+,S- N.lkl" ]. 
S - 1 1~1 
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TABLe 3. Results of applying the sequential selection tests 
10 Edwards and Eberhardt's (1967) data. Sec lex.t for fur­
ther ex.planation. 

Null hypothesis Tk P k 

Hili 4.051 <0.0001 
Hll:t 2.07l 0.0383 
H'I:1 1.071 0.2842 
Hili 0.417 0.6766 

Because this test is conditional upon S, it does not 
depend upon the unknown value of N. 

Large absolute values of T k indicate rejcction of 
H"k' In particular let Pk be the probability of a value 
of IT k I larger than the observed value (i .e .. p. is 
the achieved two-sided significance level of the test). 
Values of Pk can be determined from any table of 
the standard normal distribution. A conventional cri­
terion for rejecting H"k is that Pk be smaller than 0.05. 

An estimator of the sampling variance of NJ = 

N.Jk is 

var(N.J) = LI 

(a'k)"f, N.J' 
'~l 

and se(N.J) = (var[N.d)l!1. Assuming a small absolute 
relative bias. IN - E( N.J) l/se(N.,l. it follows that 
(N., - N)/se(N ,) is approximately a standard normal 
variate. This allows approximate confidence inter­
vals to be constructed for N. For example N == 
1.%se(N.,) is the approximate Y5% confidence inter­
val on N. 

Table 3 shows the results of applying the selection 
procedure to the data of Edwards and Eberhardt 
(1967). Both H", and Hoot are rejected at the 5% level, 
but H"" is not rejected. This suggests N.n (=158.6 == 
21.9) as the estimate to use for these data; recall that 
N = 135. 

A .lillwlaliol1 .\/lidy 

To get an idea of the properties of N.!, this estima­
(ion procedure has been applied to some simulated 
livetrapping data from Burnham and Overton (1969). 
Table 4 gives the results of this study. There may be 
some loss of generality because N was always 100 in 
these studies. 

These simulated data were generated as follows. For 
a given distribution of capture probabilities, a random 
sample P, ..... p,,,,, was drawn to represent the pop­
Ulation. Livetrapping was then simulated for 30 oc­
casions. Twenty independent replications were done 
for each distribution (a different set of capture prob­
abilities was used each time). Three types of distri­
butions were used: beta, symbolized as B(a,,(3); uni­
form on (0, 11), symbolized as UfO, 11); and the constant 
distribution C(I1) which assigns the capture probability 
11 to all individuals. This last class of distributions cor­
res ponds to the model wherei n all ind iv iduals have 

constant and equal capture probabilities. From these 
three classes, 32 different distributions of capture 
probabilities were used, with average capture proba­
bility, E(p). ranging from 0.24 to 0.04. This gives a 
total of 640 independent studies simulated. Each study 
was examined on occasions (days) 5, 10, 15, 20,25 
and 30. making a total of 3840 different, though not 
independent, simulated live trapping studies. For this 
simulation evaluation the selection procedure tests 
were all conducted at the 5% level. 

The entries in Table 4 are mostly averages. For each 
distribution of capture probabilities and each value of 
t, the 20 values of N.l = N Jk were averaged as were 
the 20 values of k. These averages are identified simply 
as "k" and "N.J." The estimated standard error of N J 

was computed for each study, and then averaged to 
obtain se(N J) given under that column heading. For 
each study the approximate 95% confidence interval 
was computed and it was recorded whether or not the 
interval covered N. The column headed "Covcrage" 
gives the total times, out of 20 possible, that the in­
terval covered N = 100. 

The last three columns of Table 4 came from the 
original study of Burnham and Overton (1969). They 
are included here to aid in interpreting the properties 
of N J • The column headed by S gives the average num­
ber of distinct individuals seen. The Schnabel esti­
mator (Schnabel 1938), N SII' is widely used to estimate 
population size; it is based on the assumption of equal 
capture probabilities during each trapping period. The 
average of N ,II over the 20 replications of each case 
is given in Table 4. The average estimated standard 
error of N SII is also given. 

The simulation study showed two unexpected situ­
ations that can arise when applying the selection pro­
cedure: (I) sometimes all H"k are rejected, and (2) un­
der certain circumstances the chosen N.l can be less 
than S. Both of these cases were examined in detail, 
and a decision was made as to an appropriate value of 
N.,. 

For t = 5. N." = N Jo ' which results in H", never 
being rejected. However, for the 3020 studies where 
t > 5, there was a total of III cases (3.7%) where all 
H"k' k = 1, 2, 3, 4 were rejected at the Ylr level. For 
the 800 studies where t > 5 and E(p) was 0.04 or 0.06. 
there were 69 such occurrences (8.6%), while for E(p) 
;;. 0.09 and t > 5 there were only 42 such occu rrences 
out of 2400 cases (1.8%). Based on an examination of 
these t 11 cases when all four null hypotheses were 
rejected at the 5% level it was concluded that neither 
N.l l nor N J , should be taken as N.l' Rather a choice 
should be made from N.JI' N.J2 or NJ:I' By examining 
all information available it was usuaIJy not difficult to 
make a reasonable choice. 

We emphasize that failure of the selection procedure 
was rare, especiaIJy for models with average capture 
probability >0.10. As stressed by Otis et al. (1978), to 
get reliable results from capture studies one should 
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TABU:. 4. Simulation evaluation of the iackknife estimalor (?'l.ll and a comparison to the Schnabel estimator (N,,,) under 
~eIected heta. uniform amI constant distributions of capture probabilities. t = number of capture events: k. N.,. S. and ?'l", 
are averages for 20 replications. N = 100 in all cases. 

Cover· Cover-
k N J se(N J ) age S N," Se(?'l'H) k N J se(N J ) age S se(N,,,lN"l 

Di.l/rib/((iol/ = 8W3158. 1.0) E(p} = 0.24 D;Hrjbulion = UfO. 0.4) E(p} = 0.2 

5 1.7 65.7 6.7 I 48.1 48.3 5.4 5 2.3 96.6 10.6 17 58.6 77.5 8.4 
10 1.4 72.6 6.3 3 57.0 53.2 4.7 10 1.1 97.1 6.7 18 76.4 80.7 5.7 
15 1.4 77. 7 6.3 4 62.2 56.7 4.4 15 1.1 97.9 5.8 16 83.2 82.9 4.5 
20 1.4 80.5 6.4 5 65.1 59.1 4.4 20 1.0 96.9 4.7 15 86.6 84.4 40 
25 1.7 86.1 7.6 6 67.9 6\.0 4.3 25 \.0 97.5 4.3 15 89.1 85.7 3.8 
30 1.2 80.2 5.2 3 69.1 62.5 4.3 30 1.1 98.5 4.3 15 90.4 86.7 3.7 

/);,llribriliol/ = BII .11.3.1667) tip) = 0.24 Di.llnbll/;Ol/ = ClO.2) tip) = 0.2 

5 \.6 83.8 7.6 9 59.3 65.8 6.6 5 2.4 116.8 12.5 17 67.7 100.1 11.0 
10 1.1 91.6 6.1 14 74.1 72.4 5.2 10 1.1 113.7 7.6 II 88.9 99.0 4.2 
15 1.1 95.3 5.6 17 80.8 76.9 4.5 15 \.1 105.8 5.1 18 95.8 99.1 2.6 
20 1.2 99.7 5.9 19 85.3 79.2 3.7 20 \.0 [03.6 3.2 19 98.6 99.4 1.7 
25 1.2 101.9 5.9 15 87.7 81.2 3.4 25 \.0 101.6 2.1 20 99.4 99.5 1.3 
30 1.0 99.2 4.5 17 89.7 82.9 3.1 30 \.0 100.9 1.3 19 99.9 99.6 1.\ 

Oi.llribrlliol/ = Brn.lI. 1<;.(1) £(p) = 0.24 OiJlribll/iOIl = B(O.1905. 1.0) £(pJ = O.ln 

5 2.2 115.0 11.2 14 71.8 92.8 10.8 5 2.1 5 \.4 6.6 0 35. I 35.9 3.5 
10 1.1 110.6 6.7 15 89.7 93.9 4.2 10 1.7 58.9 7.0 2 42.3 39.8 2.6 
15 1.2 109.3 5.7 19 95.9 95.6 2.7 15 1.2 57.0 ,U 0 46.0 42.2 2.6 
20 1.0 103.8 3.5 20 981 96.6 2.0 20 \.4 61.3 5.6 2 48.5 44.0 2.7 
25 1.0 )02.6 2.8 20 99.1 97.3 1.6 25 1.3 63.8 5.7 2 5 \.2 45.7 2.8 
30 1.0 101.3 1.9 18 99.5 97.7 1.3 30 1.7 69.2 7.1 4 52.9 47.0 2.9 

J)j.\lri/mliol/ =UIO. 0.48) £(P) = 0.24 D;Jlri/mliOI/ = B(I.O. 5.25) E(p) = O./n 
5 1.8 99,5 9.4 18 67.0 80.4 9.6 5 2.4 79.2 10.2 10 46.5 63.2 9.6 

10 \.1 98.5 6.2 19 81.3 82.3 5.1 10 1.4 89.2 8.1 9 64.0 67.5 4.5 
15 1.0 99.2 5.0 18 87.2 84.8 4.0 15 \.6 101.0 9.2 16 73.4 71.8 3.5 
20 1.0 99.8 4.5 20 90.3 86.6 3.3 20 \.\ 98.5 7.6 18 79.2 75.0 2.9 
25 1.0 99.3 4.0 20 92.1 87.9 2.8 25 1.0 97.7 5.6 17 83.0 77.4 2.9 
30 \.0 99.3 3.6 18 93.2 89.0 2.5 30 1.1 99.1 5.5 18 85.7 79.3 2.9 

f)i.I·lribl/li" " =OO.24} f:..·IPJ = 0.24 Di.l'tri/nl/;ol( = B(4.0. 21.0J £(p) = 0.16 

5 2.2 122.4 12.0 14 75.5 102.0 7.2 5 3.4 110.0 14.1 19 55.4 87.0 13.2 
10 I.l 111.0 6.4 9 93.5 100.4 3.2 10 1.3 108.8 8.7 18 77.9 90.0 5.8 
15 \.0 106.9 4.3 14 98.2 100.2 2.2 15 \.1 110.3 7.2 15 87.7 9\.6 4.4 
20 1.0 102.7 2.5 20 99.7 100.3 1.6 20 \.0 107.6 5.6 16 92.6 92.9 3.6 
25 1.0 100.9 1.4 20 99.9 100.2 l.2 25 1.0 106.1 4.8 19 95.3 93.9 3.1 
30 1.0 100.2 0.6 19 99.9 100.1 1.1 30 1.0 104.7 4.2 19 96.8 94.7 2.6 

Oi.lfrjblllirlll = B(O.25. I.OJ f:..'(p) = (1.2 /)jslrj/)/(Iiol/ = UfO. 0.32 J E:;{fJ) = O.I!) 

5 1.5 56.7 5.7 0 43.3 43. I 5.6 5 3.0 97.8 12.3 17 53.5 77.4 10.5 
10 1.5 67.0 6.3 I 51.9 48.0 5.4 10 1.2 986 7.9 18 72.1 80.0 4.9 
15 1.3 69.0 5.7 I 55.8 50.9 5.4 15 J.2 101.1 6.9 19 80.6 82.3 3.6 
20 1.3 72.0 5.6 2 59.3 53.3 5.4 20 1.0 98.3 5.4 19 84.6 83.8 3.0 
25 1.3 7.U 6.0 2 61.5 55.1 5.4 25 1.0 98.5 4.9 18 87.4 85.0 2.9 
30 1.6 80.2 7.2 5 63.4 56.6 5.3 30 1.0 98.8 4.6 18 89.2 86.0 2.8 

J)j.\ rri/lIIli"/f = BII.O. 4.0) E:;(P} = 0.2 Di.\lriblltion = CrO.16J £Ipi = 0.16 

5 2.1 87.6 8.7 12 55.5 66.8 7.0 5 3.3 118.2 14.6 16 58.9 100.7 10.0 
10 J.5 97.0 8.3 16 72. , 72.5 4.8 10 1.2 114.6 8.5 15 83.2 99.9 4.8 
15 1.4 IOU 7.8 18 79.8 79.5 4.1 15 I.l J 12.5 6.6 9 93.2 100.3 2.9 
20 1.0 98.8 5.6 20 84.2 79.2 3.6 20 1.0 107.7 4.8 19 96.8 100.0 2.0 
25 1.1 100.5 5.4 20 87.3 81.3 3.3 25 1.0 105.0 3.6 18 99.0 100.1 1.5 
30 1.0 99.4 4.7 19 89.1 83.0 3.0 30 1.0 102.6 2.5 18 99.4 100.0 1.3 

IJi.l'lribllriol/ = 8(4.0, In.O) ElpJ "" (1.2 DiJrribilljo/l = BWI3M, 1.0) £(P) = 0.12 

5 2.n 110.7 12.2 16 64.8 89.6 11.4 5 1.8 36.5 5.3 0 25.5 26.3 5.3 
10 1.1 105.9 7.1 19 83. I 89.4 5.0 10 1.4 44.2 5.5 I 32.2 30.2 5.4 
15 1.0 105.9 5.8 18 91.4 91.6 3.5 15 1.2 46.0 4.7 0 36.1 32.6 5.7 
20 1.0 104.9 4.6 17 94.9 93.1 3.0 20 1.2 49.3 4.9 I 39.0 34.5 6.1 
25 1.0 103.2 3.7 18 96.8 94.3 2.6 25 1.6 50.4 5.0 I 40.3 35.9 6.3 
30 1.0 102.1 2.8 18 98.0 99.0 2.2 30 1.2 51.7 5.0 I 41.5 370 6.3 
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TABU, 4. Continued. 

k NJ se(N.,l 
Cover­

age S NS>I se(N SM ) k NJ se(N.I) 
Cover­

age S N", se(N,,,l 

Distriburion == 8(/.0, 7.333) £(p) == 0.12 Distribttliofl == 811 .0, /5.6667) £1(1) == 0.06 

5 2.7 74.4 10.5 8 39.3 59.0 9.7 5 3.4 50.8 9.8 0 23.0 47.1 Il.l 
10 1.5 84.9 8.8 5 57.0 64.0 6.6 10 2.2 74.7 11.6 8 38.2 54.0 8.6 
15 1.3 90.9 7.8 10 66.7 67.9 6.2 15 1.6 82.9 10.0 9 49.3 60.0 8.0 
20 1.0 90.0 6.1 12 72.8 70.6 6.2 20 1.5 87.7 9.6 9 56.3 62.9 7.2 
25 1.2 97.6 6.9 18 77.7 73.4 5.2 25 1.6 92.7 9.9 II 61.5 65.1 6.9 
30 I.J 98.1 6.1 19 81.2 75.7 4.8 30 1.3 88.9 7.9 10 65,1 66.5 6.6 

Distriburiofl == 8(3.0, 22.0) £(p) = 0./2 Distriburion = 813.0, 47.0) £(p) = 0.06 

5 3.3 932 l3.0 17 45.0 80.1 18.3 5 3.6 61.0 10.9 3 24,5 85,0 52.6 
10 1.7 104.7 11.1 16 64.6 81.6 8.7 10 2.6 92.6 14.4 18 41.8 81.2 20.7 
15 l.J 108.1 9.0 17 76.6 84.7 6.6 15 1.9 98.6 12,2 20 54.1 79,9 9.6 
20 1.I 105.8 7.0 19 83.5 86.6 5.0 20 1.8 108.5 12.4 17 63,5 82.6 8.4 
25 1,0 104.3 5.9 18 87,8 88,1 4.7 25 1.4 1()4. 7 9.7 18 70.1 83.5 7.4 
30 1.0 t04.5 5.4 18 91.0 89.4 4.0 30 1.2 106.3 10.5 17 75,5 84.8 60 

l)islributiOfl = UW 0.24) £(p) = 0.12 DistrihuliOfl = UfO, 0./2) £(p) = 0,(J6 

5 3.5 92.2 13.2. 15 43,9 79.2 16.2 5 3.8 61.8 11.1 4 24.6 980 45.1 
10 1.7 101.0 10.5 18 64.2 80.9 10.0 10 2.6 94.7 14.5 17 42.2 83.0 14.8 
15 1.2 101.0 8.0 18 74.6 81.8 6.2 15 1.9 98.3 12.3 l8 54.0 80,9 9.7 
20 1.3 105,3 7.5 18 81.2 83.5 4.3 20 l.5 97.1 10.0 12 62.0 79,9 8,1 
25 1.2 103.2 6.6 18 84.8 84.7 3.8 25 1.2 96.3 8.1 16 69.0 80.9 6.4 
30 1.1 101.2 5.5 18 87.4 85.7 3.3 30 1.1 98.0 7.5 18 73.1 81.3 5.5 

ViSiribution == erO.12) £(p) == 0./2 Distribution = C(O.06) £(p) = 0.06 
5 3.8 110,6 14.9 17 48.6 111.8 33.4 5 3.9 68.4 11.8 6 26.7 122.5 65.8 

10 1.8 119.7 11.4 12 73.3 101.6 13.5 10 2.6 103.8 15.3 18 45.5 101.6 22.4 
15 1.2 J 14.9 8.3 12 85.8 99,8 7.1 15 1.8 106.3 12.3 16 59,3 96.7 13.0 
20 1.0 109.2 6,0 13 91.7 99.2 5,6 20 1.6 114.4 11.6 15 70.1 98.6 11.1 
25 1.0 107.3 5.2 15 95.7 99.5 4.5 25 1.2 I 11.5 9.0 J7 77.6 98.3 7.9 
30 1.0 105.9 4.1 19 97,9 99.6 3.6 30 1.0 111.5 7.7 17 83,4 98.7 6.5 

DiSlributiofl = 8(1.0, 1O./J /) £(p) == 0.09 Distribuliofl = BII .0, 24.0) £(p) = 0,04 
5 3. J 69.3 11.0 8 33.2 64.5 25.5 5 3.2 40.2 8.4 0 17.5 44.3 21.0 

10 1.9 89.5 11.3 10 51.4 66.1 11.4 10 2.4 65,7 11.5 6 29.4 58.3 27.8 
15 1.4 90.1 8,9 l3 60,8 67.5 8.7 15 2.1 79.2 12.1 10 39.0 59,1 13.5 
~O \.4 94.5 8.6 11 67.1 69,5 7.4 20 2.2 90.5 13.3 J3 45.8 60.9 11.4 
25 1.2 94.8 7.5 l3 71.9 71.6 6.8 25 1.8 89.2 11.4 14 51.6 62.8 10,3 
30 1.3 97.6 8.0 14 75, I 73.1 6.5 30 1.6 91.1 10.5 II 56.5 64.2 8,7 

Disrribulion = B(9.0, 91.0) £(p) = 0.09 Distriburion = 8(2.0,48,0) £(p) = 0.04 
5 3.8 88.3 13.3 17 37.2 110.5 48.5 5 3.4 44,3 9.1 0 17.7 66,9 31.8 

10 2.3 112,0 [4,6 16 58,6 92.7 12.4 10 2,7 72.2 12.9 8 30.7 67.3 23,1 
15 1.4 111.3 10.3 17 73.2 93.4 B.8 15 2.2 80.2 12.4 12 40,3 67.6 12.5 
20 1.2 112.4 B.4 15 B2,4 94.3 7.0 20 1.8 89.8 11.5 13 4B.8 71.1 10.3 
25 1.0 112.6 7.2 10 88.8 95.5 5.3 25 1.6 92.2 10.6 II 55.6 73.7 B.7 
30 1.0 112.0 6.7 12 92.4 96.1 4.4 30 1.5 9B,3 10.4 13 61.8 75,2 7.5 

Dis·trib"rion == UfO, 0./8) £(p) == 0.09 Disrribur;on = UrO, 0.08) £(p) == 0.04 
5 3.7 79.1 12.6 12 34.2 84.2 22.9 5 3.4 43,1 8.9 0 17.5 72.3 46,0 

10 2.4 105.4 14,4 [8 54. [ 7B.4 10.5 10 2.3 68.6 11.6 8 30.2 76.5 21.9 
15 1.3 985 8,8 \4 66.7 80.0 8,0 15 2.4 89.4 14.0 17 41.4 77.6 14.8 
20 1.3 102.4 8.6 17 74.0 81.4 6.3 20 2.\ 98,2 13.8 15 49.7 78.3 11.1 
25 I.1 101.1 6.9 20 79,4 83.1 5.7 25 1.6 96.1 11.6 13 56,3 77.7 8.3 
30 1.0 99.8 6.2 20 84.4 83.8 5.0 30 1.5 97.8 10.4 17 62,5 79.0 5.9 

Dislribution == C(O.09) £(p) = 0.09 Distribution == C(0.04) £Ip) = 0.G4 
5 3.9 94.5 14.0 18 38.7 117.l 34.2 5 3.5 48.2 96 0 18.5 104.3 41.2 

JO 2.5 123.4 16.2 18 60.9 104.7 15.2 10 2,6 82.7 13.8 13 33.3 102.5 34.0 
[5 1.5 117.1 to.8 14 75.6 101,2 9.9 15 2.5 107.6 16.1 20 45.8 101.8 18.1 
20 1.1 115.6 8.4 10 84.7 IOU 6.6 20 2,2 116.8 15.4 17 55.9 102.0 14.1 
25 1.0 111.6 6,9 12 89,9 100,4 4.7 25 J.8 115.2 13,5 [7 63.6 98.6 12.4 
30 1.0 I 11.1 6.0 l3 94.0 100.5 3.3 30 1.7 118.9 13.1 14 70.2 98.0 10,2 

have E(p) ~ 0.10. Failure to achieve this will seriouSly and almost withoul exception this only occurs when 

compromise the usefulness of the study. S ~ 90 (thaI' is. 90% of the population had been seen). 
In 96.3% of Ihe cases the objective procedure ar- When N.l ~ S. it was always the case that NJ2 ~ S ~ 

rived at a decision for k. However, in 119 of these NJ " so that it was sufficient to take NJ =" N.ll , which 
cases NJ was ~S. All of these cases were examined always provided a good estimate in these cases. We 
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concluded that this situation of the selection procedure 
choosing N.r < S does not constitute a problem be­
cause it seems only to occur with very good data 
wherein either S or N.I. is a good estimator. 

By examining Table 4 it is seen that NJ is quite 
robust. For those distributions examined it only per­
forms poorly for the B(er, I) type. But for these dis­
tributions of capture probabilities no estimators ex­
amined (Burnham and Overton 1969) were found to 
have good properties. It is also seen that the standard 
error of NI is of similar magnitude to that of N~'I' 

The order of the jac kknife chosen by this procedure 
is seen to vary. The chief factors appear to be the 
number of trapping occasions and the average capture 
probability. At t 5, k may easily be 2, 3, or 4. But;0 

at t 10, k is probably 1, 2 or 3.;0 

The coverage of N by the approximate 95% confi­
dence intervals varied, and was not always good. Ta­
ble 4 indicates that the nominal confidence level will 
not be achieved if the absolute value of the bias of NJ 

is as large or larger than the standard error of NJ . 

Often this is not the case and then the true coverage 
of N appears to be 70% or more. In general, ignoring 
the B(et, r) distributions, the confidence interval cov­
erage appears to be 50% or better in this simulation 
study. 

Most estimators do well under particular circum­
stances. For example, NSII performs well if capture 
probabilities are constant over individuals. However, 
when capture probabilities vary it is apparent from 
Table 4 that NSII has a consistently negative bias which 
may be quite large. The jackknife estimator is often 
biased but this bias may be either positive or negative; 
often NJ tends not to have a large absolute bias. In 
fact, when the results in Table 4 for N.I and NSIf are 
averaged over all distributions (28 of them) except the 
B(a, I) type the results given in Table 5 show NJ to 
perform quite well. 

A 11 improved selection procedure 

The stopping rule for selection of an esti mator as 
given above was used for the simulation study and for 
application to some real data, including Carothers' 
(1973a) study on a real population (of taxicabs) with 
known N. As a result of these studies we suggest the 
following as an improved estimation procedure. (It 
was not possible to re-do the simulation study using 
this new procedure.) 

Compute the test statistics T, and their two-sided 
significance levels PI' Find the first index k such that 
Pk > 0.05. If k ;0 I, take N.l 1 as the estimator of N. 
If k > I. then compute an interpolated estimator be­

tween N.I.k-' and N Jk • as N J cN Jk + (1 - cIN J . k ­;0 h 

where c;o (0.05 - Pk-,)/(Pk - Pk - t). This interpo­
lated estimator is still a linear combination of (he 
capture frequencies. say N.!;o 1 d;f" with coeffi­
cients d, = ca ik + (1 - c)al. k-" The standard error 
of NJ is e.qimated by 

TABLE 5. Average values of NJ and NSlI from aU distributions 
of Table 4. except the B(a, 1) type. 

Average NJ Average NSlI 

5 84.2 84.4 
10 97.6 82.9 
15 99.7 83.9 
20 102.2 85.2 
25 101.6 86.5 
30 101.7 88.4 

se(N.1) (i (d,)2fj N,)t:2.;0 ­

1=1 

This interpolated estimator smooths the otherwise dis­
crete nature of choosing exactly one of the NJ. and 
seems to be an improvement over the non-interpolated 
procedure. 

When applied to Edwards and Eberhardt's (1967) 
data we have k = 3, c 0.0476, and the interpolated;0 

jackknife coefficients are d t = 2.873, d 2 = 0.0907, d" ;0 

1.033 while d. through dIM are all L The resultant es­
timate is NJ ;0 142 (true N = 135) with an estimated 
standard error of 15.2. 

Testing Jor lime variation in 
cap lUre probabiliries 

Three mathematical assumptions are basic to this 
model for capture-recapture studies: I) closure, 2) in­
dependence of caplures over individuals and occa­
sions (which we can consider for convenience as days, 
and 3) individual capture probabilities are constant 
during trapping. Given the independence assumption 
we present some tests for variation in individual cap­
ture probabilities. First, we give a general test of the 
null hypothesis Hu:pl' = Pl. j ;0 I, ... , S; i.e., all 
captured individuals have constant captu re probabili­
ties over time but capture probabilities may vary 
among animals. Then a more specific test is suggested 
which is sensitive to behavioral variation, including 
failure of closure. 

A general lest.-Let the individuals which have 
been captured at least once be indexed from I through 
S. Define Zki as the number of individuals captured on 
day i that were captured exactly k total (imes. The Zk' 

can be expressed analytically as a function of the basic 
data Xji; doing so shows Z~, is a sum over fk indepen­
dent random variables. To compute any given Zk'. first 
determine (he subset of animals caught exactly k 
times. then count how many of them were caught on 
day i. We note that 

nj = LI 

Zkl total captures on day i.;0 

k=1 

A test statistic for the null hypothesis of no time 
variation in capture probabilities is 
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(~ee Burnham 1972, Burnham and Overton 1978). Un· 
der H". thi~ ~tati~tic is approximately a central chi­
~quare variable with t - I degrees of freedom. Con­
sequently, HI' is rejected for large values of x; in this 
case one is concluding that the capture probabilities 
of some animals changed during the study. 

This approach to testing the hypothesis that capture 
probabilities do not change is based on a number of 
assumptions. [f no one assumption stands out as 
weaker or more doubtful than the others, then this test 
constitutes a general test of the conformity of the data 
to our model. 

A .Ipecific 11'.1 I ./()/. hehUl'ior chlHlges illcilldiliK fuil­
IIrl! (~r c/o.llIrl! .-A more specific test is suggested be­
low as (L suitable test for closure. If animals are en­
tering or leaving the population during trapping they 
will have zero capture probabilities during some initial 
or terminal part of the trapping period. We would then 
expect the period of time between first and last capture 
for such individuals to be less, on the average, than 
jt would be under the closure assumption. The specific 
alternatives to H" to which the following test is sen­
sitive include those like p,; = 0 for i = I, ... , r or 
p,; = 0 for i = s + I .... , t for r < s, while Pl, = p, 
for i = r + I, ... , s. 

For all animals captured at least twice, buI nol more 
than t - I times, define WI as the first day of capture 
and V, as the last day of capture. Then I ,.,; WJ < VI 
"" t and defining QJ = VJ - W j , we have QJ is in the 
range Yi - I to t - I. where y! is the number of times 
the j-th animal is captured. Conditional on y, = k, the 
expected value of Qj is 

I 
k - I

E(Q, y, = k) = --(t + I).
k + I 

If there is a failure of closure, we expect 

EtQdYj=k)<~: :(t+ I) 

for some animals caught at least twice. 
To test this hypothesis, first determine Q, for all 

animals caught between 2 and t - I times inclusive. 
Group the Q, according to capture frequencies, so 
there arc fk values of Q for those an imals caught k 
times. Then the average value of Q from each fre­
quency group is an estimate of EtQil Yi = k): let this 
average be represented by E(Q Ik}. An overall test 
statistic of H" which is sensitive to behavioral changes 
in capwre probabilities is 

:f ttQjk) - ~(t + I) 

[f
z= ~ k+ I . 

2(t - k)tk - (Ht + I)JII2 
k~1 (k + 2)(t + 1)2f"k 

This statistic. z. is approximately a standard normal 
random variable under the null hypothesis. The ap­
proximation should be excellent if the sum f1 + ... + 
fl-l is larger than 20. The actual test procedure i~ 

one-sided: specifically. reject the null hypothesis at 
the 5% level of significance if z < -1.645 occurs. 

E:.xurnples.-It would be too lengthy to give de­
tailed examples of all steps of these tests including 
the basic input data (the Zk' or the Q, values). We 
will give the results of some applications. 

From Edwards and Eberhardt t 1967) we can easily 
compute 

2:IK (n, - i'l)2 = 391.77, 
i=1 

f f'U-)(1 -~) '= 6.67. 
'~I t l 

and hence the omnibus chi square test statistic for time 
variation in capture probabilities is 55.5 with 17 df(t '= 

18). Thus, there is clear evidence of time variation in 
the capture probabilities of this study (P < .001). Giv­
en the true population size, it is not difficult to show 
there is also evidence of considerable heterogeneity 
(this laller point is difficult to show without utilizing 
the known N). Under these circumstances we do not 
know if the interpolated jackknife estimator (N j = 
142) is a fluke, or if the procedure is not sensitive to 
the time variation. There is evidence that NJ is robust 
to time variation in capture probabilities provided that 
closure holds (Burnham 1972, Otis et aJ. (978). 

The overall "closure" test applied to Edwards and 
Eberhardt's data gave a test value ofz = -2.132 (P = 

.0165). This demonstrates the test is not ju~t sensitive 
to the closure assumption failing: rather it is sensitive 
to certain types of alternatives to P,. = p;. In particu­
lar, time trends in capture probabilities can cause re­
jection. [n this example the average capture probabil­
ities decreased in the second 9 d of trapping. 

AppliCl/tioli (() estillw/ill): 

.lpecil!.1 IIl11l1bers 

The procedure presented here can also be u~ed to 
estimate the number of species of a given taxonomic 
group in a community. There is a simple analogy be­
tween our captu re-recapture model and the species 
estimation problem. Let N be the number of species 
in the community. There will be differing numbers of 
individuals of each species, and different species may 
have differing behaviors. For those reasons we would 
expect that different species do not have equal capture 
probabilities. Rather, a model to represent the cap­
tures of these species (making no distinction between 
individuals of the same species) should allow different 
capture probabilities for each species. 

If sampling to estimate the number of species has 
a design with t identified units of equal effort, the for­
mulae and procedures previously discussed are appJi­
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cable. In ~o doing the basic data are the frequencies 
of encounter with the species. That is. in this appli­
cation one interpret~ f, as the number of species en­
countered exactly i times in the various samples. Note 
that an encounter occurs on the i-th sample if one or 
more individuals of that species is captured (i.e., lhe 
number of individuals seen for each species is not rel­
evant for estimating numbers of species). 

Most existing attempts to estimate species numbers 
are based on modeling the statistical distribution of 
these frequency data (see e.g .. Engen 1974). Hence. 
such methods are parametric, relying on a panicular 
parametric model. In many such models there is no 
concept of the number of trapping occasions. This 
arises because oflen the number of capture attempts 
(e.g .. sweeps with an insect collection net) is both 
large and may not even be recorded. Our model can 
fit this situation by taking the limiting values of the 
coefficients a'k and a,k as t becomes infinite. Such a 
limit exists: in fact it is 

1\1 = S + ~ (_I)'~I(k)f.Ik ~ . 1\ 

1 I I 

where (~) is the binomial coefficient. <k')/(/k - il/i'). 

The formula for the a,~ v.hen t becomes infinite is 

l-I)I+'(~) + l. l. ,k1= 

I j> k. 

As all example we use a sel of data on insects from 
Mehninick (1964) (also see Engen 1974 who analyzed 
these dala), where S = 124. The first five frequencies, 
in order. are 50. 20. I J, 6, 5. Using formulae for N.'k' 
;eINJlJ <lnd the selection procedure with the above 
formula ror a,k we computed the jackknife estimator 
of N for these data. Basic results are given in Table 
6. Without computing Ihe interpolated version of N,I 
we would take k = 1, hence N.• = 204 (~17.3). Using 
the inlerpol(lted selection procedure we have c = 

D.noS. hence N,I = (0.665)(104) + (0335)( 174) = 194 
The corresponding coefficients b, are d, = 2.665. d~ = 

D.335 and the rest of the d, are all I. Using these d,. 
[he standard error of N., is estimated to be 14.7. An 
approximate 9Y;,; confidence interval On the number 
of insects in lhi .... sampled community is 194 ~ 

t 1.90)( 14.7) or 165 to 223. 

DISCuSSION 

We h<lve rresented a model for captLIre-recaptu re 
stud ie, on clo<o;ed populations which incorporates het­
erogeneity of capture probabilities. The jackknife es­
timator i, shown to be robust when capture probabil­
itie~ vary among individuals. III comparison. com monly 
used estima(Or~ are negatively biased in this ~ituation. 

We arplied NI 10 the data reported by Carothers 
(19730). wherein the true value of N was known. The 

T i\.81.E 6. Application of the jackknife 10 estimate 10lal 
species of insects from Mehninick's (1964) data. See text 
for funher explanation. 

k NJ• se(NJk) T~ p. 

I 174 10.0 3.51 0.0004 
2 ~04 17.3 1.78 0.0750 
) 225 27.2 0.93 0.3520 
4 :!42 42.7 0.58 0.5620 
5 259 68.1 

results supported our conclusions above. (Because 
Carothers gi ves the capture frequencies the interested 
reader can also apply NJ to Carothers' data and com­
pare the resul ts to esti mators he computes. Alterna­
tively, the results of computing N.) for these data are 
available from lhe authors.) Finally, we showed that 
our model and estimator are appropriate for estimating 
species numbers. . 

Tests of the assumption of no time variation in in­
dividual capture probabilities have also been given. 
and they appear to perform satisfactorilY. We have 
no!. however. presented any test for heterogeneity it­
self. This is deliberate; the scope of the paper has been 
limited to this one model and results derived there­
under. However. we believe any comprehensive anal­
ysis of livetrapping data should tesl for a variety of 
possible variations in capture probabilities due to time. 
behavior and heterogeneity (and combinations of 
these). The only comprehensive works along these 
lines we know of are Pollock (1974) and Otis et al. 
(l978). 

We also do not discuss study design features which 
can serve to eliminate the biasing effects of hetero­
geneity. A particularly useful device is to use quite 
different capture methods on each different occasion. 
Often this will allow one to safely assume marked and 
unmarked animals have the same average capture 
probability. But application of this idea is limited in 
that one cannot usually find five (or more) truly dif­
ferent capture methods. Where numerous recapture 
occasions are required to accumulate sufficient data. 
the investigator usually must rely on one method of 
livetrapping. and hence heterogeneity of capture prob­
abilities may be unavoidable. The jackknife estimator 
presented here is especially appropriate for use in the 
typical small-mammal study which uses a fixed grid of 
!ivetraps. and daily trapping on five or more consec­
ulive days. For such sludies, the jackknife estimalor 
will often be more reliable than estimators, such a~ 

the SchnabeL which assumes equal capture probabil­
ities for all ani mals. 
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