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Abstract. The technique of estimating wildlife population size and density using the belt or 
line-transect sampling method has been used in many past projects, such as the estimation of density 
of waterfowl nesting sites in marshes, and is being used currently in such areas as the assessment 
of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line- 
transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathe- 
matical framework to a line-transect estimator based upon a log-linear model approach. 
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INTRODUCTION 

Let a region of known area A contain an unknown 
number, NA, of animals. Let a rectangular strip of 
length L and width 2w be placed at random within 
the area A. The transect strip itself has area 2Lw 
and contains an unknown number, N, of animals. 
An observer walks along the center line of the tran- 
sect strip (for a distance of L miles) and records n, 
the number of animals observed, and Z1, Z2. . * Zn, 

the right-angle or perpendicular distances of the ob- 
served animals from the center line of the transect. 
(It will be immaterial whether an animal is seen to 
the left or the right of the center line, so that dis- 
tances are absolute and 0 Z Z- S w for j - 1, 2, 
. . ., n. Animals seen beyond the boundaries of the 
transect strip are not recorded.) 

Based on the data collected, an estimator & of N 
is constructed, and then an estimator NA of NA is 
given by NA = (A/2Lw)s. If D is the density of ani- 
mals in the region, a simple estimate of D is of the 
form D = N/2Lw. 

The totality of assumptions made in this article fol- 
lows exactly the treatment of Burnham and Ander- 
son (1976). The reader may wish to refer to that paper 
as well as some of the other references listed on line- 
transect sampling. The main assumption is that ani- 
mals are independently and uniformly distributed over 
the region (and hence throughout the transect strip). 
Finally, we remark that the term "animals" is being 
used in a very loose sense, since the observer may be 
counting almost anything that meets the assumptions 
given in Burnham and Anderson (1976), such as big 
game animals, plants, birds, waterfowl nests, winter- 
killed deer, etc. 

I Manuscript received 4 November 1976; accepted 31 May 
1977. 

By way of example, Anderson and Pospahala (1970) 
presented data on waterfowl nests gathered on the 
Monte Vista National Wildlife Refuge, Colorado, 
during 1967-1968. Approximately A = 4,047 hectares 
of the refuge were sampled by the line-transect meth- 
od. Transect strips 4.88 m wide were conducted for 
a total length of 2,574.4 km. Thus L = 2,574.4 km and 
w = 2.44 m. 

A grand total of n = 534 waterfowl nests were ob- 
served within the transect strips. Perpendicular dis- 
tances were measured and the data were grouped as 
follows. The interval [0,8] was partitioned into sub- 
intervals [0,1], [1,2], . [7,8]. The number of class 
counts for these intervals (in order) were 74, 73, 79, 
66, 78, 58, 52, 54 respectively. Note that the data 
tend to decay or drop off away from the center line 
of the transect strip. This example and other similar 
data sets lead to the following general formulation. 

Under the Burnham and Anderson (1976) frame- 
work (see also Gates et al. [1968]), there is a func- 
tion g(x) which quantifies the increasing difficulty of 
seeing animals which are farther and farther away 
from the center line of the transect. More precisely, 
g(x) is given by 

g(x) = Pr (observing an animal I its perpendicular 
distance from center line is x), 0 S x S x. 

It is assumed that g(x) is monotone nonincreasing 
over [Aw], that g(x) is a positive, continuous funtion, 
and furthermore that g(0) = 1. 

Burnham and Anderson (1976) show that the right- 
angle distance measurements Z1, Z2 . . , Zn may be 
regarded as independent, identically distributed ran- 
dom variables with (common) probability density 
function f(z) given by 

f(z) = g(z)/4L, 0 S z S w, 
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where 

w= f g(u)du. 

For a randomly selected animal in the strip, the 
probability that the animal will be observed is g, where 

l/w f g(x)dx = ,/w. 

Another notation for g is Pw = Fkw/w. Notice also that 
= E[g(X)], where X is distributed as uniform [O,w]. 
Now the following equations lead to natural esti- 

mates of N and D: 

E(n) = NP, = Ng= N=,/w, 

f(0) = g(O)4YA= l/tw 

(because g[O] = I by assumption), 

N = wE(n)/tkw = wE(n)f(0), 

D = N/2Lw = E(n)/2Lu = [E(n)f(O)]/2L. 

Thus, as given in Burnham and Anderson (1976), we 
have 

N = wnf(0) and D = nf(0)/2L. 

In this article, f(0) is an estimator of f(0), the prob- 
ability density function (pdf) f(z) of Z (observed right- 
angle distance) evaluated at z = 0. 

It should be noted that f(z) is not uniform [O,w], 
but rather f(z) = g(z)/tw, 0 - z - w, because it refers 
only to animals that are observed. Because f(z) is pro- 
portional to g(z), and g(z) is nonincreasing, then f(z) 
is nonincreasing. This, in turn, implies that f(0) - 1/w, 
because 1/w is the average value of f(z) over [O,w]. 

The method of this paper is to develop an estimate 
g(x) of the function g(x), and hence obtain estimates 
of f(0), g, and tu The method used is a log-linear 
model approach. Gates et al. (1968) study the cen- 
susing of grouse populations and assume the paramet- 
ric form g(x) = exp(-Xx), X > 0. Anderson and 
Pospahala (1970) study waterfowl nests and present 
data which is well described by taking g(x)= 
exp[q(x)], with q(x) a quadratic polynomial. Amman 
and Baldwin (1960), in studying woodpeckers, find 
g(x) to be constant. All of these, and other data sets 
we have seen, can be fitted with the model to be pro- 
posed below. 

THE MODEL AND ESTIMATION 

Assume that g(x) has the exact (or perhaps ap- 
proximate) analytical form 

g(x) = exp(a + bx + cx2), 0 x < w. 

Because g(0) = ea = I by assumption, we take a = 0. 
If c = 0 we have the exponential model. If b = 0 we 
have the shape of a half-normal curve. And if b = c - 
0 we get g(x)- I over [0,w]. 

The rationale for the above model is as follows. 
By the physical nature of the problem, it seems rea- 

sonable to conjecture that: (1) g(0)= 1; (2) g(x) is 
monotone nonincreasing over [O,w]; (3) g(x) is posi- 
tive; and (4) g(x) has either zero or 1 inflection point. 
The above model accommodates all of these proper- 
ties, and gives a form for g(x) that is conceptually 
and analytically simple and convenient. In addition, 
g(x) can be made either concave or convex by proper 
choice of a and b. 

Now, as with the waterfowl nest data of Anderson 
and Pospahala (1970), assume the interval [O,w] has 
been partitioned into k subintervals Ib, 22, Ik of 
equal width w/k, so that 

Ij Vj - 1)w/kjw/k], j = 1, 2, . k. 

Let nj be the number of animals seen in the transect 
strip whose perpendicular distance from the center 
line of the transect falls into Ij, j = 1, 2, . . ., k. Then 
n = n1 + n2 + * + nk is the total number of animals 
observed in the transect strip, and N = n + (N - n) 
is the total (unknown) number of animals in the tran- 
sect strip, including both observed and unobserved 
animals. 

The joint distribution of (fi, n2, . . ., fk, N - fi) is 
multinomial with parameters N and pi, P2,...* Pk. Pk+' 

given by 

p = gj/k, j = 1, 2, k, 

where gj = average value of g(x) over Ij (see below), 
and 

Pk+1 = 1 - [(gl/k) + (g2/k) +--- + (gk/k)] 

= 1 -g 

Recall that g = (11w) f g(x)dx is the average value 

of g(x) over [Ow]. The quantity gj is defined to be the 
average value of g(x) over Ij, or 

gj= (length of IJ)-1( g(x)dx) 

IJ j =(w/k)1(f g(x)dx) 

= (k/w)(f g(x)dx). 

Then 

(gl/k) + (g2/k) + + (g/k) = i/wtf g(x)dx 

+ f g(x)dx + 

f g(x)dx} 
IkI 

= 1/w g(x)dx = 
To 

We may write 

Pr(fil = n1,fi2 = n2.*, k= nk) 

- N!/(nl!n2! . . . nk!N - n!)(gl/k)n1(g2/k)n2... 

(gk/k) k(1 -g)X 

and consequently we have nj distributed marginally as 
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Bi(N,gj/k), j = 1, 2, . . ., k. Also n is Bi(N,g) and N - 
n is distributed as Bi(N,1 - g). The parameters in the 
distribution of nj are easily explained. Each of the N 
animals in the transect strip may be thought of as a 
separate, independent trial, with 1/k being the prob- 
ability that an animal will be in Ij, and gj being the 
probability that an animal is observed, given that it 
is in Ij. Thus the probability that an animal contributes 
to the count nj is (1/k)gj for j = 1, 2, . . ., k. The prob- 
ability that it goes undetected (or contributes to the 
count N - n) is 1 - g. 

Now let ,j = [(O - 1)w/k + jw/k]/2 be the midpoint 
of Ij for j = 1, 2, . . ., k. By assumption, 

g((j) exp(bfj + cfj2), j = 1, 2, . . ., k, 

and an estimate of g(6j) is given by 

g() = nj/n1, j = 1, 2, . k, 

where it has been implicitly assumed that enough data 
has been collected, or the grouping has been done in 
such a way, that each cell count nj is nonzero. (This 
simply gives a histogram-type estimate of g(x) scaled 
so that g(O)5 = 1 = g(O). Recall that f(z) = g(z)/4w.) 

By assuming that each cell count nj is nonzero, 
we are thus assured that we may form the quantity 
log nj for each value of j. As the reader will notice, 
this condition is needed in the steps that follow. 

The model assumption can now be written as 

log(nj/n,) = bgj + cfj2 + Ej, j = 1, 2, . . ., k, 

where all Ej are error terms. Because log(n1/n1) = 0, 
we work with log(nj/n1) for j = 2, 3, . . . , k. The error 
terms are assumed to have means of zero, but will 
have nonindependent covariance and correlation 
structure. 

Let A be a strictly positive random variable whose 
mean is ,u. Then log X may be expressed as 

log X = log + [(X - ,)] - [(X - /1)2/2 g2] 

+ [(X - k)3133] _-. 

Using this expression we can obtain large sample (or 
asymptotic) means, variances, and covariances of the 
random variables log(nj/nl), j = 2, 3, . . ., k. The rele- 
vant results are listed below, where the approximation 

1 has been used appropriately. 

E(nj) = Ngj/k, 1 S j S k, 

Var(nj) = Ngj/k[1 - (gj/k)], 1 j S k, 

Cov(ni,nj) = -Ngigj/k2, 1 S i $4 j S k, 

E(log nj) log(Ngj/k), 1 j r- k, 

Var(log nj) (k/Ngj) - (1/N), I S j - k, 

Cov(log ni,log nj) -1/N, 1 - i $ j S k, 

E[log(nj/n,)] log(gj/g,) log gj, 2 S j - k, 

Var[log(nj/n1)] k/N[(1/gj) + (l/lg)] 
ok/N[(1/gNj) + 1], 2 S j - k, 

Cov[Iog(nj/nj3,jog(nj/n,)] k/Ng, k/N, 2 i =i j k. 

If we make the identifications Yj log(nj/n,) for 
2 - j - k, Y = (Y2, Y3, . . ., Yk)', = (b, c)', e = 

(E2, E3, * . . , Ek)', and define X to be the (k - 1) x 2 
matrix whose jth row is ((j+?14j+12), then we have the 
linear model 

Y X/,3 + E, 

where E has (k - 1) by (k - 1) covariance matrix $ 
Written out in full, the design matrix X is given by 

(2 e2.2 
2 

X~~~ 

and the covariance matrix : is 

k/N(+ I) k/N * k/N 

k/N k/N(3 + I) .. k/N 

k/N k/N k/N g + 1I 

It is evident that (N/k)4 - A + 11 where 

1/92 0 ... Ol 

A 0 1/g3 
... 

0 

and 1 = (1, 1, . . , 1)' E Rk1. Using a result from 
Rao (1965), we have 

(A + ]1 ) -A'- - (1 + 1'AJ-1)'A1J'A', 

and after some matrix operations we obtain an ex- 
pression for the inverse of the covariance matrix : as 

92 r_2 92_3 _2g g9gk 

k 9- kJ k2 **-k2 

-- gg2 g[g - g9 3 - gk 

_ k2 _ _k _ 

Mk2 9kg3 gk [_gkl 

k2 k 2 k k_ 

(In the above derivation we have used I, 1 and 
g= ? g, + *- * + gk)/k in the combined form g2 + 

g3 + + gk-kg - 1.) 
If $ were known, standard linear models theory 

(e.g., Graybill [1976]) would lead to the estimator 
,B = (X' -1X)-'X' -1Y. The covariance matrix t is 
unknown, but can be estimated. One could take g, = 
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n1/n, gn = n2/n1. gk = nk/n1, and for g, use the 
fact that kg- 1 + g2 + + gk, so thatkg= 1 +g2 
+ + gk = 1+ (n2 + + nk)/n I- 1 + (n - n,)/n 
n/ni, and so = n/kn1. 

Thus one has the estimator 3 = (X't-1X)-1X' Y 
It should be mentioned that 62 < 63 < ..<k implies 
X has rank equal to 2. Actually (2 < J3 forces the first 
two rows of X to be linearly independent. Thus 
X4'-X is 2 x 2 and of rank 2, and hence is invertible. 

Once 3 = (b, c)' has been obtained, our model then 
yields an estimate of g(x) as 

g(x) = exp(bx + cx2), 0 S x S w. 

Using this, we can get an estimate of the parameter 

1kw - f g(x)dx by taking 

w= exp(lx + &x2)dx. 
0 

After a few manipulations, we have 

A _ (7/ckXp /4c) 
{f'[-2fc(w + (6/20))] (- b/ -2)}, 

provided that c < 0. Here 4t( ) represents the stan- 
dard normal cumulative distribution function. Finally, 
we now have the estimates 

N = nw (0) =nw/ 

and 

D = N/2Lw = nf(O)/2L = n/2LI2w. 

EXTENSIONS 

There are several factors which contribute to the 
variation of the estimates N and Du, and one of these 
is the condition that the covariance matrix 1 is un- 
known and hence must be estimated. The unknown 
quantities in 1 were g2, g3 . . gk. We now sug- 
est several ways in which the weighting matrix t may 
be "smoothed," an operation which should reduce 
the variation of the estimates N and D1. 

One possibility is to fit a quadratic polynomial to 
the original cell counts, that is, use ordinary least 
squares and find yo, Yi, Y2 to minimize 

k 

S = E [nj - (YO + Yi6 + Y2 j2)]2 
j=1 

Once yo, Py, Y2 have been found, we "normalize" 
the quadratic YO + yIx + y2x2 and take as our first- 

stage estimate of g(x) the quadratic 1 + (y1/y0)x + 
(y2/y0)x2, which clearly takes the value 1 as x = 0. 

Then we can form (recall that fj = midpoint of I) 

2= 1 + 42(Yl/IYO) + A22(Y2/!Yo), 

gk 1 + W(Y1/YO) + k ((Y2/Yo)- 

These estimates of 92, g3, . . ., gk then go into a to 
give $, and finally f8 = (X't-1X)-lX'4-1 Y as before. 
The advantage here should be that t becomes less 
variable. 

A second method would be to smooth the cell 
counts themselves before performing any analysis or 
estimation. Let ml, m2. . . . Mkbe "smoothed" cell 
counts, and let n,, n2, . . ., nk be the unsmoothed 
counts. A typical smoothing operation would be to 
define 

ml = ?/2n, + 1/2n2, 

m2 = '/3n+ + '/3n2 - 1/3n3, 

M3 = 1/3n2 + 1/3n3 + 13n4, 

Mk_- = 1/3n 2 + 1/3nk-I + 1/3nk, 

Mik = 1/2nk- 1 + 1/2nk. 

One could then regard mi, M2, . . ., mk as the data, or 
cell frequencies and base the estimation of f8 on these 
smoothed counts. In general, smoothing results in re- 
duced variation but increased bias. 

DISCUSSION 

It may be argued that N and D1 are approximately 
unbiased for large samples. Also, it is conceivable 
that approximate variance expressions may be found 
for the estimators N and D using the delta method 
or Taylor's Series method. However, the more funda- 
mental method advocated by Burnham and Anderson 
(1976), Overton (1969), and Eberhardt (1968), which 
uses replication of transect lines would seem to be 
more practical and should give reasonable results. For 
an exact treatment of this method, see Burnham and 
Anderson (1976). 
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