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Abstract. Mesocosms have been primarily used as research tools for the evaluation of
the fate and effects of xenobiotic chemicals at the population, community, and ecosystem
levels of biological organization. This paper provides suggestions for future applications
of mesocosm research. Attention should be given to the configuration of mesocosm pa-
rameters to explicitly study regional questions of ecological interest. The initial physical,
chemical, and biological conditions within mesocosms should be considered as factors
shaping the final results of experiments. Certain fundamental questions such as the eco-
logical inertia and resilience of systems with different initial ecological properties should
be addressed. Researchers should develop closer working relationships with mathematical
modelers in linking computer models to the outcomes of mesocosm studies. Mesocosm
tests, linked with models, could enable managers and regulators to forecast the regional

consequences of chemicals released into the environment.
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INTRODUCTION

The assessment of the risk of xenobiotic chemicals
to aquatic resources has evolved to include an array of
toxicity, fate, and exposure studies conducted under
both laboratory and field conditions. Within the re-
quirements of the Federal Insecticide, Fungicide, and
Rodenticide Act (FIFRA), the U.S. Environmental Pro-
tection Agency (EPA) currently requires a laboratory
toxicity data set for selected target species in addition
to a limited set of nontarget species expected to be
exposed as a result of the proposed use-pattern (Urban
and Cook 1986, Jenkins et al. 1989). Even less data
are required for nonpesticide chemicals of industry and
commerce, which are regulated under the Toxic Sub-
stances Control Act (TSCA) (Bedford 1984).

Regulatory data for both TSCA and FIFRA have
traditionally been generated using standardized testing
procedures involving single species. However, in 1988
EPA made a major decision to require additional sim-
ulated aquatic field studies FIFRA (Touart 1988, Touart
and Slimak 1989). This requirement was rescinded in
1992 (Anonymous 1992), which effectively eliminated
regulatory studies of the indirect or secondary effects
of pesticides on nontarget organisms. The EPA appar-
ently rescinded the field-testing requirement because it
was perceived that the studies were not providing data
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beyond that which were already provided by existing
laboratory tests. However, this opinion remains con-
troversial among ecotoxicologists, and has led to re-
consideration of the role that experimental mesocosm
studies should play in risk assessment and other ap-
plications of applied ecology (Taylor 1994).

MESOCOSMS AND THE ASSESSMENT OF XENOBIOTICS

Ecological risk analysis can be succinctly defined as
“the process of defining and determining the proba-
bility of environmental threats and the impact they are
able to cause’’ (paraphrased from Suter [1993:3; see
also Bartell et al. [1992] and EPA [1992]). Although
there is some difference in terminology in the desig-
nation of microcosms and mesocosms, in practice eco-
toxicologists have defined mesocosms as outdoor semi-
controlled ecosystems such as experimental ponds and
streams whose physical dimensions and basic water
chemistry are known and controlled. Mesocosms char-
acteristically include both natural species assemblages
(e.g., invertebrates, algae, and macrophytes) in addition
to structured populations of vertebrates such as fish.
These experimental systems are subject to the vicis-
situdes of regional weather, natural recolonization, in-
terspecific interactions, disease, and other factors.
Aquatic mesocosms can be viewed as part of an ex-
perimental continuum from single-species laboratory
tests; to microcosms, which are small (<1 m?) indoor
or outdoor experimental ecosystems composed of axe-
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nic (controlled) or natural ‘biological assembledges; to
larger (>1 m®) semi-controlled ecosystems (i.e., me-
socosms) such as littoral corrals, in situ bags or lim-
nocorrals, streams, or ponds (Odum 1984, LaPoint et
al. 1988).

Mesocosm research in the past has been directed
primarily at four aspects of the assessment of xeno-
biotics: (1) estimations of the fate of the chemical,
including volatilization, compartmentalization, and
degradation (Robinson-Wilson and Boyle 1983, Heinis
and Knuth 1992; (2) assessment of the primary, direct
effects on a variety of organisms at the individual, pop-
ulation, and community levels of biological organi-
zation (Boyle 1985, Fairchild et al. 1992, Heimbach et
al. 1992); (3) validation of mathematical models of fate
(Park et al. 1982) and effects (Park 1990); and (4)
determination of the secondary and tertiary indirect
effects of biological restructuring on ecosystem struc-
ture and function (Eaton et al. 1982, Fairchild et al.
1992).

The first two areas have been adequately explored
in the literature and have become standard areas of
analysis in mesocosm experiments. Although meso-
cosm studies have analyzed the effects of xenobiotics
at the population, community, and ecosystem levels of
organization, too often these results have been inter-
preted as if they were consummate ends in themselves.
They have not been used to their fullest potential in
asking questions in a regional context. Broader eco-
logical questions have largely been ignored.

PrROSPECTUS ON THE FUTURE OF MESOCOSM
RESEARCH

We outline here an agenda for mesocosm research
that will address areas necessary for more comprehen-
sive ecological risk analysis. Our primary goal is to
place ecological risk analysis in the broader context of
regional management of natural resources, which is a
central theme of applied ecology. In the language of
risk assessment, we form a corollary to our previous
definition of ecological risk analysis by asking *“What
is the probability and expected magnitude of the sec-
ondary and tertiary effects of exposure to xenobiotics
in ecosystems with different characteristics reflective
of regional ecological conditions?”’

This question parallels other efforts to explore ap-
proaches for managing resources withina regional
framework (EPA 1989, Hunsaker et al. 1990, Grahm
et al. 1991) including risk analysis of water resources.
Mesocosms are a valuable tool that can be used in a
systematic exploration of the influence of regional fac-
tors in ecological restructuring of aquatic ecosystems
due to secondary and tertiary effects of toxic xeno-
biotics. This is perhaps the area least examined in me-
socosm studies to date. Mesocosms studies can be de-
signed to include critical ecological variables such as
site-specific water-quality conditions, endemic flora
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and fauna, and various strengths and complexities of
ecological interactions.

Additional studies should continue to be directed at
the validation of models of chemical fate in mesocosms
given different sets of ecosystem properties (Eaton et
al. 1982). Factors that need to be considered in the
assessment of the fate of xenobiotics include physical
differences such as solar radiation, temperature, trans-
parency of the water; chemical differences such as level
of critical inorganic nutrients, pH, and buffering ca-
pacity; and biological differences such as standing crop
of macrophytes, levels of planktonic organic carbon,
and rates of metabolic activity (Fairchild et al. 1984,
Boyle and Robinson-Wilson 1985, McCarthy and Bar-
tell 1988). Differences in these ecological conditions
occur regionally, and are expected to produce differ-
ences in the results of mesocosm experiments as well
as model outputs.

Toxic effects of xenobiotics are also affected by
physical factors such as temperature, pH, alkalinity,
and hardness (Schindler et al. 1985, Mayer and Eller-
sieck 1986). Biological factors such as the age, physical
condition, and phylogenetic origin of the target species
(e.g., algae, crustaceans, and fishes) as well as the spe-
cies within these groups will determine the differential
sensitivity to various contaminants with varying modes
of action (Mayer and Ellersieck 1986).

Indirect responses within ecosystems are strongly
affected by variations in trophic structure (e.g., number
of layers), nature of interactions, and interaction
strength (Carpenter et al. 1985, Vanni and Findlay
1990, Deutch et al. 1992, Power and Marks 1992),
Strong 1992. Indirect responses may be further exac-
erbated depending on the specific trophic layer that is
targeted, such as the effects of herbicides on primary
producers (Dewey 1986, Lampert et al. 1989) or the
effects of insecticides on consumers (Fairchild et al.
1992, Boyle et al. 1996).

Thus, the effects of toxic chemicals are under the
influence of a complex number of factors that vary
regionally according to climate, geology, soils, land-
form, and resident biological communities. Future me-
socosm experiments could be structured to address the
ecological effects and management of toxic chemicals
in a regional framework. Even aquatic ecosystems
within regions vary according to level of inorganic nu-
trients and primary production (e.g., oligotrophic to
eutrophic), physical structure (e.g., monomictic, di-
mictic, or polymictic), basic water chemistry (e.g., al-
kalinity and acid neutralizing capacity), and trophic
structure (e.g., three or four-layer ecosystems) (Strong
1992). These factors may have profound effects on the
structural and functional attributes of the entire system
(Carpenter et al. 1985, Vanni and Findlay 1990, Power
and Marks 1992).

Even though the first comprehensive studies using
mesocosms were directed at fundamental questions of
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ecology (Hall et al. 1970), mesocosm studies by eco-
toxicologists have not been fully linked to current eco-
logical concepts nor to the broader, applied ecological
questions of resource management. There has been a
tendency to tacitly consider mesocosms such as out-
door ponds and artificial streams simply as containers
for biological communities. Little attention has been
directed either at how representative the initial con-
ditions are to those occurring in nature, or how these
initial ecological conditions shape the final results of
the experiment. This has been less true for exclosures
of natural systems, where the relationship with the par-
ent ecosystem is intimate and apparent.

RECOMMENDATIONS

We enumerate four general recommendations for
consideration in continued mesocosm experiments
aimed at risk assessment for xenobiotics.

1) Develop closer links with mathematical modelers
and the development of computer models. Models such
as PEST and AQUATOX have benefited from valida-
tion with mesocosm studies in the past (Park et al. 1982,
Park 1990). In the future the simultaneous coordination
of development of models and the formation of tests
and validations would improve the realism and accu-
racy of both activities.

2) Evaluate the significance of the initial physical,
chemical, and biological conditions of mesocosms that
may influence the outcome of mesocosm experiments.
Attention should be given to configuring mesocosm
conditions to explicitly simulate attributes that may be
region-specific. This strategy not only recognizes the
potential differences among mesocosm tests, but would
exploit these potential difference for greater applica-
bility to regional problems.

3) Evaluate the significance of the secondary and
tertiary effects of ecological restructuring observed in
mesocosm tests in a predictive framework so that man-
agers and regulators would be better able to forecast
the consequences of chemicals in the environment on
a regional basis related to particular ecosystem prop-
erties. Ideally, these predictions could be made given
a basic knowledge of the exposure, fate, and effects of
a chemical in question. Mesocosm tests should not have
to be done on every chemical registered. Results should
eventually be predictable based on chemical behavior,
mode of action, and regional ecosystem characteristics.

4) Determine the ecological inertia and resilience of
both mesocosms and the ecosystems that they are de-
signed to mimic (Westman 1978, Cairns and Nieder-
lehner 1993). Moreover, establishment of methodology
for evaluating the long-term sustainability of ecosys-
tems is directly linked to maintaining their values and
functions for human systems (Cairns and Niederlehner
1993).

Research results derived from these recommenda-
tions would provide information that could link both
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basic and applied ecology. This information should also
provide a foundation for the development of ecological
indicators and strategies for environmental monitoring
and assessment of contaminants at the regional level.
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