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Abstract. The technique of estimating wildlife population size and density using the belt or 
line-transect sampling method has been used in many past projects, such as the estimation of density 
of waterfowl nesting sites in marshes, and is being used currently in such areas as the assessment 
of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line
transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathe
matical framework to a line-transect estimator based upon a log-linear model approach. 
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INTRODUCTION 

Let a region of known area A contain an unknown 
number, N A , of animals. Let a rectangular strip of 
length L and width 2w be placed at random within 
the area A. The transect strip itself has area 2Lw 
and contains an unknown number, N, of animals. 
An observer walks along the center line of the tran
sect strip (for a distance of L miles) and records n, 
the number of animals observed, and ZI> Z2' ... , Zn, 
the right-angle or perpendicular distances of the ob
served animals from the center line of the transect. 
(It will be immaterial whether an animal is seen to 
the left or the right of the center line, so that dis
tances are absolute and 0,,;; Zj ,,;; w for j = I, 2, 
... , n. Animals seen beyond the boundaries of the 
transect strip are not recorded.) 

Based on the data collected, an estimator N of N 
is constructed, and then an estimator NA of N A is 
given by NA = (A/2Lw)N. If D is the density of ani
mals in the region, a simple estimate of D is of the 
form D = N/2Lw. 

The totality of assumptions made in this article fol
lows exactly the treatment of Burnham and Ander
son (1976). The reader may wish to refer to that paper 
as well as some of the other references listed on line
transect sampling. The main assumption is that ani
mals are independently and uniformly distributed over 
the region (and hence throughout the transect strip). 
Finally, we remark that the term "animals" is being 
used in a very loose sense, since the observer may be 
counting almost anything that meets the assumptions 
given in Burnham and Anderson (1976), such as big 
game animals, plants, birds, waterfowl nests, winter
killed deer, etc. 
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By way of example, Anderson and Pospahala (1970) 
presented data on waterfowl nests gathered on the 
Monte Vista National Wildlife Refuge, Colorado, 
during 1967-1968. Approximately A = 4,047 hectares 
of the refuge were sampled by the line-transect meth
od. Transect strips 4.88 m wide were conducted for 
a total length of 2,574.4 km. Thus L = 2,574.4 km and 
w = 2.44 m. 

A grand total of n = 534 waterfowl nests were ob
served within the transect strips. Perpendicular dis
tances were measured and the data were grouped as 
follows. The interval [0,8] was partitioned into sub
intervals [0,1], [I,2J, ... , [7,8]. The number of class 
counts for these intervals (in order) were 74, 73, 79, 
66, 78, 58, 52, 54 respectively. Note that the data 
tend to decay or drop off away from the center line 
of the transect strip. This example and other similar 
data sets lead to the following general formulation. 

Under the Burnham and Anderson (1976) frame
work (see also Gates et al. [1968]), there is a func
tion g(x) which quantifies the increasing difficulty of 
seeing animals which are farther and farther away 
from the center line of the transect. More precisely, 
g(x) is given by 

g(x) = Pr	 (observing an animal Iits perpendicular 
distance from center line is x), 0,,;; x";; X. 

It is assumed that g(x) is monotone nonincreasing 
over [O,w], that g(x) is a positive, continuous funtion, 
and furthermore that g(O) = 1. 

Burnham and Anderson (1976) show that the right
angle distance measurements Z[, Z2, ... , Zn may be 
regarded as independent, identically distributed ran
dom variables with (common) probability density 
function f(z) given by 

fez) = g(z)l/Lw, 0 ,,;; z ,,;; w, 
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where 

J.l.w = r g(u)du. 

For a randomly selected animal in the strip, the 
probability that the animal will be observed is g, where 

g = l/w JW g(x)dx == J.l.w/w. 
n 

Another notation for g is Pw = J.l.w/w. Notice also that 
g = E[g()(»), where X is distributed as uniform [O,w). 

Now the following equations lead to natural esti
mates of Nand 0: 

E(n) = NPw = Ng = NJ.l.w/w, 

f(O) = g(O)1J.l.w = IIJ.l.w 
(because g[O) = I by assumption), 

N = wE(n)/J.l.w = wE(n)f(O), 

o = NI2Lw = E(n)/2LJ.l.w = [E(n)f(O»)I2L. 

Thus, as given in Burnham and Anderson (1976), we 
have 

N = wnf(O) and f> = nf(0)/2L. 

In this article, reO) is an estimator of f(O) , the prob
ability density function (pdf) f(z) of Z (observed right
angle distance) evaluated at z = O. 

It should be noted that f(z) is not uniform [O,w). 
but rather f(z) = g(z)/J.l.w. 0 ~ z ~ w, because it refers 
only to animals that are observed. Because f(z) is pro
portional to g(z), and g(z) is nonincreasing, then fez) 
is nonincreasing. This. in turn, implies that f(O) ~ l/w, 
because l/w is the average value of f(z) over rO,w]. 

The method of this paper is to develop an estimate 
g(x) of the function g(x), and hence obtain estimates 
of f(O), g, and J.l.w. The method used is a log-linear 
model approach. Gates et aJ. (1968) study the cen
susing of grouse populations and assume the paramet
ric form g(x) = exp(-h), A> O. Anderson and 
Pospahala (1970) study waterfowl nests and present 
data which is well described by taking g(x) = 
exp[q(x)], with q(x) a quadratic polynomial. Amman 
and Baldwin (1960), in studying woodpeckers, find 
g(x) to be constant. All of these, and other data sets 
we have seen, can be fitted with the model to be pro
posed below. 

THE MODEL AND ESTIMATION 

Assume that g(x) has the exact (or perhaps ap
proximate) analytical form 

g(x) = exp(a + bx + cx2), 0 ~ X ~ w. 

Because g(O) = c' = I by assumption, we take a = O. 
If c = 0 we have the exponential model. If b = 0 we 
have the shape of a half-normal curve. And if b = c = 
owe get g(x) = lover [O,w]. 

The	 rationale for the above model is as follows. 
By the physical nature of the problem, it seems rea

sonable to conjecture that: (I) g(O) = I; (2) g(x) is 
monotone nonincreasing over [O,w]; (3) g(x) is posi
tive; and (4) g(x) has either zero or I inflection point. 
The above model accommodates all of these proper
ties, and gives a form for g(x) that is conceptually 
and analytically simple and convenient. In addition, 
g(x) can be made either concave or convex by proper 
choice of a and b. 

Now, as with the waterfowl nest data of Anderson 
and Pospahala (1970), assume the interval [O,w] has 
been partitioned into k subintervals I I, 12 , ••• , Ik of 
equal width w/k, so that 

I j to - l)w/kjw/kJ, j = I, 2, ... , k. 

Let nj be the number of animals seen in the transect 
strip whose perpendicular distance from the center 
line of the transect falls into Ii> j = 1,2, ... , k. Then 
n = n, + n2 + ... + nk is the total number of animals 
observed in the transect strip, and N = n + (N - n) 
is the total (unknown) number of animals in the tran
sect strip, including both observed and unobserved 
animals. 

The joint distribution of (n" fi2, ... , nk' N - fi) is 
multinomial with parameters Nand p" P2, ... , Pk, Pk+' 
given by 

PJ = gik, j = 1,2, ... , k, 

where gJ = average value of g(x) over IJ (see below), 
and 

Pk+l	 = I - [(g,lk) + (gJk) + ... + (gk/k») 

= I-g. 

Recall that g = (I/w) J: g(x)dx is the average value 

of g(x) over [O,w]. The quantity gJ is defined to be the 
average value of g(x) over 1]0 or 

gj = (length of 1))-1(J I g(X)dX) 
J 

= (W/k)-I(JI) g(X)dX) 

= (k!W)(J'J g(x)dX). 

Then 

(g,/k) + (g2/k) + ... + (gIk) = l/W{t g(x)dx 

+ J g(x)dx + ... 
12 

+ Ilkg(X)dx} 

I/w fnw
g(x)dx = g. 

We may write 

Pr(fi, = "" O2 = n2' , Ok = nJ 
= N!/(n 1!n2 ! nk!N - n!)(g/k)n'(g2/k)", ... 

(gk/k)n'(I - g)N-n, 

and consequently we have nJ distributed marginally as 
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Bi(N ,g/k) , j == 1,2, ... , k. Also n is Bi(N ,g) and N 
n is distributed as Bi(N, I - g). The parameters in the 
distribution of nJ are easily explained. Each of the N 
animals in the transect strip may be thought of as a 
separate, independent trial, with Ilk being the prob
ability that an animal will be in IJ, and gJ being the 
probability that an animal is observed, given that it 
is in I j. Thus the probability that an animal contributes 
to the count nJ is (lIk)gj for j == 1, 2, ... , k. The prob
ability that it goes undetected (or contributes to the 
count N - n) is I-g. 

Now let ~J == [U - I)w/k + jw/k]/2 be the midpoint 
of IJ for j == 1,2, ... , k. By assumption, 

g(tj) == exp(b~j + ca), j = 1,2, ... , k, 

and an estimate of g(~j) is given by 

g(tJ) =n/nl, j == 1,2, ... , k, 

where it has been implicitly assumed that enough data 
has been collected, or the grouping has been done in 
such a way, that each cell count nj is nonzero. (This 
simply gives a histogram-type estimate of g(x) scaled 
so that icOJ == I == g(O). Recall that fez) == g(z)lp.w') 

By assuming that each cell count nj is nonzero, 
we are thus assured that we may form the quantity 
log nJ for each value of j. As the reader will notice, 
this condition is needed in the steps that follow. 

The model assumption can now be written as 

10g(n;lnJ) == btj + ca + Ej, j == 1, 2, ... , k, 

where all Ej are error terms. Because log(n/nl) = 0, 
we work with log(n;lnl) for j == 2,3, ... , k. The error 
terms are assumed to have means of zero, but will 
have nonindependent covariance and correlation 
structure. 

Let X be a strictly positive random variable whose 
mean is p.. Then log X may be expressed as 

log X = Jog p. + [(X - p.)Ip.] - [(X - p.)2/2p.2] 
+ [(X - p.)3/3p.3] - ..•. 

Using this expression we can obtain large sample (or 
asymptotic) means, variances, and covariances of the 
random variables log(njn1), j == 2, 3, ... , k. The rele
vant results are listed below, where the approximation 
gl == 1 has been used appropriately. 

E(nj) == Ngjk, 1 :;:; j :;:; k, 

Var(nJ) == Ng/k[l - (Mk)], 1 :;:; j :;:; k, 

Cov(n\onj) == -NiMjk2, 1 :;:; i ~ j :;:; k, 

E(log nj) == 10g(Ngjk), 1 :;:; j :;:; k, 

Var(log nJ) == (klNgj) - (lIN), 1:;:; j :;:; k, 

Cov(1og nt.1og nj) == -liN, 1 :;:; i ~ j :;:; k, 

E[log(n/n1)] == log(gjg,) == log gj, 2 :;:; j :;:; k, 

Var[Jog(n/n l)] == klN[(l/gJ) + (l/gl)] 
== klN[(l/gj) + I], 2:;:; j :;:; k, 

Cov[log(n1/n1),log(n/nl)] == k/Ngl == kiN, 2:;:; i ~ j :;:; k. 

If we make the identifications YJ == log(n/n l) for 
2:;:;j:;:; k, Y == (Y2 , Y3 , ••• , Yk)', /3 = (b,c)', E == 
(E2' E3' ... , Ek)', and define X to be the (k - I) x 2 
matrix whose jth row is (tJ+llj+,2), then we have the 
linear model 

Y == X/3 + E, 

where E has (k - I) by (k - 1) covariance matrix ~. 

Written out in full, the design matrix X is given by 

X=
 

and the covariance matrix ~ is 

kiN kiN 

kIN kiN 

kiN kIN kIN(;k + 1) 
It is evident that (N/k)~ == A + 11', where 

o o 
lIih o 

o o 

and 1 == (I, 1, ... , I)' E Rk-l. Using a result from 
Rao (1965), we have 

(A + 1/')-1 == A-I - (l + ]'A-I1)-IA-J/l'A-J, 

and after some matrix operations we obtain an ex
pression for the inverse of the covariance matrix ~ as 

g"gk
-)(2 

g3gk
-](2 

(In the above derivation we have used gJ == 1 and 
g == (gJ + g2 + ... + gk)/k in the combined form g2 + 
g3 + ... + gil. == kg - 1.) 

If ~ were known, standard linear models theory 
(e.g., Graybill [1976]) would lead to the estimator 
/3 == (X'~-JX)-IX'~-I Y. The covariance matrix t is 
unknown, but can be estimated. One could take ~I == 
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nl/n l• g. = n./n" ... , gk = nk/n" and for g, use the 
fact that kg ='= 1 +- g. +- +- gk, so that kg = 1 +- g. 
+- ... +- gk = I +- (n. +- +- nk)/n! = I +- (n - n,)/n l = 
n/n" and so g = n/kn,. 

Thus one has the estimator ~ = (X'~ -1 X)-I X'~-l Y. 
It should be mentioned that g. < 6 < ... < gk implies 
X has rank equal to 2. Actually g. < g3 forces the first 
two rows of X to be linearly independent. Thus 
X'~-lX is 2 x 2 and of rank 2, and hence is invertible. 

Once ~ = (b,e)' has been obtained, our model then 
yields an estimate of g(x) as 

g&) = exp(bx +- exZ), 0,,;: x ,,;: w. 

Using this, we can get an estimate of the parameter 

/Lw = Jo
w 

g(x)dx by taking 

P-w = Jo
w 

exp(hx +- ex·)dx. 

After a few manipulations, we have 

/J-w = v=(7T/e~xp( - £,Z/4c) 

{¢[vr=2e(w +- (b/2e»] - (-ct>&1vr=2e)}, 

provided that e < O. Here ct>(.) represents the stan
dard normal cumulative distribution function. Finally, 
we now have the estimates 

N = nwf(O) = nwlfi,... 

and 

b = NI2Lw = nf(O)/2L = nl2Lfi,w. 

EXTENSIONS 

There are several factors which contribute to the 
variation of the estimates Nand 0, and one of these 
is the condition that the covariance matrix ~ is un
known and hence must be estimated. The unknown 
quantities in ~ were gz, g3' ... , gk' We now sug
est several ways in which the weighting matrix ~ may 
be "smoothed," an operation which should reduce 
the variation of the estimates Nand 6. 

One possibility is to fit a quadratic polynomial to 
the original cell counts, that is, use ordinary least 
squares and find Yo, y" Y. to minimize 

k 

S = L [nj - (Yo +- YIgJ +- y.gJZ»)". 
j~l 

Once Yu, y" Y. have been found, we "normalize" 
the quadratic Yo +- y1x +- Y.xz and take as our first
stage estimate of g(x) the quadratic I +- (y,/'Yo)x +
(yz/yo)x·, which clearly takes the value 1 as x = O. 

Then we can form (recall that gJ = midpoint of I;) 

These estimates of gz, g3' ... , gk then go into t to 
give ~, and finally ~ = (XI~-IX)-lX'~-1 Y as before. 
The advantage here should be that ~ becomes less 
variable. 

A second method would be to smooth the cell 
counts themselves before performing any analysis or 
estimation. Let ml , mz, , mk be "smoothed" cell 
counts, and let n" nz, , nk be the unsmoothed 
counts. A typical smoothing operation would he to 
define 

m, = ~n, +- ~nz, 

mz = \6n\ +- \6nz +- Y1n3, 

m3 = Y1n z +- Y3n3 +- Y304' 

mk-I = YlO k_. +- \6nk-l +- \6nk' 

mk = ~nk-I +- ~nk' 

One could then regard ml' m2, ... , mk as the data, or 
cell frequencies and base the estimation of f3 on these 
smoothed counts. In general, smoothing results in re
duced variation but increased bias. 

DISCUSSION 

It may he argued that Nand)) are approximately 
unbiased for large samples. Also, it is conceivable 
that approximate variance expressions may be found 
for the estimators Nand 6 using the delta method 
or Taylor's Series method. However, the more funda
mental method advocated by Burnham and Anderson 
(1976), Overton (1969), and Eberhardt (1968), which 
uses replication of transect lines would seem to be 
more practical and should give reasonable results. For 
an exact treatment of this method, see Burnham and 
Anderson (1976). 
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