Texas

Legacy ID: 
48
State Code: 
TX
Country Code: 
USA
Area: 
264 436.00
Latitude: 
31.49
Longitude: 
-99.35
Publication Title: 

A Multiscale Index of Landscape Intactness for the Western United States

FORT Contact: 
Natasha Carr
Authors: 
Carr, N.B., I.I.F. Leinwand, and D.J.A. Wood
Related Staff: 
Natasha Carr
Ian Leinwand
Publication Date: 
2016
Parent Publication Title: 
Publication Type: 
Archive number: 

Pub Abstract: 

Landscape intactness has been defined as a quantifiable estimate of naturalness measured on a gradient of anthropogenic influence. We developed a multiscale index of landscape intactness for the Bureau of Land Management’s (BLM) landscape approach, which requires multiple scales of information to quantify the cumulative effects of land use. The multiscale index of landscape intactness represents a gradient of anthropogenic influence as represented by development levels at two analysis scales.

To create the index, we first mapped the surface disturbance footprint of development, for the western U.S., by compiling and combining spatial data for urban development, agriculture, energy and minerals, and transportation for 17 states. All linear features and points were buffered to create a surface disturbance footprint. Buffered footprints and polygonal data were rasterized at 15-meter (m), aggregated to 30-m, and then combined with the existing 30-meter inputs for urban development and cultivated croplands. The footprint area was represented as a proportion of the cell and was summed using a raster calculator. To reduce processing time, the 30-m disturbance footprint was aggregated to 90-m. The 90-m resolution surface disturbance footprint is retained as a separate raster data sets in this data release (Surface Disturbance Footprint from Development for the Western United States). We used a circular moving window to create a terrestrial development index for two scales of analysis, 2.5-kilometer (km) and 20-km, by calculating the percent of the surface disturbance footprint at each scale. The terrestrial development index at both the 2.5-km (Terrestrial Development Index for the Western United States: 2.5-km moving window) and 20-km (Terrestrial Development Index for the Western United States: 20-km moving window) were retained as separate raster data sets in this data release. The terrestrial development indexes at two analysis scales were ranked and combined to create the multiscale index of landscape intactness (retained as Landscape Intactness Index for the Western United States) in this data release. To identify intact areas, we focused on terrestrial development index scores less than or equal to 3 percent, which represented relatively low levels of development on multiple-use lands managed by the BLM and other land management agencies.

The multiscale index of landscape intactness was designed to be flexible, transparent, defensible, and applicable across multiple spatial scales, ecological boundaries, and jurisdictions. To foster transparency and facilitate interpretation, the multiscale index of landscape intactness data release retains four component data sets to enable users to interpret the multiscale index of landscape intactness: the surface disturbance footprint, the terrestrial development index summarized at two scales (2.5-km and 20-km circular moving windows), and the overall landscape intactness index. The multiscale index is a proposed core indicator to quantify landscape integrity for the BLM Assessment, Inventory, and Monitoring program and is intended to be used in conjunction with additional regional- or local-level information not available at national levels (such as invasive species occurrence) necessary to evaluate ecological integrity for the BLM landscape approach.

Publication Title: 

Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

FORT Contact: 
Catherine Jarnevich
Authors: 
Jarnevich, C. S., T. R. Holcombe, B. A. Grisham, J. Timmer, C. W. Boal, M. Butler, J. Pitman, S. Kyle, D. Klute, G. Beauprez, A. Janus, and B. Van Pelt.
Related Staff: 
Catherine Jarnevich
Tracy Holcombe
Publication Date: 
2016
Parent Publication Title: 
Avian Conservation and Ecology
Publication Type: 
Archive number: 

Pub Abstract: 

Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

Publication Title: 

Modeling suitable habitat of invasive red lionfish Pterois volitans (Linnaeus, 1758) in North and South America’s coastal waters

FORT Contact: 
Catherine Jarnevich
Authors: 
Evangelista P.H., N.E. Young, P.J. Schofield, C.S. Jarnevich
Related Staff: 
Catherine Jarnevich
Publication Date: 
2016
Parent Publication Title: 
Aquatic Invasions
Publication Type: 
Archive number: 

Pub Abstract: 

We used two common correlative species-distribution models to predict suitable habitat of invasive red lionfish Pterois volitans (Linnaeus, 1758) in the western Atlantic and eastern Pacific Oceans. The Generalized Linear Model (GLM) and the Maximum Entropy (Maxent) model were applied using the Software for Assisted Habitat Modeling. We compared models developed using native occurrences, using non-native occurrences, and using both native and non-native occurrences. Models were trained using occurrence data collected before 2010 and evaluated with occurrence data collected from the invaded range during or after 2010. We considered a total of 22 marine environmental variables. Models built with non-native only or both native and non-native occurrence data outperformed those that used only native occurrences. Evaluation metrics based on the independent test data were highest for models that used both native and non-native occurrences. Bathymetry was the strongest environmental predictor for all models and showed increasing suitability as ocean floor depth decreased, with salinity ranking the second strongest predictor for models that used native and both native and non-native occurrences, indicating low habitat suitability for salinities <30. Our model results also suggest that red lionfish could continue to invade southern latitudes in the western Atlantic Ocean and may establish localized populations in the eastern Pacific Ocean. We reiterate the importance in the choice of the training data source (native, non-native, or native/non-native) used to develop correlative species distribution models for invasive species.

Publication Title: 

Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

FORT Contact: 
Sara Oyler-McCance
Authors: 
Oyler-McCance, S. J., R. A. De Young, J. A. Fike, C. A. Hagen, J. A. Johnson, L. C. Larsson, and M. A. Patton.
Related Staff: 
Sara Oyler-McCance
Jennifer Fike
Publication Date: 
2016
Parent Publication Title: 
Conservation Genetics
Publication Type: 
Archive number: 

Pub Abstract: 

The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

Investigating Current and Historic White-tailed Kite Population Trends Using Genetic Techniques

Code: 
RB00CNJ.9
A White-tailed kite. Photo by Heather Mohan.
A White-tailed kite. Photo by Heather Mohan.
Abstract: 

The White‑tailed Kite has demonstrated large population fluctuations over the last 150 years. Once common in California, Texas, and the southeast United States, kite numbers declined to very low levels in the 1900s and was thought to be on the verge of extinction by the 1930s. In the 1940s populations began to expand and increasing numbers were observed during the following decades. Today, the White-tailed Kites are common residents throughout much of California, with slow but steady increases in population numbers in the Central Plains states, Texas and Florida. It is unknown whether current U.S. populations suffered a severe genetic bottleneck in the early 1900s and have rebounded since, or whether current U.S. population growth has been related to immigration from Central and South America populations. We are using genetic techniques to examine museum specimens collected before 1930 and modern samples collected in the 1990s from California to provide clues as to whether modern Kites in California in fact have low diversity due to a genetic bottleneck or whether they were founded and sustained by immigrants from other continents. 

Population Genetic Structuring of the Lesser Prairie-chicken

Code: 
RGB00CNJ.5
A Lesser Prairie-chicken. Photo by Dan Wundrock with permission.
A Lesser Prairie-chicken. Photo by Dan Wundrock with permission.
Abstract: 

The goals of this study are to characterize patterns of connectivity across the Lesser Prairie-chicken range, document levels of genetic variability among populations, identify the source population(s) for the region of recent range expansion, and determine the level of introgression with the Greater Prairie-chicken in areas where the two species overlap in distribution. This project is revealing relatively strong population structure that falls largely along ecoregion boundaries. This study also shows that the species is expanding its range into previously unoccupied or sparsely occupied habitat from the mixed grass prairie ecoregion and to a lesser extent from the sand sagebrush ecoregion (due to enrollment of agricultural land into the Conservation Reserve Program) and is actively hybridizing with Greater Prairie-chickens in the area of expansion, information that is highly relevant for management. This research is in collaboration with Texas A&M-Kingsville, Oregon State University, University of North Texas, University of Oklahoma, and the Sutton Avian Research Center.

Publication Title: 

Insect prey eaten by Hoary Bats (Lasiurus cinereus) prior to fatal collisions with wind turbines

FORT Contact: 
Ernest Valdez
Authors: 
Valdez, E.W., and P.M. Cryan
Related Staff: 
Ernest Valdez
Paul Cryan
Publication Date: 
2013
Updated Date (text): 
2014-01-13
Parent Publication Title: 
Western North American Naturalist
Publication Type: 
Archive number: 
2013/0083 FORT
States: 
Topics: 

Pub Abstract: 

Wind turbines are being deployed all across the world to meet the growing demand for energy, and in many areas, these turbines are causing the deaths of insectivorous migratory bats. One of the hypothesized causes of bat susceptibility is that bats are attracted to insects on or near the turbines. We examined insect remains in the stomachs and intestines of hoary bats (Lasiurus cinereus) found dead beneath wind turbines in New York and Texas to evaluate the hypothesis that bats die while feeding at turbines. Most of the bats we examined had full stomachs, indicating that they fed in the minutes to hours leading up to their deaths. However, we did not find prey in the mouths or throats of any bats that would indicate the bats died while capturing prey. Hoary bats fed mostly on moths, but we also detected the regular presence of beetles, true bugs, and crickets. Presence of terrestrial insects in stomachs indicates that bats may have gleaned them from the ground or the turbine surfaces, yet aerial capture of winged insect stages cannot be ruled out. Our findings confirm earlier studies that indicate hoary bats feed during migration and eat mostly moths. Future studies on bat behaviors and insect presence at wind turbines could help determine whether feeding at turbines is a major fatality risk for bats.

Publication Title: 

Carcass ecology: Forensic techniques shed light on the possible causes of bat susceptibility to turbines

FORT Contact: 
Paul Cryan
Authors: 
Cryan, P., E. Valdez, C. Stricker, M. Wunder, R. Barclay, E. Baerwald, C. Willis, J. Jameson, E. A. Snider, and E. Crichton
Related Staff: 
Paul Cryan
Ernest Valdez
Craig Stricker
Publication Date: 
2012
Updated Date (text): 
2012-11-26
Parent Publication Title: 
The Wildlife Society 19th annual conference, Portland, OR, 14 October 2012
Publication Type: 
Archive number: 
2012/0125 FORT
States: 

Pub Abstract: 
Publication Title: 

ASPN – Assessing Socioeconomic Planning Needs (v.1)

FORT Contact: 
Lance Everette
Authors: 
Richardson, L., A.L. Everette, S. Dawson
Related Staff: 
Leslie Richardson
Lance Everette
Jessica Montag
Lynne Koontz
Kate Peterson
Sebastien Nicoud
Publication Date: 
2015
Updated Date (text): 
2012-06-22
Publication Type: 
Archive number: 
2012/0049 FORT

Pub Abstract: 

ASPN is a Web-based decision tool that assists natural resource managers and planners in identifying and prioritizing social and economic planning issues, and provides guidance on appropriate social and economic methods to address their identified issues.

  • ASPN covers the breadth of issues facing natural resource management agencies so it is widely applicable for various resources, plans, and projects.
  • ASPN also realistically accounts for budget and planning time constraints by providing estimated costs and time lengths needed for each of the possible social and economic methods.

ASPN is a valuable starting point for natural resource managers and planners to start working with their agencies’ social and economic specialists. Natural resource management actions have social and economic effects that often require appropriate analyses. Additionally, in the United States, Federal agencies are legally mandated to follow guidance under the National Environmental Policy Act (NEPA), which requires addressing social and economic effects for actions that may cause biophysical impacts. Most natural resource managers and planners lack training in understanding the full range of potential social and economic effects of a management decision as well as an understanding of the variety of methods and analyses available to address these effects. Thus, ASPN provides a common framework which provides consistency within and across natural resource management agencies to assist in identification of pertinent social and economic issues while also allowing the social and economic analyses to be tailored to best meet the needs of the specific plan or project.

ASPN can be used throughout a planning process or be used as a tool to identify potential issues that may be applicable to future management actions. ASPN is useful during the pre-scoping phase as a tool to start thinking about potential social and economic issues as well as to identify potential stakeholders who may be affected. Thinking about this early in the planning process can help with outreach efforts and with understanding the cost and time needed to address the potential social and economic effects. One can use ASPN during the scoping and post-scoping phases as a way to obtain guidance on how to address issues that stakeholders identified. ASPN can also be used as a monitoring tool to identify whether new social and economic issues arise after a management action occurs.

ASPN is developed through a collaborative research effort between the USGS Fort Collins Science Center’s (FORT) Social and Economic Analysis (SEA) Branch and the U.S. Forest Service, the National Park Service, the Bureau of Land Management, and the U.S. Fish and Wildlife Service.  ASPN’s technical development is led by the USGS FORT’s Information Science Branch.  An updated release, which will extend ASPN’s functionality and incorporate feature improvements identified in ongoing usability testing, is currently in the planning stages.

Publication Title: 

Modeling sediment accumulation in North American playa wetlands in response to climate change, 1940–2100

FORT Contact: 
Susan Skagen
Authors: 
Burris, L.E. and S.K. Skagen
Related Staff: 
Susan Skagen
Lucy Burris
Publication Date: 
2013
Updated Date (text): 
2013-03-15
Parent Publication Title: 
Climatic Change
Publication Type: 
Archive number: 
2013/0002 FORT

Pub Abstract: 

Playa wetlands on the west-central Great Plains of North America are vulnerable to sediment infilling from upland agriculture, putting at risk several important ecosystem services as well as essential habitats and food resources of diverse wetland-dependent biota. Climate predictions for this semi-arid area indicate reduced precipitation which may alter rates of erosion, runoff, and sedimentation of playas. We forecasted erosion rates, sediment depths, and resultant playa wetland depths across the west-central Great Plains and examined the relative roles of land use context and projected changes in precipitation in the sedimentation process. We estimated erosion with the Revised Universal Soil Loss Equation (RUSLE) using historic values and downscaled precipitation predictions from three general circulation models and three emissions scenarios. We calibrated RUSLE results using field sediment measurements. RUSLE is appealing for regional scale modeling because it uses climate forecasts with monthly resolution and other widely available values including soil texture, slope and land use. Sediment accumulation rates will continue near historic levels through 2070 and will be sufficient to cause most playas (if not already filled) to fill with sediment within the next 100 years in the absence of mitigation. Land use surrounding the playa, whether grassland or tilled cropland, is more influential in sediment accumulation than climate-driven precipitation change.

Pages