South Dakota

Legacy ID: 
46
State Code: 
SD
Country Code: 
USA
Area: 
77 195.10
Latitude: 
44.43
Longitude: 
-100.24
Publication Title: 

Management of plains cottonwood at Theodore Roosevelt National Park, North Dakota

FORT Contact: 
Jonathan Friedman
Authors: 
Friedman, J. M., and E. R. Griffin.
Related Staff: 
Jonathan Friedman
Publication Date: 
2017
Parent Publication Title: 
Natural Resource Report
Publication Type: 
Archive number: 
States: 
Topics: 

Pub Abstract: 

Establishment of cottonwood trees is driven by flood-induced channel migration, which provides the new surfaces necessary for successful germination and survival. Along the Little Missouri River the largest floods typically result from snowmelt in March or April. Seed release occurs in early summer, and seedlings usually germinate in moist, open locations on point bars at relatively low elevations above the channel. Subsequent channel migration allows seedlings to mature by protecting them from scour in floods and ice jams. Management actions that decrease channel movement will reduce cottonwood reproduction. Growth and survival of cottonwood trees are strongly decreased by extreme low flows. As a result, management activities that decrease low flows could strongly reduce growth or kill trees. Surface-flow diversions are less damaging to trees if carried out during the spring when flows are relatively high. Herbicide application by helicopter to control leafy spurge appears to have inadvertently damaged or killed about 25% of the cottonwood forest along the Little Missouri River in the South Unit. Area of adult trees sprayed has been reduced since 2007 to limit this damage. It is not known whether spraying of cottonwood seedlings on unforested point bars is reducing cottonwood reproduction in the South Unit. Warmer temperatures since 1976 have reduced flood peaks and the ice jamming that magnifies those peaks; as a result channel movement, cottonwood establishment and cottonwood growth have decreased. Increasing temperatures associated with global climate change could continue this trend.

Publication Title: 

Factors that affect parasitism of black-tailed prairie dogs by fleas

FORT Contact: 
David Eads
Authors: 
Eads, D.A., and J.L. Hoogland.
Related Staff: 
David Eads
Publication Date: 
2016
Parent Publication Title: 
Ecosphere
Publication Type: 
Archive number: 
States: 

Pub Abstract: 

Fleas (Insecta: Siphonaptera) are hematophagous ectoparasites that feed on vertebrate hosts. Fleas can reduce the fitness of hosts by interfering with immune responses, disrupting adaptive behaviors, and transmitting pathogens. The negative effects of fleas on hosts are usually most pronounced when fleas attain high densities. In lab studies, fleas desiccate and die under dry conditions, suggesting that populations of fleas will tend to decline when precipitation is scarce under natural conditions. To test this hypothesis, we compared precipitation vs. parasitism of black-tailed prairie dogs (Cynomys ludovicianus) by fleas at a single colony during May and June of 13 consecutive years (1976–1988) at Wind Cave National Park, South Dakota, USA. The number of fleas on prairie dogs decreased with increasing precipitation during both the prior growing season (April through August of the prior year) and the just-completed winter–spring (January through April of current year). Due to the reduction in available moisture and palatable forage in dry years, herbivorous prairie dogs might have been food-limited, with weakened behavioral and immunological defenses against fleas. In support of this hypothesis, adult prairie dogs of low mass harbored more fleas than heavier adults. Our results have implications for the spread of plague, an introduced bacterial disease, transmitted by fleas, that devastates prairie dog colonies and, in doing so, can transform grassland ecosystems.

Publication Title: 

Projected wetland densities under climate change: Habitat loss but little geographic shift in conservation strategy

FORT Contact: 
Helen Sofaer
Authors: 
Sofaer, H. R., Skagen, S. K., Barsugli, J. J., Rashford, B. S., Reese, G. C., Hoeting, J. A., Wood, A. W. and Noon, B. R.
Related Staff: 
Helen Sofaer
Susan Skagen
Gordon Reese
Publication Date: 
2016
Parent Publication Title: 
Ecological Applications
Publication Type: 
Archive number: 

Pub Abstract: 

Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland complexes containing both small and relatively large wetland basins, which is an ongoing conservation strategy, may also act to hedge against uncertainty in the effects of climate change.

Publication Title: 

First estimates of the probability of survival in a small-bodied, high-elevation frog (Boreal Chorus Frog, Pseudacris maculata), or how historical data can be useful

FORT Contact: 
Erin Muths
Authors: 
Muths, E.L., R.D. Scherer, S.M. Amburgey, T. Matthews, A.W. Spencer, and P.S. Corn
Related Staff: 
Erin Muths
Publication Date: 
2016
Parent Publication Title: 
Canadian Journal of Zoology
Publication Type: 
Archive number: 

Pub Abstract: 

In an era of shrinking budgets yet increasing demands for conservation, the value of existing (i.e., historical) data are elevated. Lengthy time series on common, or previously common, species are particularly valuable and may be available only through the use of historical information. We provide first estimates of the probability of survival and longevity (0.67–0.79 and 5–7 years, respectively) for a subalpine population of a small-bodied, ostensibly common amphibian, the Boreal Chorus Frog (Pseudacris maculata (Agassiz, 1850)), using historical data and contemporary, hypothesis-driven information–theoretic analyses. We also test a priori hypotheses about the effects of color morph (as suggested by early reports) and of drought (as suggested by recent climate predictions) on survival. Using robust mark–recapture models, we find some support for early hypotheses regarding the effect of color on survival, but we find no effect of drought. The congruence between early findings and our analyses highlights the usefulness of historical information in providing raw data for contemporary analyses and context for conservation and management decisions.

Publication Title: 

A Multiscale Index of Landscape Intactness for the Western United States

FORT Contact: 
Natasha Carr
Authors: 
Carr, N.B., I.I.F. Leinwand, and D.J.A. Wood
Related Staff: 
Natasha Carr
Ian Leinwand
Publication Date: 
2016
Parent Publication Title: 
Publication Type: 
Archive number: 

Pub Abstract: 

Landscape intactness has been defined as a quantifiable estimate of naturalness measured on a gradient of anthropogenic influence. We developed a multiscale index of landscape intactness for the Bureau of Land Management’s (BLM) landscape approach, which requires multiple scales of information to quantify the cumulative effects of land use. The multiscale index of landscape intactness represents a gradient of anthropogenic influence as represented by development levels at two analysis scales.

To create the index, we first mapped the surface disturbance footprint of development, for the western U.S., by compiling and combining spatial data for urban development, agriculture, energy and minerals, and transportation for 17 states. All linear features and points were buffered to create a surface disturbance footprint. Buffered footprints and polygonal data were rasterized at 15-meter (m), aggregated to 30-m, and then combined with the existing 30-meter inputs for urban development and cultivated croplands. The footprint area was represented as a proportion of the cell and was summed using a raster calculator. To reduce processing time, the 30-m disturbance footprint was aggregated to 90-m. The 90-m resolution surface disturbance footprint is retained as a separate raster data sets in this data release (Surface Disturbance Footprint from Development for the Western United States). We used a circular moving window to create a terrestrial development index for two scales of analysis, 2.5-kilometer (km) and 20-km, by calculating the percent of the surface disturbance footprint at each scale. The terrestrial development index at both the 2.5-km (Terrestrial Development Index for the Western United States: 2.5-km moving window) and 20-km (Terrestrial Development Index for the Western United States: 20-km moving window) were retained as separate raster data sets in this data release. The terrestrial development indexes at two analysis scales were ranked and combined to create the multiscale index of landscape intactness (retained as Landscape Intactness Index for the Western United States) in this data release. To identify intact areas, we focused on terrestrial development index scores less than or equal to 3 percent, which represented relatively low levels of development on multiple-use lands managed by the BLM and other land management agencies.

The multiscale index of landscape intactness was designed to be flexible, transparent, defensible, and applicable across multiple spatial scales, ecological boundaries, and jurisdictions. To foster transparency and facilitate interpretation, the multiscale index of landscape intactness data release retains four component data sets to enable users to interpret the multiscale index of landscape intactness: the surface disturbance footprint, the terrestrial development index summarized at two scales (2.5-km and 20-km circular moving windows), and the overall landscape intactness index. The multiscale index is a proposed core indicator to quantify landscape integrity for the BLM Assessment, Inventory, and Monitoring program and is intended to be used in conjunction with additional regional- or local-level information not available at national levels (such as invasive species occurrence) necessary to evaluate ecological integrity for the BLM landscape approach.

Publication Title: 

Implications of climate change for wetland-dependent birds in the Prairie Pothole Region

FORT Contact: 
Susan Skagen
Authors: 
Steen, V.A., S.K. Skagen, and C.P. Melcher
Related Staff: 
Valerie Steen
Susan Skagen
Cynthia Melcher
Publication Date: 
2016
Parent Publication Title: 
Wetlands
Publication Type: 
Archive number: 

Pub Abstract: 

The habitats and food resources required to support breeding and migrant birds dependent on North American prairie wetlands are threatened by impending climate change. The North American Prairie Pothole Region (PPR) hosts nearly 120 species of wetland-dependent birds representing 21 families. Strategic management requires knowledge of avian habitat requirements and assessment of species most vulnerable to future threats. We applied bioclimatic species distribution models (SDMs) to project range changes of 29 wetland-dependent bird species using ensemble modeling techniques, a large number of General Circulation Models (GCMs), and hydrological climate covariates. For the U.S. PPR, mean projected range change, expressed as a proportion of currently occupied range, was −0.31 (± 0.22 SD; range − 0.75 to 0.16), and all but two species were projected to lose habitat. Species associated with deeper water were expected to experience smaller negative impacts of climate change. The magnitude of climate change impacts was somewhat lower in this study than earlier efforts most likely due to use of different focal species, varying methodologies, different modeling decisions, or alternative GCMs. Quantification of the projected species-specific impacts of climate change using species distribution modeling offers valuable information for vulnerability assessments within the conservation planning process.

Publication Title: 

Data used to estimate and project the effects of climate and land use change on wetland densities in the Prairie Pothole Region

FORT Contact: 
Helen Sofaer
Authors: 
Sofaer, H.R.
Related Staff: 
Helen Sofaer
Publication Date: 
2016
Parent Publication Title: 
Publication Type: 
Archive number: 

Pub Abstract: 

These data were used to estimate models relating climate and land cover to wetland densities and develop projections under climate and land use change. Data for model estimation were derived from historical climate data, estimates of hydrological processes based on the Variable Infiltration Capacity model, National Wetlands Inventory, and the National Land Cover Database. Wetland densities were based on observations from the Waterfowl Breeding Population and Habitat Survey. Projected climate conditions were derived from ten Global Climate Models, and projected changes in land use were based on an economic model of the effects of climate on land use transitions.

These data support the following publication:

  • Sofaer, H. R., Skagen, S. K., Barsugli, J. J., Rashford, B. S., Reese, G. C., Hoeting, J. A., Wood, A. W. and Noon, B. R. 2016. Projected wetland densities under climate change: habitat loss but little geographic shift in conservation strategy. Ecological Applications doi:10.1890/15-0750.1.
Publication Title: 

Sediment accumulation in prairie wetlands under a changing climate: The relative roles of landscape and precipitation

FORT Contact: 
Susan Skagen
Authors: 
Skagen, S. K., L.E. Burris, D.A. Granfors
Related Staff: 
Susan Skagen
Lucy Burris
Publication Date: 
2016
Parent Publication Title: 
Wetlands
Publication Type: 
Archive number: 

Pub Abstract: 

Sediment accumulation threatens the viability and hydrologic functioning of many naturally formed depressional wetlands across the interior regions of North America. These wetlands provide many ecosystem services and vital habitats for diverse plant and animal communities. Climate change may further impact sediment accumulation rates in the context of current land use patterns. We estimated sediment accretion in wetlands within a region renowned for its large populations of breeding waterfowl and migrant shorebirds and examined the relative roles of precipitation and land use context in the sedimentation process. We modeled rates of sediment accumulation from 1971 through 2100 using the Revised Universal Soil Loss Equation (RUSLE) with a sediment delivery ratio and the Unit Stream Power Erosion Deposition model (USPED). These models predicted that by 2100, 21–33 % of wetlands filled completely with sediment and 27–46 % filled by half with sediments; estimates are consistent with measured sediment accumulation rates in the region reported by empirical studies. Sediment accumulation rates were strongly influenced by size of the catchment, greater coverage of tilled landscape within the catchment, and steeper slopes. Conservation efforts that incorporate the relative risk of infilling of wetlands with sediments, thus emphasizing areas of high topographic relief and large watersheds, may benefit wetland-dependent biota.

Publication Title: 

American Badgers selectively excavate burrows in areas used by blackfooted ferrets: Implications for predator avoidance

FORT Contact: 
Dean Biggins
Authors: 
Eads, D.A., D.E. Biggins, T.M. Livieri, and J.J. Millspaugh
Related Staff: 
Dean Biggins
Publication Date: 
2013
Updated Date (text): 
2013-09-25
Parent Publication Title: 
Journal of Mammalogy
Publication Type: 
Archive number: 
2013/0102 FORT
States: 

Pub Abstract: 

We evaluated how American badgers (Taxidea taxus) might exert selective pressure on black-footed ferrets (Mustela nigripes) to develop antipredator defenses. In a colony of black-tailed prairie dogs (Cynomys ludovicianus) in South Dakota, badgers concentrated their activities where burrow openings and prairie dogs were abundant, a selective behavior that was exhibited by ferrets in the same colony. Badgers excavated burrows more often when in areas recently used by a ferret, suggesting that badgers hunt ferrets or steal prey from ferrets, or both. We also conducted an analysis of survival studies for ferrets and Siberian polecats (M. eversmanii) released onto prairie dog colonies. This polecat is the ferret’s ecological equivalent but evolved without a digging predator. Badgers accounted for 30.0% of predation on polecats and 5.5% of predation on ferrets. In contrast, both polecats and ferrets have evolutionary experience with canids, providing a plausible explanation for the similar relative impact of coyotes (Canis latrans) on them (65.0% and 67.1% of predation, respectively). We hypothesize that ferrets and badgers coexist because ferrets are superior at exploitation competition and are efficient at avoiding badgers, and badgers are superior at interference competition.

(c)Americam Society of Mammalogists

Pages