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ABSTRACT 

Management of terrestrial carbon fluxes is being proposed 
as a means of increasing the amount of carbon sequestered 
in the terrestrial biosphere. This approach is generally 
viewed only as an interim strategy for the coming decades 
while other longer-term strategies are developed and 
implemented - the most important being the direct 
reduction of carbon emissions. We are concerned that 
the potential for rapid, disturbance-induced losses may 
be much greater than is currently appreciated, especially 
by the decision-making community. Here we wish to: 
(l) highlight the complex and threshold-like nature of 
disturbances - such as fire and drought, as well as the 
erosion associated with each - that could lead to carbon 

losses; (2) note the global extent of ecosystems that are at risk 
of such disturbance-induced carbon losses; and (3) call 
for increased consideration of and research on the mech­
anisms by which large, rapid disturbance-induced losses 
of terrestrial carbon could occur. Our lack of ability as a 
scientific community to predict such ecosystem dynamics 
is precluding the effective consideration of these processes 
into strategies and policies related to carbon manage­
ment and sequestration. Consequently, scientists need to 
do more to improve quantification of these potential 
losses and to integrate them into sound, sustainable policy 
options. 
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Management of terrestrial carbon fluxes is being proposed as 
a means of increasing the amount of carbon sequestered in 
the terrestrial biosphere and thereby slowing the rate of build­
up of atmospheric carbon dioxide and associated global 
warming (lGBP, 1998; U.S. Department of Energy, 1999; 
TPCC, 2000; Follett et aI., 2001). This approach is generally 
viewed only as an interim strategy for the coming decades 
while other longer-term strategies are developed and 
implemented - the most important of the longer-term strategies 
being the direct reduction of carbon emissions (Falkowski 
et aI., 2000). However, for terrestrial carbon sequestration to 
be effective, even as an interim strategy, the net results must 
be considered rather than simply the projC<..'ted gains of a given 
sequestration strategy (Overpeck, 1996; Cao & Woodward, 
1998; IGBP, 1998; Walker et aI., 1999; IPCC, 2000). Many 
strategies proposed initially for terrestrial sequestration were 
not evaluated fully with respect to countervailing losses, i.e. 
carbon losses inherent in the proposed sequestration approach, 
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and consequently the net amount of carbon sequestered 
for many strategies is likely to be much less than originally 
estimated (Schlesinger, 1999, 2000; Walker et al., 1999; 
Schulze et al., 2000). 

Accurate estimation of the net amount of carbon sequestered 
by any given strategy depends not only on factoring in counter­
vailing losses but also on accounting for the potential of large, 
disturbance-induced carbon losses. Climate-induced disturb­
ances such as forest fire and forest dieback, along with the 
associated increase in erosion rates that both can trigger, are 
processes by which large amounts of terrestrial carbon can be 
rapidly lost. These types of carbon losses are likely to become 
more significant due to the increasing probability and magni­
tude of extreme climatic events (Easterling et al., 2000). The 
effects of such climate-induced changes are likely to be exacer­
bated by the increasing intensity and extensiveness of land­
use changes (lPeC, 2000). Climate-induced disturbances in 
conjunction with land use changes could result in large and 
possibly uncontrollable losses in both plant and soil carbon 
pools. Such large disturbance-induced carbon dynamics could 
result in net carbon loss rather than gain from lands being 
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managed for carbon sequestration. Such terrestrial carbon 
losses to the atmosphere could also trigger a positive feedback 
that could amplify global warming (Smith & Shugart, 1993; 
Woodwel1 et al., 1995; Solomon & Kirilenko, 1997; IPCe, 
1998; Houghton et al., 2000). 

Recent assessments of carbon management and sequestra­
tion strategies acknowledge the possibility of these types of 
large, rapid carbon losses, but they generally do not account 
for them adequately. Of particular note is the recent review by 
the Intergovernmental Panel on Climate Change of land use 
alternatives associated with carbon management (lPCC, 
2000). There remains a pervasive underlying paradigm that 
terrestrial soils and biota are in close equilibrium with climate 
(e.g. IPCC, 2000: 190), and that variation in the tracking 
of climate by vegetation can be controlled adaptively by 
management. Although the risk of uncontrolled, disturbance­
induced carbon losses is recognized and incorporated into 
some of the conceptual models of carbon sequestration (e.g. 
IPCe, 2000: 16, 192,256,271), the associated account­
ing alternatives focus primarily on direct human land-use 
changes, seemingly discounting the probabilities of extensive, 
disturbance-induced carbon losses. Quantifying the probability 
and magnitude of such rapid non-equilibrium losses has been 
difficult, but this does not negate their potential importance 
in the global carbon budget and associated carbon manage­
ment and accounting strategies. 

We are concerned that the potential for rapid, disturbance­
induced losses may be much greater than currently appreci­
ated, especially by the decision-making community. Here we 
wish to: (1) highlight the complex and threshold-like nature 
of disturbances that could lead to carbon losses; (2) note the 
global extent of ecosystems that are at risk of such disturbance­
induced carbon losses; and (3) call for increased considera­
tion of and research on the mechanisms by which large, rapid 
disturbance-induced losses of terrestrial carbon could occur. 
Our current inability as a scientific community to predict and 
quantify adequately such global ecosystem dynamics is appar­
ently resulting in ecosystem processes being largely dis­
counted from proposed approaches for carbon management 
and sequestration and associated societal assessments of risk 
and policy. Consequently, scientists need to do more to quantify 
these potential losses more fully and to integrate them into 
sound, sustainable policy options. 

Large, rapid losses of carbon associated with disturbance 
often exhibit complex behaviour and may have nonlinear, 
threshold-like responses. Our lack of ability to understand 
and predict these disturbance-induced responses can result in 
'environmental surprises' (Brown & Postel, 1987; Overpeck, 
1996; Bright, 2000; Camill & Clark, 2000; Rinaldi & Scheffer, 
2000; NAST, 2001). Such threshold-like responses related 
to climate and land use are exemplified by crown fires and 
drought-induced tree mortality, as well as by the changes in 
erosion rates that can accompany both of these. The complex 

nature of these types of responses could lead to large, rapid 
and perhaps uncontrollable carbon losses. 

Here we highlight examples of landscape-scale disturbances 
related to fire and drought in the Jemez Mountains in northern 
New Mexico, United States, during the last 50 years. During 
the la Nina year of 2000, the Cerro Grande Fire burned 
17 000 ha in this mountain range, much of it severely. This 
was part of the roughly 3 million ha that burned in the west­
ern United States that year. The volatilized carbon from much 
of the burned area included all foliage and litter, much of the 
wood, and likely some of the soil organic matter. In addition, 
the loss of ground cover resulting from the fire triggered a 
major increase in soil erosion rates (Johansen et al., 2001), 
probably further increasing site carbon loss (e.g. Bajracharya 
et al., 1998). While some of the carbon post-fire simply may 
have been translocated by erosion ('lateral fluxes of carbon' 
in the terms of IPCC, 2000), a significant amount was likely 
transferred to the atmosphere (Trumbore, 1997). The severity 
of the fire was a consequence of land use practices that 
included fire suppression over the past century, and this 
practice allowed fuels to build up to excessively high levels 
(Swetnam et al., 1999). The interaL"tion of climate and land use 
has also caused rapid landscape-scale changes in the Jemez 
Mountains in association with drought. A severe drought in 
the 1950s produced landscape-scale mortality of ponderosa 
pine (Pinus ponderosa) at the ecotone between the ponderosa 
pine forest and pinon-juniper woodland, shifting the ecotone 
by more than the 2 km in less than 5 years (Allen & Breshears, 
1998). Apparently, the drought also produced extensive 
mortality of the herbaceous understorey, as observed else­
where for the 1950s drought (Herbel et al., 1972); this loss of 
ground cover triggered a transition from low to high erosion 
rates (Wilcox et al., 1996; Davenport et al., 1998). The tree 
mortality was probably exacerbated by the fire suppression of 
the past century, which allowed pinon (P. edulis) and juniper 
(juniperus monosperma) to establish in the ponderosa pine 
understorey prior to the drought. Both pinon and juniper are 
effective at obtaining shallow soil water (Breshears et al., 
1997) and are less sensitive to cavitation under conditions of 
low soil water content (Pockman et al., 1995; Linton et al., 
1998; Pinol & Sala, 2000). Hence, both fire- and drought­
induced changes and associated increases in soil erosion can 
exhibit complex and threshold-like responses to the effects of 
climate and land use in ways that can lead to large, rapid 
carbon losses. 

Large, rapid disturbances that could trigger terrestrial 
carbon losses are increasingly being documented in forests 
globally. The extensive high-latitude forests of Canada 
exhibited a reduction in ecosystem carbon storage during the 
1980s due to large increases in fire and insect disturbances 
(Kurz & Apps, 1999). In the northern temperate zone, 
changes in land use and climate trends have enabled woody 
vegetation to increase in extent, density and productivity, 
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resulting in substantial sequestration of carbon in recent 
decades (Houghton et al., 1999; Pacala et al., 2001), but this 
initial increase in sequestered carbon actually increases the 
potential for carbon Joss through catastrophic crown fire, 
particularly in western forests (Covington et al., 1994), as 
observed in the western United States during 2000. Higher 
tree densities can also exacerbate the extent of tree mortality 
following drought via increased competition (e.g. Fensham & 
Holman, 1999). In tropical forest ecosystems current land use 
patterns are expected to lead to continued net carbon loss 
through a marked increase in wildfire activity and fire suscept­
ibility (Cochrane et al., 1999), in addition to biomass collapse 
of increasingly fragmented tropical forests (Laurance et al., 
1997). Synergies among these processes are even more likely 
to produce complex responses (e.g. Laurance et al., 2000). 

Although these recent studies clearly highlight the 
importance of potential rapid losses of carbon, to date there 
are few quantitative estimates of the possible magnitude of 
disturbance-induced carbon losses, and those few estimates 
are highly uncertain (Smith & Shugart, 1993; IPCC, 1998; 
Kirilenko & Solomon, 1998; Goudriaan et al., 1999). There 
is a pressing need for improved predictions of the effects of 
disturbances associated with climate variability on carbon 
losses. With respect to fire, our ability to predict regional­
scale interactions between vegetation, climate and fire is 
progressing (e.g. Lenihan et al., 1998; Swetnam & Betancourt, 
1998) but is not yet well integrated with post-fire changes 
in hydrology such as accelerated runoff and erosion. With 
respect to drought, our ability to predict tree mortality remains 
poor, and predictions are based on few empirical data (Shugart, 
1998). However, new advances in understanding the relation­
ship between tree water stress and cavitation (Packman et al., 

1995; Linton et al., 1998) offer promise for improving our 
ability to predict tree mortality. Both fire and drought can 
produce secondary effects, such as triggering high soil erosion 
rates, and neither are integrated into our predictive capability 
yet. These larger-scale threshold responses in erosion are 
likely to be related to small scale heterogeneity in vegetation 
pattern and can be difficult to predict (Davenport et al., 1998; 
Klausmeier, 1999; Ludwig et al., 1999). Hence, ecological 
and hydrological dynamics are tightly interrelated and an 
improved integration of these processes is needed to evaluate 
the complex responses of carbon loss following disturbance. 

The potentially large magnitude of losses of terrestrial 
carbon stocks is unlikely to be offset simply by remedies such 
as reforestation, particularly because woody mortality losses can 
occur much faster than tree growth gains (Allen & Breshears, 
1998; Walker et al., 1999). Because of the potential for these 
large carbon losses, global carbon management plans need 
to include explicit strategies to mitigate carbon losses; these 
strategies include pre-emptive thinning and controlled burning 
of temperate forests (Covington, 2000), improved soil conser­
vation techniques (Gregorich et al., 1998) and protection of 
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large unfragmented blocks of remammg tropical forests 
(Laurance et al., 2000). The implementation of such strategies 
to maintain current land stocks of carbon, particularly for 
forests, in concert: with important carbon sequestration initiatives 
such as reforestation (where appropriate and sustainable), is 
essential for minimizing further net losses of terrestrial carbon. 

It is critical that assessments of carbon management and 
sequestration account more fully for the potential for large, 
rapid disturbance-induced carbon losses. Advances are urgently 
needed to improve quantification of these processes so that 
such carbon losses can be factored more fully into strategies 
and policies for carbon management and sequestration. 
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