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Abstract 

Background: The physiological effects of white-nose syndrome (WNS) in hibernating bats and ultimate causes of 
mortality from infection with Pseudogymnoascus (formerly Geomyces) destructans are not fully understood. Increased 
frequency of arousal from torpor described among hibernating bats with late-stage WNS is thought to accelerate 
depletion of fat reserves, but the physiological mechanisms that lead to these alterations in hibernation behavior 
have not been elucidated. We used the doubly labeled water (DLW) method and clinical chemistry to evaluate 
energy use, body composition changes, and blood chemistry perturbations in hibernating little brown bats 
(Myotis lucifugus) experimentally infected with P. destructans to better understand the physiological processes that 
underlie mortality from WNS. 

Results: These data indicated that fat energy utilization, as demonstrated by changes in body composition, was 
two-fold higher for bats with WNS compared to negative controls. These differences were apparent in early stages 
of infection when torpor-arousal patterns were equivalent between infected and non-infected animals, suggesting 
that P. destructans has complex physiological impacts on its host prior to onset of clinical signs indicative of 
late-stage infections. Additionally, bats with mild to moderate skin lesions associated with early-stage WNS demonstrated 
a chronic respiratory acidosis characterized by significantly elevated dissolved carbon dioxide, acidemia, and elevated 
bicarbonate. Potassium concentrations were also significantly higher among infected bats, but sodium, chloride, and other 
hydration parameters were equivalent to controls. 

Conclusions: Integrating these novel findings on the physiological changes that occur in early-stage WNS with those 
previously documented in late-stage infections, we propose a multi-stage disease progression model that mechanistically 
describes the pathologic and physiologic effects underlying mortality of WNS in hibernating bats. This model identifies 
testable hypotheses for better understanding this disease, knowledge that will be critical for defining effective disease 
mitigation strategies aimed at reducing morbidity and mortality that results from WNS. 
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Background 
Since emergence of white-nose syndrome (WNS) in 
2007, bat populations of eastern North America have 
declined precipitously due to disease-related mortality 
[1-3]. The causative agent of WNS is the fungus Pseudo
gymnoascus (formerly Geomyces) destructans [4-6], 
which erodes unfurred skin comprising wing mem
branes, muzzles, and ears of hibernating bats, inducing 
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physiological perturbations, altered behavior, and death 
[7]. Although underlying causes for mortality from this 
invasive cutaneous mycosis remain unclear, proposed 
mechanisms include disruptions to vital homeostatic 
functions such as thermoregulation and water balance 
[8]. For example, water and electrolyte losses across the 
ulcerated wing epithelium have been proposed to cause 
hypotonic dehydration [9] and acid ? base disturbances 
[10]. Consequently, alterations in behavior have been 
observed in infected bats, including increased frequency 
of arousal from torpor during hibernation [11,12] and 
unusual day flights during winter [3]. High metabolic 
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demands of such activities [13-15] likely also contribute to 
mortality of bats prior to spring emergence by accelerating 
depletion of fat reserves. However, physiological data link
ing altered behavior to increased energy demands in bats 
with WNS are lacking. 
The doubly labeled water (DLW) method is widely 

applicable to the study of energetics in relation to homeo
stasis, behavioral adaptations, and resource allocation in 
both animals and humans [16]. This method is based on 
dynamic flux of hydrogen and oxygen through the body 
and ability to measure these flux rates over a period of 
time using labeled isotopes, 2H and  18O [17]. Following 
administration of these exogenous isotopes, they equili
brate throughout the body water pool. The total body 
water volume (TBW) can then be estimated from the dilu
tion spaces of the isotopes when introduced at known 
concentrations and serves as a valuable indicator of body 
composition (ratio of lean body mass to fat) [18]. Notably 
the DLW method has been used in temperate-zone insect
ivorous bats in the wild (e.g., Myotis lucifugus [19] and 
Eptesicus fuscus [20]), but there are no published reports 
of this method being used in bats hibernating over a 
protracted time period (i.e., months).  
To evaluate proposed causes of mortality from WNS, 

we used the DLW method to quantify energy expenditure 
and changes in body composition of hibernating little 
brown bats (M. lucifugus) experimentally infected with P. 
destructans to test the hypothesis that WNS increases 
metabolic demands during hibernation. We predicted that 
infected bats would exhibit greater changes in body com
position, specifically decreased proportion of fat mass, 
over the course of the experiment compared to negative 
control bats as a result of higher daily energy expenditures 
and fat utilization. To further characterize previously 
reported physiologic outcomes associated with WNS, we 
analyzed blood chemistries of all bats at the end of the 
experiment to assess acid? base balance, electrolytes, and 
hydration status. 
Results 
Infection status and torpor patterns 
Of the 39 bats treated with conidia from P. destructans, 
32 bats (14 male, 18 female) developed epidermal wing 
lesions characteristic of WNS by the end of the 98-d 
experiment. The majority of these bats (n = 30) had mild 
to moderate WNS (severity scores 1 or 2 with median 
score of 1), while the remaining two had moderate to 
severe WNS (severity scores 3 and 4). Sex had no effect 
on the probability that a bat developed WNS (Fisher ? s 
Exact Test, p = 0.4075). All infected bats, including 
animals that did not develop detectable WNS by histology 
(n = 7), were PCR-positive for P. destructans; all bats in 
the control (non-infected) group were PCR-negative for 
the fungal pathogen. Four infected bats and five control 
bats died prior to the end of the experiment. 
Average torpor bout duration for infected bats following 

DLW injection was 9.13 (2.31) d with average arousal dur
ation of 54 (10) min. Average torpor bout duration for 
control bats following DLW injection was 8.52 (2.34) d 
with average arousal duration of 55 (11) min. Differ
ences in torpor-arousal patterns of bats between treat
ment groups were not significant (torpor bout duration, 
p = 0.5337; arousal duration p = 0.6508). 
Blood chemistry 
Blood chemistry parameters were analyzed for 27 in
fected bats (10 male, 17 female) and 11 control bats 
(6 male, 5 female) from which sufficient blood sample 
volumes were collected. One infected bat did not have 
skin lesions characteristic of WNS on histopathology, 
but there were no discernible differences across pa
rameters when compared to infected bats with con
firmed WNS. Additionally, we were unable to collect 
sufficient blood volume for analysis from the two bats 
with most advanced pathology (WNS severity scores 3 
and 4). Thus, blood chemistry values presented herein for 
infected bats represent bats with mild WNS pathology 
(median severity score of 1). 
Infected bats had significantly lower blood pH than 

controls (Table 1, Figure 1a). This acidemia was associ
ated with a significant elevation of pCO2 in infected bats 
compared to controls (Table 1, Figure 1a), indicating 
that bats had respiratory acidosis. Bicarbonate levels of 
infected bats were also significantly higher than those of 
non-infected controls (Table 1, Figure 1a), evident of a 
compensatory renal response to a chronic acidosis. The 
accumulation of bicarbonate in blood of infected bats 
was also reflected in an elevated base excess compared 
to controls (Table 1). There were no differences in so
dium or chloride concentrations between treatment 
groups, but potassium concentration was significantly 
higher in the infected bats than it was in the controls 
(Table 1, Figure 1b). Glucose concentrations were lower 
in infected bats but not significantly (Table 1), and anion 
gap values were not different from controls nor elevated 
as would be expected if acidemia resulted from meta
bolic lactic or keto-acidosis. Other measures of hydra
tion status (hematocrit, blood urea nitrogen, and total 
protein) were equivalent between treatment groups 
(Table 1, Figure 1c). Overall, there were no effects of sex 
(two-way MANOVA, Pillais? Trace = 0.48, F (9,14) = 1.46, 
p = 0.25) or the interaction of sex and treatment (two-way 
MANOVA, Pillais? Trace = 0.53, F (9,14) = 1.79 , p = 0.16) 
on measured blood parameters. See Additional file 1 for a 
complete table of blood chemistry parameter estimations 
compared to available reference values. 
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Table 1 Blood chemistry comparisons 

Parameter k df Unadjusted p-value α = 0.05 Holm-Bonferroni corrected p-value (α/k) 

pCO2 12 38 <0.0001* .0042 

K 11 35 <0.0001* .0045 

pH 10 38 <0.0001* .0050 

HCO3 
− 9 36 <0.0001* .0056 

BE 8 37 <0.0001* .0063 

Glucose 7 26 .0144 .0071 

AG 6 26 .0483 .0083 

Cl− 5 22 .0646 .01 

BUN 4 36 .2093 .0125 

TP 3 36 .6085 .0167 

Na+ 2 36 .7079 .025 

Hct 1 23 .8396 .05 

Abbreviations: pCO2 dissolved carbon dioxide, K potassium, HCO3 
− bicarbonate, BE base excess, AG anion gap, Cl− chloride, BUN blood urea nitrogen, TP total 

protein, Na+ sodium, Hct hematocrit. 
Results of t-tests used to compare mean blood chemistry parameters for little brown bats (Myotis lucifugus) either experimentally infected with Pseudogymnoascus 
destructans or negative (non-infected) controls. Significant differences between treatment groups (*) were determined by p-values < Holm-Bonferroni p-values 
corrected by the index of comparison (k). 
Measurements of daily energy expenditure and total 
body water 
Upon collection of final blood samples, 67 d after injection 
with DLW, labeled isotope concentrations had decreased 
to levels statistically indistinguishable from background 
levels. Consequently, isotope turnover rates and daily 
energy expenditure (DEE) could not be determined for 
bats euthanized at the end of the experiment. However, 
one bat in the control group that died 35 d after initial 
injection of DLW had detectable isotope concentrations 
at time of death. For this bat, kd and ko were 0.004, calcu
lated respiratory CO2 production (rCO2) was 0.01 ml/min, 
and resultant DEE was 0.44 kJ/day. 
Measurements of total body water (TBW) were avail

able for 26 bats (19 infected, 7 controls) following ini
tial injection of DLW and for 24 bats (17 infected, 7 
controls) after final injection (Table 2). The reduction 
in sample size is attributed to mortality of bats during the 
experiment or inability to collect a sufficient amount of 
blood for isotope analyses. At the time of initial DLW 
injection, mean TBW as percent of body mass (TBW % 
BM) was significantly lower for infected bats than 
controls (Tables 2 and 3), but mean body mass was not 
different between groups (t = −0.5925, df = 30, p = 0.558). 
After 67 d hibernation, changes in TBW and body mass 
were compared for infected and control bats for which 
paired measurements were available. Body mass decreased 
significantly in both treatment groups (infected: t = 11.32, 
df = 13, p <0.0001; control: t = 14.24, df = 3, p = 0.0008), 
but the loss in body mass was equal between groups. 
Changes in TBW % BM were marginally significant 
between infected and control bats, but not when corrected 
for multiple comparisons (Tables 2 and 3). Within groups, 
infected bats, which all developed mild WNS (n = 14; 
median WNS severity score 1, range 1 ? 2) exhibited a 
significant increase in TBW % BM (Tables 2 and 3); in
crease in TBW % BM among control bats (n = 4) was 
not significant (Tables 2 and 3). 
As trends in TBW, namely TBW % BM, reflect changes 

in body composition, net fat energy utilization was calcu
lated from the change in TBW (in g) and body mass mea
surements for all bats with paired data assuming constant 
73% water content of lean mass (see Additional file 2). 
Based upon these calculations, mean total fat energy 
utilization for the 67 d after which bats were administered 
DLW was significantly higher for bats with WNS com
pared to negative controls (Tables 2 and 3). 

Discussion 
Results of this study support the hypothesis that infection 
with P. destructans and subsequent development of WNS 
increases energy (fat) use in hibernating bats and provide 
key information for understanding the progression of 
physiologic disturbances that ultimately lead to mortality 
from this disease. Specifically, isotope-based estimates of 
changes in body composition provided evidence that 
hibernating little brown bats with WNS utilized twice as 
much energy as non-infected control bats housed under 
equivalent experimental conditions. However, the greater 
energy use by infected bats was not associated with an 
increased rate or duration of arousals from torpor. This 
implies that bats, even with mild WNS lesions, have an 
elevated metabolism prior to the onset of altered 
arousal patterns characteristic of late-stage infections 
[12]. Additionally, bats with early-stage WNS developed 
severe, chronic respiratory acidosis and hyperkalemia 
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Figure 1 Blood chemistry parameters. Box-and-whisker plots of 
blood chemistry values for hibernating little brown bats (Myotis 
lucifugus) experimentally infected with Pseudogymnoascus destructans 
and negative (non-infected) controls. Parameters for acid-base balance 
(a), electrolytes (b) and hydration status (c) are shown. The median 
(bold line), upper and lower quartiles (box), and maximum and 
minimum values (whiskers) are shown. Potential outliers (points) shown 
were not confirmed by Bonferonni outlier tests. Significant differences 
(*) were determined at α = 0.05 corrected for multiple comparisons by 
the Holm-Bonferonni method. 
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(high potassium concentrations in the blood). Integrating
these results with those reported by others [7,9-12,21], we 
propose a mechanistic multi-stage disease progression 
model for WNS that encompasses our current knowledge 
of disease pathology and physiologic sequelae, including 
death, that result following infection by P. destructans 
(Figure 2). 
As shown in this study, early stages of WNS involving 

fungal colonization of the wing membrane with pro
gression to erosion and ulceration of the epidermis, are 
characterized by increased CO2 levels in blood, result
ant acidemia, and hyperkalemia. The accumulation of 
CO2 may s tem from either increased C O2 production 
from an elevated metabolic rate associated with infec
tion, decreased CO2 expiration, possibly due to inhib
ition of diffusion across the damaged wing epithelium 
[7], a nd/or a c ompensatory response by the  host t o
attempt to further lower torpor metabolic rates (and con
serve fat reserves) by inducing a hypercapnic (high pCO2) 
acidosis [15,22-24]. This acidosis may then contribute to 
the observed hyperkalemia by an acidosis-induced extra-
cellular shift of potassium. Intracellular potassium ions 
may also leak into the blood through damaged and nec

       

rotic cell membranes caused by hyphal invasion of the 
Parameter Pd infected bats Control bats 

All data n = 22 n = 10 

Initial TBW % BM 53.4 (4.3) 58.8 (2.4) 

Final TBW % BM 60.5 (3.9) 61.0 (4.6) 

Initial BM (g) 7.64 (0.75) 7.48 (0.58) 

Final BM (g) 6.60 (0.68) 6.41 (0.57) 

Paired data n = 14 n = 4 

Change in TBW % BM + 9.1 (3.5) + 4.0 (3.9) 

Fat energy use (kJ) 43.9 (13.6) 20.5 (14.7) 

Table 2 Body composition measurements 

Values of body mass (BM) and total body water as percentage of body mass 
(TBW % BM) were used to estimate net fat energy use over 67 d for individual 
little brown bats (Myotis lucifugus) experimentally infected with 
Pseudogymnoascus destructans and negative control (non-infected) bats. Values 
in the table are mean (SD) and n = sample size. Initial TBW % BM was 
significantly different between treatment groups. Over the course of the 
experiment, infected bats demonstrated a significant increase in TBW % BM 
and used significantly more fat energy than non-infected bats. Body mass 
decreased significantly over the experiment in infected and control bats but 
there was no difference between groups. 
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Table 3 Doubly labeled water comparisons 

Measurement k df Unadjusted p-value α = 0.05 Holm-Bonferroni corrected p-value (α/k) 

Fat energy use (I) 8 13 <0.0001* 0.0063 

Change in TBW % BM (I) 7 13 <0.0001* 0.0071 

Initial TBW % BM (I vs C) 6 25 0.0041* 0.0083 

Fat energy use (I vs C) 5 16 0.0088* 0.01 

Change in TBW % BM (I vs C) 4 16 0.0243 0.0125 

Fat energy use (C) 3 3 0.0687 0.0167 

Change in TBW % BM (C) 2 3 0.1353 0.025 

Final TBW % BM (I vs C) 1 22 0.7841 0.05 

Results of t-tests used to compare doubly labeled water measurements for little brown bats (Myotis lucifugus) either experimentally infected with 
Pseudogymnoascus destructans (I) or non-infected controls (C). Total body water is represented as percentage of body mass (TBW % BM). Significant differences 
between treatment groups (*) were determined by p-values < Holm-Bonferroni p-values corrected by the index of comparison (k). 
epidermis. Overall, these physiologic effects result in a 
chronic respiratory acidosis, hyperkalemia, and reduction 
of fat reserves among bats during early stages of WNS. 
Consistent with results observed in bats at later and 

more severe stages of WNS [9,10], we propose that once 
pCO2 elevates beyond a tolerance threshold, chemorecep-
tors stimulate hyperventilation, and resulting increased 
arousals from torpor serve to remove excess CO2, 
Figure 2 Disease progression model for bat white-nose syndrome (W
a hibernating bat that encompasses current knowledge on the progression
to mortality from disease. Initial colonization and invasion of the wing epid
expenditure, chronic respiratory acidosis (elevated blood pCO2 and bicarbo
ulceration of the epidermis stimulate increased frequencies of arousal from to
to dehydration and depletion of fat reserves. As wing pathology becomes mo
electrolyte loss across the epidermis (hypotonic dehydration), which stimulate
ultimately leads to mortality when energy reserves and compensatory mecha
returning blood pH to normal [22,25-28]. The high energy 
demand of these arousals then likely further contributes 
to accelerated depletion of fat reserves. Additionally, in-
creased ventilatory rates and greater vapor pressure differ-
ence with increased body temperatures during arousals 
would contribute to greater evaporative water loss [29] 
and dehydration. Together, these outcomes are consistent 
with data previously published for little brown bats with 
NS). We propose a mechanistic multi-stage disease model for WNS in 
 of fungal-induced wing pathology and physiologic sequelae leading 
ermis by Pseudogymnoascus destructans (Pd) results in increased energy 
nate), and hyperkalemia (elevated blood potassium). Erosion and 
rpor, which remove excess CO2 and normalize blood pH, but contribute 
re extensive and severe, these effects are exacerbated by water and 
 more frequent arousals and create a positive feedback loop that 
nisms become exhausted. 
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more severe WNS pathology that exhibited increased fre
quency of arousal from torpor, decreased pCO2, normal
blood pH, and dehydration [10]. 
As WNS progresses towards more extensive and severe 

wing lesions, dehydration may be further exacerbated by 
water and electrolyte loss across the damaged epidermis 
of the wing [9,30], further stimulating arousal from hiber
nation to drink [29,31,32]. Positive feedback loops are 
then established that link worsening disease-associated 
wing pathology to further increases in arousal fre
quency, water loss, and energy use resulting in add
itional observed acute physiologic changes, including 
hypocapnia, hypoglycemia, hyponatremia, hypochloremia, 
and emaciation [9-11]. Once compensatory mechanisms 
such as cellular buffering, respiratory and metabolic regu
lation, and/or behavioral adaptations are exhausted, this 
suite of disturbances ultimately leads to mortality unless 
the bat has sufficient energy reserves to persist until spring 
emergence and clear the infection following a return to a 
metabolically active state [33]. 
Although normal reference ranges for blood chemistry 

values in microchiropteran species are generally lacking 
[34], deviations of measured parameters in infected bats 
from the negative controls in this study, together with 
published information for apparently healthy hibernating 
little brown bats [10,34-39], suggest pathologic and poten
tially life-threatening physiological disturbances associated 
with early-stage WNS infections [see Additional file 1]. 
Bats with WNS in this study had almost 40% higher mean 
pCO2 than negative control bats (99.4 and 37.1 mmHg 
respectively), and pCO2 values above 90 mmHg are gener
ally considered to be lethal in other non-hibernating ani
mals and humans. Elevated pCO2 levels and associated 
acidemia are known to interfere with enzymatic functions, 
reduce metabolic activity, and cause central depression of 
respiration; in severe cases, such elevated levels can lead to 
coma and death. 
Direct calculations of energy expenditure could not be 

determined for most bats in this study because final iso
tope concentrations were indistinguishable from back
ground levels. However, the increase in TBW as a percent 
of body mass observed in infected bats indicated that bats 
with WNS had higher proportions of lean tissue mass to 
fat tissue mass at the end of the study. This finding implies 
that bats with WNS used significantly more fat energy re
serves compared to negative controls despite hibernating 
under equivalent conditions. From the estimated changes 
in fat content over the 67-d measurement period, in
fected bats utilized 0.65 kJ/d, while control bats utilized 
0.31 kJ/d. These results indicate that bats with WNS 
expended approximately twice as much energy during 
hibernation as non-infected control bats. Some caution 
must be taken in interpreting these results due to the 
small number of control bats for which paired TBW 
measurements were available to calculate estimates of fat 
use. However, the range of expected daily energy use of 
0.27 to 0.51 kJ/d predicted for healthy hibernating M. luci
fugus at the mean temperature of our study [40] is consist
ent with the daily rates of energy use observed in control 
bats in this experiment, and lower than rates observed in 
infected bats. There were no differences in torpor-arousal 
patterns between treatment groups in this study suggesting 
that WNS causes an increase in metabolism that is not 
directly associated with arousal from torpor and occurs at 
early stages in disease progression. Additionally, there were 
no differences between infected and control bats in Tskin 

maintained during torpor or arousal bouts. Alternatively, 
metabolic costs associated with infection and development 
of wing pathology may be linked to increased costs of 
thermoregulation caused by inhibition of peripheral vaso
constriction during torpor and arousal [25], catabolism of 
fat to generate metabolic water in response to increased 
water loss, or additional energetic costs associated with the 
host-pathogen interaction. 
Rising concentrations of pCO2 in a mammal would nor

mally stimulate increased respiration to release excess 
CO2. However, the unique physiology of mammalian hiber
nators allows for active suppression of respiration during 
torpor, and under these conditions, blood pCO2 increases 
to levels higher than those observed in metabolically active 
mammals [22,28,41,42]. This elevation of pCO2 is thought 
to be an integral part of hibernation physiology as induc
tion of an acidotic state serves to reduce metabolic rate 
and thermogenesis [25,43,44]. Additionally, the resultant 
high pCO2 gradient improves ventilation efficiency, thereby 
minimizing energy costs of respiration during torpor [23]. 
Despite this tolerance for a respiratory acidosis [45], a 
hibernating mammal must still be able to regulate pCO2 

for proper physiologic function. If CO2 elimination routes, 
such as passive diffusion of CO2 across the wing epithe
lium [46,47] are compromised by disease, as hypothesized 
for bats with WNS [7], persistently rising blood pCO2 

levels would cause the severe chronic respiratory acidosis 
we have observed. Thus, underlying causes for the high 
pCO2 levels in bats with WNS are likely a combination of 
the uniquely adapted physiology of a hibernating mammal 
compounded by pathologically induced insult(s) to these 
physiological mechanisms. 
Bat WNS presents a new paradigm for the study of 

infectious disease. Never before has a fungal skin pathogen 
been known to specifically infect a hibernating mammal, 
causing severe physiologic disturbances and mortality. 
Although substantial efforts have been devoted to under
standing chytridiomycosis, a lethal fungal skin disease 
of amphibians, prior to WNS there had been no in-
depth study of disease processes in a metabolically re
pressed animal caused by a psychrophilic and metabolically 
active pathogen. The poorly characterized capacity of bats 
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to compensate for and respond to infection during hiber
nation demonstrates the difficulty of understanding how 
host-pathogen interactions influence disease manifestation 
and mortality. 

Conclusions 
This study demonstrated that infection with P. destructans 
and subsequent development of WNS increased energy 
(fat) use in hibernating bats prior to the onset of al
tered arousal patterns associated with later stages of 
WNS. Severe, chronic respiratory acidosis and hyperkale
mia were also apparent in bats that developed mild WNS. 
With these results, we present a multi-stage disease pro
gression model for WNS as a framework for understand
ing the pathogenesis and underlying causes of mortality 
due to WNS (Figure 2). This model integrates a range of 
published work [7,9-12,21] with data from this study into 
the first attempt to mechanistically define a compre
hensive conceptual model of what may occur during 
development of WNS in a hibernating bat ? from initial 
colonization of wing skin by P. destructans until the 
death of the animal. This model identifies key testable 
hypotheses necessary to develop a comprehensive under
standing of the physiologic effects of WNS on hibernating 
bats. Ultimately, this knowledge will be critical for guiding 
effective and properly timed management actions to 
moderate physiologic effects of WNS and minimize 
morbidity and mortality from this devastating disease. 

Methods 
Bats 
This study was conducted in accordance with experimen
tal protocol #110921 approved by the Institutional Animal 
Care and Use Committee of the USGS ? National Wildlife 
Health Center (NWHC). Sixty (30 male and 30 female) 
little brown bats (Myotis lucifugus) were collected from a 
hibernaculum in Wisconsin on December 21, 2012 and 
transported to NWHC. Bats were held individually within 
tube socks maintained in coolers at approximately 7?C 
during transport. Body mass and right forearm length 
were recorded for each bat, and both wings of each bat 
were evaluated for pre-existing injuries. All animals were 
confirmed negative for P. destructans by polymerase chain 
reaction (PCR) [48] analysis of wing-skin swab samples 
(PurFlock nylon-flocked swabs, Puritan, Guilford, ME) 
collected from each bat. An archival temperature logger 
(iBBat, Alpha Mach) was affixed between the scapulae of 
each bat using a latex-based adhesive (Ostobond, M.O.C., 
Vaudreuil, Quebec, Canada) after trimming a 1 cm ? 1 cm 
patch of fur to within 1 mm of the skin surface. Loggers 
were programmed to record skin temperature (Tskin) 
every 15 minutes starting at the time of DLW injection 
until the end of the experiment. Torpor-arousal pat
terns were assessed using Tskin data downloaded from 
iBBat temperature loggers following termination of the 
experiment. Arousal thresholds were defined as 10% of 
maximum Tskin for each individual [11]. 
Bats were sorted by sex and randomly assigned to in

fected (n = 39; 19 males, 20 females) and control (n = 21; 
11 males, 10 females) groups. Conidia of P. destructans 
(5 ? 10 5 in 20 μl of PBS with 0.5% Tween-20) were applied 
to the skin of the dorsal surface of both wings of each bat 
in the infected group as previously described [49]. PBS 
Tween-20 lacking conidia was similarly applied to the 
wings of control (non-infected) bats. Each group was 
placed into a mesh enclosure (22? H ? 14  ? W ? 14  ? D; 
Apogee Reptaria, Reptiledirect.com) within separate envir
onmental incubators (Percival Scientific, Perry, IA) and 

?maintained at 7.5C and 90% RH for 98 days. Bats were 
monitored every other day for the duration of the experi
ment and any dead animals removed. 
At the end of the experiment, all remaining bats were 

euthanized. Polymerase chain reaction (PCR) analyses of 
wing skin were performed as previously described [48] to 
confirm the presence of P. destructans. Additionally, the 
entire membrane of one wing was examined by histology 
to identify lesions diagnostic for WNS [21] and to assign 
severity scores [from 0 (no lesions) to 4 (severe, extensive 
lesions)] based on extent of fungal infection [11]. 

Doubly labeled water 
The DLW method used a two-sample approach by meas
uring isotopic concentrations at equilibrium (1 h following 
DLW injection) and once more at the end of the experi
ment [17]. The duration of the elimination period was 
determined from estimates of isotope washout rates mod
eled using parameters of energy expenditure for hiberna
ting little brown bats [40], assuming torpor bouts of 8 to 
16 d interspersed by 0.5 to 1.5 h arousals, as recorded for 
little brown bats with and without WNS in previous exper
iments [12]. One additional arousal and a 3-h euthermic 
period were included in the model to account for initial 
DLW injection and blood collection at the end of the 
experiment. Based upon an energy expenditure budget of 
approximately 60 kJ, isotope washout was predicted to 
occur 89 to 171 d post-administration of DLW. To 
increase the likelihood that labeled isotope concentrations 
would remain measurable over a duration of time sufficient 
for development of experimentally induced WNS (90 to 
120 d; [12,49]), we administered the first dose of DLW 28 
d after treatment of bats with fungal conidia. 
For administration of DLW, bats were removed from 

incubators and aroused at room temperature for 20 to 
30 min. Once fully aroused, both infected (n = 34) and 
negative control (n = 16) bats were injected intraperitone
ally with approximately 70 μl of a mixture of enriched 18O 
(approximately 19 atom %) and 2H (approximately 11 
atom %). Dose enrichments were quantified using a 

http:Reptiledirect.com
http://www.biomedcentral.com/1472-6793/14/10
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standard dilution experiment [50]. Bats were then held at 
room temperature for approximately 1 h to allow for iso
topic equilibration [20]. Following 1 h at euthermic tem
peratures, 50 to 75 μl of blood was collected from the 
ventral aspect of the uropatagial vein of each bat [51] into 
two heparinized 100 μl capillary tubes for determination of 
initial isotope concentrations and TBW. Ends of the capil
lary tubes were immediately flame-sealed, dipped in sealing 
wax, and stored at 4C? until analysis. Bats were then 
returned to incubators and left undisturbed for the dur
ation of the experiment. Additionally, five bats from each 
treatment group were used to measure background isotope 
levels [52]; these bats were treated identically as those de
scribed above, but they did not receive injections of DLW. 
At 95 days post-treatment with conidia (67 d after 

injection of DLW) bats were removed from hibernation 
chambers, aroused to euthermic body temperatures, and 
blood was collected (as above) to determine final isotope 
concentrations. Blood from bats that did not receive ini
tial DLW injections was also sampled at this time to ob
tain a concurrent measure of background isotope levels. 
Since TBW content of each bat was assumed to have 
changed since sampling at the beginning of the experi
ment, a dose of the DLW solution used previously was 
administered to each bat, for which a non-terminal 
blood sample was collected, to determine TBW at the 
end of the experiment for infected (n = 22) and control 
(n = 12) bats. Following the injection with DLW, bats 
were held at room temp for 1 h for isotopic equilibra
tion, after which time they were anesthetized with 5% 
isoflurane and decapitated. Whole blood was collected 
into heparinized capillary tubes, and 50 to 75 μl of blood 
was immediately sealed in capillary tubes (as described 
above) for isotope analysis. Rectal temperature was re
corded at the time of euthanasia using a miniature probe 
and digital thermometer (Models RET-4 & BAT7001H, 
Physitemp Instruments, Inc., Clifton, NJ). 

Blood chemistry 
Following euthanasia, blood chemistry parameters were an
alyzed for each bat as previously described [9]. Briefly, 95 μl 
of whole blood was collected following decapitation and an
alyzed within one minute using an i-STAT portable clinical 
analyzer (EC8+ diagnostic cartridge, Abaxis, Union City, 
California, USA) to assess sodium (Na+, mmol l−1), potas
sium (K+, mmol l−1), chloride (Cl−, mmol l−1), pH, dissolved 
carbon dioxide (pCO2, mmHg), bicarbonate (HCO3 

−, mmol 
l−1), base excess (BE, mmol l−1), anion gap (AG, mmol l−1), 
blood urea nitrogen (BUN, mgdL−1), hematocrit (Hct, % 
PCV), and glucose (mgdL−1). Remaining blood was centri
fuged in microtubes (Stat-Spin, Iris Sample Processing, 
Westwood, MA) for 90 s, and plasma protein (gdL−1) of the
serum was measured using a hand-held refractometer (Pulse 
Instruments, Van Nuys, CA). Temperature-corrected values 
for pH and pCO2 were calculated using rectal temperature 
of the bat at the time of blood collection, and HCO3 

−, AG,
and BE were then calculated using these temperature-
corrected values according to the i-STAT manual [53] and 
specifications of the Clinical Laboratory Standards Institute 
for Blood Gas and pH Analysis and Related Measurements 
[54] (see also Additional file 3 for equations). 

Isotope analysis 
Capillary tubes containing the blood samples were vacuum 
distilled [55], and water from the resulting distillate was 
used to produce CO2 and H2 (methods in [56] for CO2 and 
[57] for H2). The isotope ratios 

18O: 16O and  2H: 1H were
analyzed using gas source isotope ratio mass spectrometry 
(Optima, Micromass IRMS and Isochrom μG, Manchester, 
UK). Samples were run alongside three lab standards for 
each isotope (calibrated to International standards) to cor
rect delta values to ppm. Isotope enrichments were con
verted to values of daily energy expenditure using a single 
pool model as recommended for this size of animal [58]. 
Dilution spaces for oxygen (N0) and hydrogen (Nd) were

calculated by the plateau method (Speakman and Krol, 
[59]). CO2 production was calculated using equation 7.17 
of Speakman [50] and used to estimate DEE according to 
the Weir equation [59] (see Additional file 2 for details). 

Statistical analyses 
Normality of measured parameters was assessed visually 
using histograms and Q-Q plots for each parameter. As
sumptions of normality and homogeneity of variance were 
satisfied so no transformations were performed. Mean 
values of measured parameters for infected bats were 
compared to control bats using independent two-sample 
t-tests. Paired data sets from TBW estimates were com
pared using paired t-tests. All t-tests were two-tailed with 
α = 0.05, and critical values for significance were adjusted 
to control the family-wise error rate using the Holm-
Bonferonni method [60] applied separately to each data 
set: blood chemistry parameters (12 comparisons), 
DLW measurements (8 comparisons), and torpor profiles 
(2 comparisons). All statistical analyses were conducted in 
R [61]. Data in the text are presented as means (SD). 
Additional files 

Additional file 1: Table of Blood Chemistry Parameters. Comparisons 
of blood chemistry parameter values for hibernating little brown bats (Myotis 
lucifugus) experimentally infected with Pseudogymnoascus destructans (Pd) 
and negative (non-infected) controls to available reference values. 

Additional file 2: Doubly Labeled Water. Mean isotope enrichments of 
administered DLW formulations and background isotope concentrations 
in bats at the start and end of the experiment. Equations used for 
calculation of daily energy requirements and fat energy use. 

Additional file 3: Blood Chemistry Calculations. Equations used to 
calculate temperature-corrected acid base blood parameters. ?

http://www.biomedcentral.com/content/supplementary/s12899-014-0010-4-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12899-014-0010-4-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12899-014-0010-4-s3.pdf
http://www.biomedcentral.com/1472-6793/14/10
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Additional file 1: Table of blood chemistry parameters 

Comparison blood chemistry parameter values (95% confidence intervals) for hibernating little 

brown bats (Myotis lucifugus) experimentally infected with Pseudogymnoascus destructans (Pd) 

and negative (non-infected) controls to standard reference ranges (venous blood) and values 

published for healthy hibernating little brown bats prior to white-nose syndrome. 

Parameter Units Pd Infected 

bats (n~28) 

Control bats 

(n~11) 

Mammalian 

reference 

range 
a 

Published 

value for 

healthy 

hibernating 

M. lucifugus 

pH 7.11 – 7.17 7.36 – 7.40 7.31 - 7.41 7.56
b 

pCO2 mmHg 94.3 – 108.2 33.3 – 40.9 41 – 51 38
b 

HCO
3 
- mmol/L 30.7 – 35.3 20.1 – 23.5 23 – 28 35

b 

AG mmol/L 3.57 – 8.93 8.47 – 13.83 10 – 20 

BE mmol/L 2.1 – 7.2 -4.9 – (-1.6) -2 to 3 

Na
+ 

mmol/L 146 – 152 143 - 156 138 - 146 150
b 

Cl 
-

mmol/L 112 – 119 115 – 128 98 - 109 

K
+ 

mmol/L 7.5 – 8.1 4.3 – 5.5 3.5 – 4.9 6.4 – 7.2
c 

(serum) 

Glucose mg/dL 107 – 148 144 – 217 70 - 105 5 – 110
b,d 

Hct % PCV 44 – 49 44 – 48 38 – 51 43 – 55
b,c,d,e,f 

BUN mg/dL 57 – 82 68 – 100 17 – 56 20
d 

TP g/dL 8.03 – 8.63 7.79 – 8.53 6 – 8.3 

Abbreviations: pCO2 (dissolved carbon dioxide); HCO
3
- (bicarbonate); AG (anion gap); BE 

(base excess); Na+ (sodium); Cl- (chloride); K+ (potassium); Hct (hematocrit); BUN (blood urea 

nitrogen); TP (total protein). 

Sources: 

a) Abbott Point of Care Inc: iStat Instruction Manual. Abbott Park, IL: Abbott Point of Care 

Inc; 2008. 
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b)	 Warnecke L, Turner JM, Bollinger TK, Misra V, Cryan PM, Blehert DS, Wibbelt G, 

Willis CKR: Pathophysiology of white-nose syndrome in bats: a mechanistic model 

linking wing damage to mortality. Biol Lett 2013, 9:20130177. 
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Additional file 2: Doubly labeled water 

Isotope enrichments and background isotope concentrations 

All values reported as mean (SD). Background isotope concentrations at the time of 

initial injection were 156.82 (0.61) ppm for 
2
H and 1989.55 (1.69) ppm for 

18
O (n = 10). For all 

bats injected with DLW (n = 50), initial mean enrichments were 1868.4 (230.5) ppm 
2
H and 

5101.1 (402.5) ppm 
18

O.  At the time of final blood collection, background concentrations were 

154.8 (2.4) ppm 
2
H and 1990.5 (1.8) ppm 

18
O. Following the second DLW injection for dilution 

space determination at the end of the experiment in 34 bats, mean enrichments were 1841.8 

(298.9) ppm 
2
H and 4994.1 (740.8) ppm 

18
O. 

Equations used for calculations of daily energy requirements (DEE) 

Dilution spaces for oxygen (N0) and hydrogen (Nd) were calculated by the plateau 

method [60] because bat activity during the isotopic equilibrium period (1 h at euthermic body 

temperatures) differed from activity during the measured elimination period when the bats were 

primarily in torpor.  

CO2 production was calculated using Equation 7.17 [54], which is based on a single-pool 

model and accounts for isotopic fractionation during phase changes: 

rCO2 = (N/2.078) x (ko – kd) – 0.0062 kdN, 

where rCO2 (mol d
-1

) is the CO2 production,  N (mol) is the body water pool estimated by the 

dilution space for the oxygen isotope, and ko and kd (d
-1

) are the respective turnover rates of the 

oxygen and hydrogen isotopes.  This model, which assumes an equivalent dilution space for 

hydrogen and oxygen, has been validated as an accurate estimation technique for small mammals 

[60], including bats [22]. 



   

 

 

 

 

 

 

 

 

  

 

  

Daily energy expenditure (DEE) was then calculated using CO2 production estimates and 

an assumed respiratory quotient (RQ) of 0.85 according to the Weir equation [62]. 

Calculation of fat energy reserves and utilization from TBW 

The change in TBW between initial and final measurements for bats with paired data was 

used to calculate fat energy utilization according to body water distribution rules which state that 

lean tissue contains 73% water and is distinct from fat, which is anhydrous.  Given that 97% of 

body mass is available for water exchange, gram measurements of body mass (BMg) and total 

body water (TBWg) can be used to calculate grams of fat tissue (FTg) by the equation:  

FTg = (0.97*BMg)-(TBWg/0.73). 

In terms of energy, fat tissue contains 39 kJ/gram, so total fat energy (kJ) = FTg*39.  

http:0.97*BMg)-(TBWg/0.73


 



   

  

  

 

         

    
   

  
     

       

     

 
 

Additional file 3: Blood chemistry calculations 

Acid-base blood parameters (pH, pCO2, HCO3 
-
, BE, and Anion Gap) are temperature-

dependent so values measured by the iSTAT at 37 °C (X37) were corrected by the rectal 

temperature of the bat at the time of blood sample collection (T). The following equations were 

used to calculate temperature-corrected values (XT): 

1 pHT = pH37 – (T – 37)[ 0.0146 + 0.0065(pH37 – 7.4)] 

[0.019(T – 37)] 
2 pCO2[T] = pCO2[37] x 10


- pH + log10(PCO2) – 7.608
 
3 HCO3 = 10 


4 BE = (HCO3 
-
– 24.98) + [16.2 x (pH – 7.4)]
 

-
5 Anion Gap = (Na

+ 
+ K

+
) – (Cl 

-
+ HCO3 ) 
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